Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:1451941
loss:MultipleNegativesRankingLoss
Eval Results
text-embeddings-inference
File size: 16,850 Bytes
1433a8a 6e71c42 03ae21c a7ab361 1433a8a c29f390 1433a8a c29f390 1433a8a c29f390 1433a8a c29f390 03ae21c c29f390 03ae21c c29f390 03ae21c c29f390 03ae21c c29f390 03ae21c c29f390 03ae21c c29f390 1433a8a 03ae21c 1433a8a 03ae21c c29f390 1433a8a c29f390 03ae21c 1433a8a a7ab361 1433a8a 03ae21c 1433a8a c29f390 1433a8a c29f390 1433a8a c29f390 03ae21c 1433a8a 6e71c42 a7ab361 1433a8a a7ab361 1433a8a a7ab361 6e71c42 b18f4c8 6e71c42 b18f4c8 1433a8a 6e71c42 a7ab361 1433a8a a7ab361 1433a8a a7ab361 6e71c42 b18f4c8 6e71c42 b18f4c8 1433a8a cf689fc 03ae21c 1433a8a 6e71c42 cf689fc 6e71c42 cf689fc 1433a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1451941
- loss:MultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-base
widget:
- source_sentence: Gocharya ji authored Krishna Cahrit Manas in the poetic form describing
about the full life of Lord Krishna ( from birth to Nirvana ) .
sentences:
- 'Q: Can I buy coverage for prescription drugs right away?'
- Krishna Cahrit Manas in poetic form , describing the full life of Lord Krishna
( from birth to nirvana ) , wrote Gocharya ji .
- Baron played actress Violet Carson who portrayed Ena Sharples in the soap .
- source_sentence: The Kilkenny line only reached Maryborough in 1867 .
sentences:
- It was also known formerly as ' Crotto ' .
- The line from Maryborough only reached Kilkenny in 1867 .
- The line from Kilkenny only reached Maryborough in 1867 .
- source_sentence: Tokelau International Netball Team represents Tokelau in the national
netball .
sentences:
- Ernest Dewey Albinson ( 1898 in Minneapolis , Minnesota - 1971 in Mexico ) was
an American artist .
- The Tokelau national netball team represents Tokelau in international netball
.
- The Tokelau international netball team represents Tokelau in national netball
.
- source_sentence: The real number is called the `` imaginary part `` of the real
number ; the real number is called the `` complex part `` of .
sentences:
- The school board consists of Robbie Sanders , Bryan Richards , Linda Fullingim
, Lori Lambert , & Kelly Teague .
- Which web design company has the best templates?
- The real number is called the `` imaginary part `` of the real number , the real
number of `` complex part `` of .
- source_sentence: All For You was the third and last single of Kate Ryan 's third
album `` Alive `` .
sentences:
- According to John Keay , he was `` country bred `` ( born and educated in India
) .
- All For You was the third single of the third and last album `` Alive `` by Kate
Ryan .
- All For You was the third and last single of the third album of Kate Ryan `` Alive
`` .
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: train
type: train
metrics:
- type: cosine_accuracy@1
value: 0.37778739987010174
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.37778739987010174
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.36103963757730806
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.5622280163193171
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.37778739987010174
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.5081953861443469
name: Cosine Map@100
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
"All For You was the third and last single of Kate Ryan 's third album `` Alive `` .",
'All For You was the third and last single of the third album of Kate Ryan `` Alive `` .',
'All For You was the third single of the third and last album `` Alive `` by Kate Ryan .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.9922, 0.9922],
# [0.9922, 1.0000, 0.9961],
# [0.9922, 0.9961, 1.0000]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `train`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy@1 | 0.3778 |
| cosine_precision@1 | 0.3778 |
| cosine_recall@1 | 0.361 |
| **cosine_ndcg@10** | **0.5622** |
| cosine_mrr@1 | 0.3778 |
| cosine_map@100 | 0.5082 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 109,885 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.47 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>how can I get financial freedom as soon as possible?</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 109,885 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 26.47 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>how can I get financial freedom as soon as possible?</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The older Punts are still very much in existence today and race in the same fleets as the newer boats .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Logs
| Epoch | Step | train_cosine_ndcg@10 |
|:-----:|:----:|:--------------------:|
| -1 | -1 | 0.5622 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |