|
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
|
|
from datasets import load_dataset
|
|
|
|
|
|
dataset = load_dataset('json', data_files='dataset.json')
|
|
|
|
|
|
train_test_split = dataset['train'].train_test_split(test_size=0.15, seed=42)
|
|
train_dataset = train_test_split['train']
|
|
eval_dataset = train_test_split['test']
|
|
|
|
|
|
tokenizer = T5Tokenizer.from_pretrained('./t5_small_weights')
|
|
|
|
|
|
def preprocess_data(examples):
|
|
inputs = ["question: " + q.strip() for q in examples['input']]
|
|
targets = [r.strip() for r in examples['response']]
|
|
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding='max_length')
|
|
labels = tokenizer(targets, max_length=64, truncation=True, padding='max_length')
|
|
model_inputs['labels'] = [
|
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
|
|
]
|
|
return model_inputs
|
|
|
|
|
|
processed_train_dataset = train_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
|
|
processed_eval_dataset = eval_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
|
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained('./t5_small_weights')
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
output_dir='./results',
|
|
num_train_epochs=10,
|
|
per_device_train_batch_size=2,
|
|
gradient_accumulation_steps=2,
|
|
learning_rate=3e-4,
|
|
save_steps=500,
|
|
save_total_limit=2,
|
|
logging_steps=50,
|
|
eval_strategy="steps",
|
|
eval_steps=100,
|
|
load_best_model_at_end=True,
|
|
metric_for_best_model="eval_loss",
|
|
greater_is_better=False,
|
|
gradient_checkpointing=True,
|
|
max_grad_norm=1.0,
|
|
)
|
|
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=processed_train_dataset,
|
|
eval_dataset=processed_eval_dataset,
|
|
)
|
|
|
|
|
|
print("Starting training...")
|
|
trainer.train()
|
|
print("Training finished.")
|
|
|
|
|
|
final_model_save_path = './finetuned_t5_improved'
|
|
model.save_pretrained(final_model_save_path)
|
|
tokenizer.save_pretrained(final_model_save_path)
|
|
print(f"Model fine-tuned and saved to '{final_model_save_path}'") |