redfungus commited on
Commit
f98871a
·
1 Parent(s): 0c6e0bf

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1289.92 +/- 281.54
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3b3f02cb1e2f638ef72d4bdb7586796a8c9d935db90d7e32f3b6662a42c5a7
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f233d1421f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f233d142280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f233d142310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f233d1423a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f233d142430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f233d1424c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f233d142550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f233d1425e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f233d142670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f233d142700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f233d142790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f233d142820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f233d138c30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675346520030803683,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEHJyD7qHm8/ukQiP3THuz7R80g/nHEOP4N8rT9TvcS9tyAoP/LjPr+8fLc/4CmWPrA/ob6vtDbAtacrv3xlm79QeYE/bLVdv0zGFz9UDAo+w95pv0lhJT3QuGC/rpoXvu+MOj9pL03ADEEVPxTTg79DJYy+ge1gP5J8JT+fnUY/ZIdvvl8ILDxih8M85QYGv9Rmv70/5pi/Y+I/v7y+lj8oyoe/K8KdPhhgsD5yV0u+yPa2P3Beh7xfz0c+lQpuv1uFXL/eH6q/4aihPgh6nL/ypq+/GrOfPomL27+nkng/ae5UPhcBUT+ucyg/PfVXPoML0j7Z50w/SH0EP3Fzlr9SaJk/xkRpvqfxhT9t+g8+MJokv5IcGMAmMEc+oPaTvwd6Jj/y8IW/RlEiP2y31z3Gsmm//jERPcTaYL+Ss50874w6Pxqznz4MQRU/FNODv9zOwj1JW2A/z5olP6vxbj9511Q/3OIEvXxJHz/Qt6a+tyRjvxb3m7/k7VS/ApmwPvJQn7/woVc/ivQIvxbR4b0l6Kk/8ESJvRov9j5L+0c/tkNkv1Mbrz6KDKU9ZUOTvvKmr78as58+iYvbv6eSeD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADb/Do1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANwrlvQAAAAA/W/u/AAAAAIturT0AAAAAkhDsPwAAAAAY9aW9AAAAAOMb8j8AAAAAofGxPQAAAAC5uP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfsAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKNtA74AAAAAWqr7vwAAAAAIs5W9AAAAAMmk/j8AAAAAYrJYvQAAAAD9Wf4/AAAAAE62tT0AAAAAF4DevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVT0jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBq/IQ9AAAAANtX3b8AAAAA5lcNPgAAAABm5do/AAAAAI/Ubz0AAAAAfAfxPwAAAAD9aQq+AAAAAG+d5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvC22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACQENvgAAAADkdt6/AAAAALC53r0AAAAAY7HgPwAAAACN7eW8AAAAACeHAEAAAAAASWrxPQAAAADs9O6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa/3jIaLn+MAWyUTegDjAF0lEdAp01gZuQ6qHV9lChoBkdAlRnoIKMNt2gHTegDaAhHQKdPxh5PdmB1fZQoaAZHQIa3XMhX8wZoB03oA2gIR0CnVoUwSJ0odX2UKGgGR0CVdflWOp84aAdN6ANoCEdAp1f3jU/fO3V9lChoBkdAkywbteD3/WgHTegDaAhHQKdZwC8vmHR1fZQoaAZHQI/puhM8HOdoB03oA2gIR0CnXDQvg3tKdX2UKGgGR0CRCANkOI69aAdN6ANoCEdAp2KuJYT0x3V9lChoBkdAlvFvszEaVGgHTegDaAhHQKdkIasIVud1fZQoaAZHQFqGpn6Eal1oB03oA2gIR0CnZeFhw2l3dX2UKGgGR0CToZRg7YChaAdN6ANoCEdAp2gxCF9KEnV9lChoBkdAgrJUxubZvmgHTegDaAhHQKdujhhpg1F1fZQoaAZHQJYgN+2E0zloB03oA2gIR0Cnb/6ScLBsdX2UKGgGR0CEdzb48EFGaAdN6ANoCEdAp3HCD9OymnV9lChoBkdAjPVXuuzQeGgHTegDaAhHQKd0Hk9U0el1fZQoaAZHQJQ95paiblRoB03oA2gIR0Cnep6MBIWhdX2UKGgGR0CHSYQSzw+daAdN6ANoCEdAp3wHrUsnRnV9lChoBkdAkytr7XQMQWgHTegDaAhHQKd9woDPnjh1fZQoaAZHQIrPhNXYDkloB03oA2gIR0CngAvoFFDwdX2UKGgGR0CW4gMNtqHoaAdN6ANoCEdAp4ZpJ7LMcXV9lChoBkdAlz1fjbSJCWgHTegDaAhHQKeH2mXw9aF1fZQoaAZHQI5/+F6AvtdoB03oA2gIR0CniZXZ5AyEdX2UKGgGR0CWy9A2AG0NaAdN6ANoCEdAp4wE8cMmW3V9lChoBkdAlSo+nqFAV2gHTegDaAhHQKeSi6DoQnR1fZQoaAZHQJaqXBqKxcFoB03oA2gIR0Cnk/Him2srdX2UKGgGR0CQAO0ALiMpaAdN6ANoCEdAp5W8PrfLtHV9lChoBkdAjpJ3XI2fkGgHTegDaAhHQKeYFI91U2l1fZQoaAZHQJPm4hKUVzpoB03oA2gIR0CnnpXb212JdX2UKGgGR0CSA2/vOQhfaAdN6ANoCEdAp5/6wIMSb3V9lChoBkdAj1m+SB9TgmgHTegDaAhHQKehwN5MURF1fZQoaAZHQJAHsPMB6rxoB03oA2gIR0CnpBRkupS8dX2UKGgGR0CYoW8P4EfUaAdN6ANoCEdAp6qL+zdDY3V9lChoBkdAk79vmT1TSGgHTegDaAhHQKer7+hoM8Z1fZQoaAZHQJk/B5+pfhNoB03oA2gIR0CnragKWszVdX2UKGgGR0CXb1Q/oq0/aAdN6ANoCEdAp6/4Difg8HV9lChoBkdAm6ZE12q1gGgHTegDaAhHQKe2lkupS751fZQoaAZHQJi9yRr8BMloB03oA2gIR0CnuAQxnFo+dX2UKGgGR0CPf0WVNYbLaAdN6ANoCEdAp7nJQ53kgnV9lChoBkdAlMxrpeNT+GgHTegDaAhHQKe8F6C17Y11fZQoaAZHQJWpP7rLQoloB03oA2gIR0CnxTdxIatLdX2UKGgGR0CYJbvPkaMraAdN6ANoCEdAp8es6Lfk3nV9lChoBkdAmLvuYD1XeWgHTegDaAhHQKfJt0wrUb11fZQoaAZHQI15+lyimEZoB03oA2gIR0CnzA08eS0TdX2UKGgGR0CNmylZ5iVjaAdN6ANoCEdAp9KdgYxcmnV9lChoBkdAljJXIMjNZGgHTegDaAhHQKfUGKsMiKR1fZQoaAZHQJcVU+aBqbloB03oA2gIR0Cn1etGd7OWdX2UKGgGR0CX1yeKKpDNaAdN6ANoCEdAp9hEwSJ0n3V9lChoBkdAlTkAoTfzjGgHTegDaAhHQKfex/gBLf11fZQoaAZHQJdBWNdZ7oloB03oA2gIR0Cn4ELpqynldX2UKGgGR0CXk1/+sHSnaAdN6ANoCEdAp+IQPbwjMXV9lChoBkdAlZRFJtix3WgHTegDaAhHQKfkbAsTWXl1fZQoaAZHQJgw5Cb+cYtoB03oA2gIR0Cn6vqe9SMtdX2UKGgGR0CWHOhisny/aAdN6ANoCEdAp+xtFUhmoXV9lChoBkdAkcXRdIGyHGgHTegDaAhHQKfuLd43WFx1fZQoaAZHQJf+ywD/2kBoB03oA2gIR0Cn8JjohY/3dX2UKGgGR0CT37mUW2w3aAdN6ANoCEdAp/cxBgNPQHV9lChoBkdAmKhvGEPDpGgHTegDaAhHQKf4m+Ofdyl1fZQoaAZHQJZow0Nz8xdoB03oA2gIR0Cn+kmlANXpdX2UKGgGR0CWmIH8jzI4aAdN6ANoCEdAp/yT9ycTanV9lChoBkdAlgIAbVBlc2gHTegDaAhHQKgC9njABT51fZQoaAZHQJegdz/6wdNoB03oA2gIR0CoBHJz90ihdX2UKGgGR0CWMCWYWtU5aAdN6ANoCEdAqAYwpvxYrHV9lChoBkdAkhA/1UVBU2gHTegDaAhHQKgIjrKNhmZ1fZQoaAZHQJVg4/t6X0JoB03oA2gIR0CoDzyUkfLcdX2UKGgGR0CTMY7Sy+pPaAdN6ANoCEdAqBCncrRSg3V9lChoBkdAldosAR02cmgHTegDaAhHQKgSXW2gFot1fZQoaAZHQJcioVHnU2FoB03oA2gIR0CoFL3wTdtVdX2UKGgGR0CTO8tZFG5MaAdN6ANoCEdAqBtCQA+6iHV9lChoBkdAlTImEGqxT2gHTegDaAhHQKgcsH8jzI51fZQoaAZHQJPcOlP8AJdoB03oA2gIR0CoHnTsIE8rdX2UKGgGR0CV1GdOZb6haAdN6ANoCEdAqCDPNiYsunV9lChoBkdAlePyr92ovWgHTegDaAhHQKgnSjC53C91fZQoaAZHQJY0OyD7IktoB03oA2gIR0CoKL4OMERrdX2UKGgGR0CT7nnjABT5aAdN6ANoCEdAqCp5kI5YHXV9lChoBkdAltS9ZJTVD2gHTegDaAhHQKgs2Nc4YJp1fZQoaAZHQJivyjHn2ZloB03oA2gIR0CoM0Knm7rcdX2UKGgGR0CTmSWBz3h5aAdN6ANoCEdAqDSraRISUXV9lChoBkdAkmFJbMX7+GgHTegDaAhHQKg2biiItUZ1fZQoaAZHQJdE56/qPfdoB03oA2gIR0CoONQP7N0OdX2UKGgGR0CJzx/ZuhsZaAdN6ANoCEdAqD9OXNTtLXV9lChoBkdAkJwGcjJMg2gHTegDaAhHQKhAxechC+l1fZQoaAZHQJFnBV81Gb1oB03oA2gIR0CoQo26bvw3dX2UKGgGR0CFan/PPcBVaAdN6ANoCEdAqEUNUsFt9HV9lChoBkdAlLlC2Yv38GgHTegDaAhHQKhLj6l+Eyt1fZQoaAZHQJUOQQ04zadoB03oA2gIR0CoTPM0gr6MdX2UKGgGR0CSHQeizsyBaAdN6ANoCEdAqE7Rq/M4cXV9lChoBkdAlbJX2h7E52gHTegDaAhHQKhRK9RJmNB1fZQoaAZHQJFXbytmthdoB03oA2gIR0CoV6HsLORldX2UKGgGR0CQwUFZgXuWaAdN6ANoCEdAqFkT0Fr2x3V9lChoBkdAllyKyKNyYGgHTegDaAhHQKha0tHQQcx1fZQoaAZHQJBAbtZ3cHpoB03oA2gIR0CoXRLrPdEcdX2UKGgGR0CWPEgKF7D3aAdN6ANoCEdAqGNrfFaStHV9lChoBkdAk6nuXZ5AyGgHTegDaAhHQKhk5mig00p1fZQoaAZHQJe4dv1lGw1oB03oA2gIR0CoZqyXMQmNdX2UKGgGR0CUuzQAdXDFaAdN6ANoCEdAqGkWavzOHHV9lChoBkdAiWFtLUTcqWgHTegDaAhHQKhvgs5n14B1fZQoaAZHQJeJMPoV2zRoB03oA2gIR0CocOT9bX6JdX2UKGgGR0CWhc1ivxH5aAdN6ANoCEdAqHKrB2wFDHV9lChoBkdAlQLTmSyMUGgHTegDaAhHQKh1BwEyLyd1fZQoaAZHQJaNGsKb8WNoB03oA2gIR0Coe4mEXcgydX2UKGgGR0CXBL/RmbsoaAdN6ANoCEdAqHz1MwlByHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed5019e13191fc5a998048f39447f3262cbdf239029183b512d56418a085630
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3c8c9db0b5a242154bd007a24701f8a7916f22bd09ae7819b8f9bf2e025e946
