remiai3's picture
Upload 8 files
f9396fc verified
raw
history blame
2.45 kB
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset from JSON
dataset = load_dataset('json', data_files='dataset.json')
# Split dataset into training and validation sets
train_test_split = dataset['train'].train_test_split(test_size=0.15, seed=42)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']
# Load tokenizer
tokenizer = T5Tokenizer.from_pretrained('./t5_small_weights')
# Preprocess dataset
def preprocess_data(examples):
inputs = ["question: " + q.strip() for q in examples['input']]
targets = [r.strip() for r in examples['response']]
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding='max_length')
labels = tokenizer(targets, max_length=64, truncation=True, padding='max_length')
model_inputs['labels'] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
]
return model_inputs
# Apply preprocessing
processed_train_dataset = train_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
processed_eval_dataset = eval_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
# Load model
model = T5ForConditionalGeneration.from_pretrained('./t5_small_weights')
# Define training arguments
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=10,
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
learning_rate=3e-4, # Slightly increased for better convergence
save_steps=500,
save_total_limit=2,
logging_steps=50,
eval_strategy="steps",
eval_steps=100,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
greater_is_better=False,
gradient_checkpointing=True,
max_grad_norm=1.0,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=processed_train_dataset,
eval_dataset=processed_eval_dataset,
)
# Train the model
print("Starting training...")
trainer.train()
print("Training finished.")
# Save the fine-tuned model
final_model_save_path = './finetuned_t5_improved'
model.save_pretrained(final_model_save_path)
tokenizer.save_pretrained(final_model_save_path)
print(f"Model fine-tuned and saved to '{final_model_save_path}'")