Add usage ex
Browse files- README.md +87 -1
- tokenizer_config.json +0 -1
README.md
CHANGED
|
@@ -6,4 +6,90 @@ base_model:
|
|
| 6 |
- mistralai/Mistral-7B-v0.1
|
| 7 |
tags:
|
| 8 |
- legal
|
| 9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
- mistralai/Mistral-7B-v0.1
|
| 7 |
tags:
|
| 8 |
- legal
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# reglab-rrc/mistral-rrc
|
| 12 |
+
|
| 13 |
+
**Paper:** [AI for Scaling Legal Reform: Mapping and Redacting Racial Covenants in Santa Clara County]()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Usage
|
| 17 |
+
|
| 18 |
+
Here is an example of how to use the model to find racial covenants in a page of text:
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 22 |
+
import re
|
| 23 |
+
|
| 24 |
+
# Load model and tokenizer
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("reglab/mistral-rrc")
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained("reglab/mistral-rrc")
|
| 27 |
+
|
| 28 |
+
def format_prompt(document):
|
| 29 |
+
return f"""### Instruction:
|
| 30 |
+
Determine whether the property deed contains a racial covenant. A racial covenant is a clause in a document that \
|
| 31 |
+
restricts who can reside, own, or occupy a property on the basis of race, ethnicity, national origin, or religion. \
|
| 32 |
+
Answer "Yes" or "No". If "Yes", provide the exact text of the relevant passage and then a quotation of the passage \
|
| 33 |
+
with spelling and formatting errors fixed.
|
| 34 |
+
|
| 35 |
+
### Input:
|
| 36 |
+
{document}
|
| 37 |
+
|
| 38 |
+
### Response:"""
|
| 39 |
+
|
| 40 |
+
def parse_output(output):
|
| 41 |
+
answer_match = re.search(r"\[ANSWER\](.*?)\[/ANSWER\]", output, re.DOTALL)
|
| 42 |
+
raw_passage_match = re.search(r"\[RAW PASSAGE\](.*?)\[/RAW PASSAGE\]", output, re.DOTALL)
|
| 43 |
+
quotation_match = re.search(r"\[CORRECTED QUOTATION\](.*?)\[/CORRECTED QUOTATION\]", output, re.DOTALL)
|
| 44 |
+
|
| 45 |
+
answer = answer_match.group(1).strip() if answer_match else None
|
| 46 |
+
raw_passage = raw_passage_match.group(1).strip() if raw_passage_match else None
|
| 47 |
+
quotation = quotation_match.group(1).strip() if quotation_match else None
|
| 48 |
+
|
| 49 |
+
return {
|
| 50 |
+
"answer": answer == "Yes",
|
| 51 |
+
"raw_passage": raw_passage,
|
| 52 |
+
"quotation": quotation
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
# Example usage
|
| 56 |
+
document = "Your property deed text here..."
|
| 57 |
+
prompt = format_prompt(document)
|
| 58 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 59 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 60 |
+
result = tokenizer.decode(outputs[0])
|
| 61 |
+
parsed_result = parse_output(result)
|
| 62 |
+
|
| 63 |
+
print(parsed_result)
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
The model was trained with the given input and output formats, so be sure to use them
|
| 67 |
+
when performing inference.
|
| 68 |
+
|
| 69 |
+
## Intended Use
|
| 70 |
+
|
| 71 |
+
This model is designed to detect racial covenants in property deeds.
|
| 72 |
+
|
| 73 |
+
## Training Data
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
## Performance
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
## Limitations
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
## Ethical Considerations
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
## Citation
|
| 87 |
+
|
| 88 |
+
```
|
| 89 |
+
@article{suranisuzgun2024,
|
| 90 |
+
title={AI for Scaling Legal Reform: Mapping and Redacting Racial Covenants in Santa Clara County},
|
| 91 |
+
author={Surani, Faiz and Suzgun, Mirac and Raman, Vyoma and Manning, Christopher D. and Henderson, Peter and Ho, Daniel E.},
|
| 92 |
+
journal={},
|
| 93 |
+
year={2024}
|
| 94 |
+
}
|
| 95 |
+
```
|
tokenizer_config.json
CHANGED
|
@@ -41,7 +41,6 @@
|
|
| 41 |
"sp_model_kwargs": {},
|
| 42 |
"spaces_between_special_tokens": false,
|
| 43 |
"tokenizer_class": "LlamaTokenizer",
|
| 44 |
-
"tokenizer_file": "/scratch/users/faiz/hf_cache/models--reglab-rrc--mistral-rrc3.3/snapshots/18d20c079ee2a6b18567a9ff73e61281b6e6bf0e/tokenizer.json",
|
| 45 |
"unk_token": "<unk>",
|
| 46 |
"use_default_system_prompt": true
|
| 47 |
}
|
|
|
|
| 41 |
"sp_model_kwargs": {},
|
| 42 |
"spaces_between_special_tokens": false,
|
| 43 |
"tokenizer_class": "LlamaTokenizer",
|
|
|
|
| 44 |
"unk_token": "<unk>",
|
| 45 |
"use_default_system_prompt": true
|
| 46 |
}
|