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f233d1421f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f233d142280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f233d142310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f233d1423a0>", "_build": "<function ActorCriticPolicy._build at 0x7f233d142430>", "forward": "<function ActorCriticPolicy.forward at 0x7f233d1424c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f233d142550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f233d1425e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f233d142670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f233d142700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f233d142790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f233d142820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f233d138c30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675346520030803683, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEHJyD7qHm8/ukQiP3THuz7R80g/nHEOP4N8rT9TvcS9tyAoP/LjPr+8fLc/4CmWPrA/ob6vtDbAtacrv3xlm79QeYE/bLVdv0zGFz9UDAo+w95pv0lhJT3QuGC/rpoXvu+MOj9pL03ADEEVPxTTg79DJYy+ge1gP5J8JT+fnUY/ZIdvvl8ILDxih8M85QYGv9Rmv70/5pi/Y+I/v7y+lj8oyoe/K8KdPhhgsD5yV0u+yPa2P3Beh7xfz0c+lQpuv1uFXL/eH6q/4aihPgh6nL/ypq+/GrOfPomL27+nkng/ae5UPhcBUT+ucyg/PfVXPoML0j7Z50w/SH0EP3Fzlr9SaJk/xkRpvqfxhT9t+g8+MJokv5IcGMAmMEc+oPaTvwd6Jj/y8IW/RlEiP2y31z3Gsmm//jERPcTaYL+Ss50874w6Pxqznz4MQRU/FNODv9zOwj1JW2A/z5olP6vxbj9511Q/3OIEvXxJHz/Qt6a+tyRjvxb3m7/k7VS/ApmwPvJQn7/woVc/ivQIvxbR4b0l6Kk/8ESJvRov9j5L+0c/tkNkv1Mbrz6KDKU9ZUOTvvKmr78as58+iYvbv6eSeD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADb/Do1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANwrlvQAAAAA/W/u/AAAAAIturT0AAAAAkhDsPwAAAAAY9aW9AAAAAOMb8j8AAAAAofGxPQAAAAC5uP6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfsAtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKNtA74AAAAAWqr7vwAAAAAIs5W9AAAAAMmk/j8AAAAAYrJYvQAAAAD9Wf4/AAAAAE62tT0AAAAAF4DevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVT0jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBq/IQ9AAAAANtX3b8AAAAA5lcNPgAAAABm5do/AAAAAI/Ubz0AAAAAfAfxPwAAAAD9aQq+AAAAAG+d5b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArvC22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACACQENvgAAAADkdt6/AAAAALC53r0AAAAAY7HgPwAAAACN7eW8AAAAACeHAEAAAAAASWrxPQAAAADs9O6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa/3jIaLn+MAWyUTegDjAF0lEdAp01gZuQ6qHV9lChoBkdAlRnoIKMNt2gHTegDaAhHQKdPxh5PdmB1fZQoaAZHQIa3XMhX8wZoB03oA2gIR0CnVoUwSJ0odX2UKGgGR0CVdflWOp84aAdN6ANoCEdAp1f3jU/fO3V9lChoBkdAkywbteD3/WgHTegDaAhHQKdZwC8vmHR1fZQoaAZHQI/puhM8HOdoB03oA2gIR0CnXDQvg3tKdX2UKGgGR0CRCANkOI69aAdN6ANoCEdAp2KuJYT0x3V9lChoBkdAlvFvszEaVGgHTegDaAhHQKdkIasIVud1fZQoaAZHQFqGpn6Eal1oB03oA2gIR0CnZeFhw2l3dX2UKGgGR0CToZRg7YChaAdN6ANoCEdAp2gxCF9KEnV9lChoBkdAgrJUxubZvmgHTegDaAhHQKdujhhpg1F1fZQoaAZHQJYgN+2E0zloB03oA2gIR0Cnb/6ScLBsdX2UKGgGR0CEdzb48EFGaAdN6ANoCEdAp3HCD9OymnV9lChoBkdAjPVXuuzQeGgHTegDaAhHQKd0Hk9U0el1fZQoaAZHQJQ95paiblRoB03oA2gIR0Cnep6MBIWhdX2UKGgGR0CHSYQSzw+daAdN6ANoCEdAp3wHrUsnRnV9lChoBkdAkytr7XQMQWgHTegDaAhHQKd9woDPnjh1fZQoaAZHQIrPhNXYDkloB03oA2gIR0CngAvoFFDwdX2UKGgGR0CW4gMNtqHoaAdN6ANoCEdAp4ZpJ7LMcXV9lChoBkdAlz1fjbSJCWgHTegDaAhHQKeH2mXw9aF1fZQoaAZHQI5/+F6AvtdoB03oA2gIR0CniZXZ5AyEdX2UKGgGR0CWy9A2AG0NaAdN6ANoCEdAp4wE8cMmW3V9lChoBkdAlSo+nqFAV2gHTegDaAhHQKeSi6DoQnR1fZQoaAZHQJaqXBqKxcFoB03oA2gIR0Cnk/Him2srdX2UKGgGR0CQAO0ALiMpaAdN6ANoCEdAp5W8PrfLtHV9lChoBkdAjpJ3XI2fkGgHTegDaAhHQKeYFI91U2l1fZQoaAZHQJPm4hKUVzpoB03oA2gIR0CnnpXb212JdX2UKGgGR0CSA2/vOQhfaAdN6ANoCEdAp5/6wIMSb3V9lChoBkdAj1m+SB9TgmgHTegDaAhHQKehwN5MURF1fZQoaAZHQJAHsPMB6rxoB03oA2gIR0CnpBRkupS8dX2UKGgGR0CYoW8P4EfUaAdN6ANoCEdAp6qL+zdDY3V9lChoBkdAk79vmT1TSGgHTegDaAhHQKer7+hoM8Z1fZQoaAZHQJk/B5+pfhNoB03oA2gIR0CnragKWszVdX2UKGgGR0CXb1Q/oq0/aAdN6ANoCEdAp6/4Difg8HV9lChoBkdAm6ZE12q1gGgHTegDaAhHQKe2lkupS751fZQoaAZHQJi9yRr8BMloB03oA2gIR0CnuAQxnFo+dX2UKGgGR0CPf0WVNYbLaAdN6ANoCEdAp7nJQ53kgnV9lChoBkdAlMxrpeNT+GgHTegDaAhHQKe8F6C17Y11fZQoaAZHQJWpP7rLQoloB03oA2gIR0CnxTdxIatLdX2UKGgGR0CYJbvPkaMraAdN6ANoCEdAp8es6Lfk3nV9lChoBkdAmLvuYD1XeWgHTegDaAhHQKfJt0wrUb11fZQoaAZHQI15+lyimEZoB03oA2gIR0CnzA08eS0TdX2UKGgGR0CNmylZ5iVjaAdN6ANoCEdAp9KdgYxcmnV9lChoBkdAljJXIMjNZGgHTegDaAhHQKfUGKsMiKR1fZQoaAZHQJcVU+aBqbloB03oA2gIR0Cn1etGd7OWdX2UKGgGR0CX1yeKKpDNaAdN6ANoCEdAp9hEwSJ0n3V9lChoBkdAlTkAoTfzjGgHTegDaAhHQKfex/gBLf11fZQoaAZHQJdBWNdZ7oloB03oA2gIR0Cn4ELpqynldX2UKGgGR0CXk1/+sHSnaAdN6ANoCEdAp+IQPbwjMXV9lChoBkdAlZRFJtix3WgHTegDaAhHQKfkbAsTWXl1fZQoaAZHQJgw5Cb+cYtoB03oA2gIR0Cn6vqe9SMtdX2UKGgGR0CWHOhisny/aAdN6ANoCEdAp+xtFUhmoXV9lChoBkdAkcXRdIGyHGgHTegDaAhHQKfuLd43WFx1fZQoaAZHQJf+ywD/2kBoB03oA2gIR0Cn8JjohY/3dX2UKGgGR0CT37mUW2w3aAdN6ANoCEdAp/cxBgNPQHV9lChoBkdAmKhvGEPDpGgHTegDaAhHQKf4m+Ofdyl1fZQoaAZHQJZow0Nz8xdoB03oA2gIR0Cn+kmlANXpdX2UKGgGR0CWmIH8jzI4aAdN6ANoCEdAp/yT9ycTanV9lChoBkdAlgIAbVBlc2gHTegDaAhHQKgC9njABT51fZQoaAZHQJegdz/6wdNoB03oA2gIR0CoBHJz90ihdX2UKGgGR0CWMCWYWtU5aAdN6ANoCEdAqAYwpvxYrHV9lChoBkdAkhA/1UVBU2gHTegDaAhHQKgIjrKNhmZ1fZQoaAZHQJVg4/t6X0JoB03oA2gIR0CoDzyUkfLcdX2UKGgGR0CTMY7Sy+pPaAdN6ANoCEdAqBCncrRSg3V9lChoBkdAldosAR02cmgHTegDaAhHQKgSXW2gFot1fZQoaAZHQJcioVHnU2FoB03oA2gIR0CoFL3wTdtVdX2UKGgGR0CTO8tZFG5MaAdN6ANoCEdAqBtCQA+6iHV9lChoBkdAlTImEGqxT2gHTegDaAhHQKgcsH8jzI51fZQoaAZHQJPcOlP8AJdoB03oA2gIR0CoHnTsIE8rdX2UKGgGR0CV1GdOZb6haAdN6ANoCEdAqCDPNiYsunV9lChoBkdAlePyr92ovWgHTegDaAhHQKgnSjC53C91fZQoaAZHQJY0OyD7IktoB03oA2gIR0CoKL4OMERrdX2UKGgGR0CT7nnjABT5aAdN6ANoCEdAqCp5kI5YHXV9lChoBkdAltS9ZJTVD2gHTegDaAhHQKgs2Nc4YJp1fZQoaAZHQJivyjHn2ZloB03oA2gIR0CoM0Knm7rcdX2UKGgGR0CTmSWBz3h5aAdN6ANoCEdAqDSraRISUXV9lChoBkdAkmFJbMX7+GgHTegDaAhHQKg2biiItUZ1fZQoaAZHQJdE56/qPfdoB03oA2gIR0CoONQP7N0OdX2UKGgGR0CJzx/ZuhsZaAdN6ANoCEdAqD9OXNTtLXV9lChoBkdAkJwGcjJMg2gHTegDaAhHQKhAxechC+l1fZQoaAZHQJFnBV81Gb1oB03oA2gIR0CoQo26bvw3dX2UKGgGR0CFan/PPcBVaAdN6ANoCEdAqEUNUsFt9HV9lChoBkdAlLlC2Yv38GgHTegDaAhHQKhLj6l+Eyt1fZQoaAZHQJUOQQ04zadoB03oA2gIR0CoTPM0gr6MdX2UKGgGR0CSHQeizsyBaAdN6ANoCEdAqE7Rq/M4cXV9lChoBkdAlbJX2h7E52gHTegDaAhHQKhRK9RJmNB1fZQoaAZHQJFXbytmthdoB03oA2gIR0CoV6HsLORldX2UKGgGR0CQwUFZgXuWaAdN6ANoCEdAqFkT0Fr2x3V9lChoBkdAllyKyKNyYGgHTegDaAhHQKha0tHQQcx1fZQoaAZHQJBAbtZ3cHpoB03oA2gIR0CoXRLrPdEcdX2UKGgGR0CWPEgKF7D3aAdN6ANoCEdAqGNrfFaStHV9lChoBkdAk6nuXZ5AyGgHTegDaAhHQKhk5mig00p1fZQoaAZHQJe4dv1lGw1oB03oA2gIR0CoZqyXMQmNdX2UKGgGR0CUuzQAdXDFaAdN6ANoCEdAqGkWavzOHHV9lChoBkdAiWFtLUTcqWgHTegDaAhHQKhvgs5n14B1fZQoaAZHQJeJMPoV2zRoB03oA2gIR0CocOT9bX6JdX2UKGgGR0CWhc1ivxH5aAdN6ANoCEdAqHKrB2wFDHV9lChoBkdAlQLTmSyMUGgHTegDaAhHQKh1BwEyLyd1fZQoaAZHQJaNGsKb8WNoB03oA2gIR0Coe4mEXcgydX2UKGgGR0CXBL/RmbsoaAdN6ANoCEdAqHz1MwlByHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7123225a8e07ef75d8c8912019ea0525853a204b11831cd7a628c3c64cd81cc2
3
+ size 1041148
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1289.9175672752258, "std_reward": 281.5382166967109, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T14:55:33.635067"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7d3b186383deb67542c6f86a9eb0e3bea4ab24772cd8993ab6d3ef92cdf2de1
3
+ size 2136