t5-small-project-guide / t5_project_all_in_one.py
remiai3's picture
Upload 5 files
fd06ef5 verified
raw
history blame
6.1 kB
# Import required libraries
from transformers import T5ForConditionalGeneration, T5Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
from huggingface_hub import login
import pandas as pd
import os
import torch
import matplotlib.pyplot as plt
# Step 1: Log in to Hugging Face
# Students: Replace "YOUR_HUGGING_FACE_TOKEN" with your actual Hugging Face token from https://huggingface.co/settings/tokens
hf_token = "YOUR_HUGGING_FACE_TOKEN"
if not hf_token or hf_token == "YOUR_HUGGING_FACE_TOKEN":
raise ValueError("Please replace 'YOUR_HUGGING_FACE_TOKEN' in the code with your actual Hugging Face token")
login(token=hf_token)
print("Logged in to Hugging Face successfully")
# Step 2: Load and convert dataset
# Students: Replace "dataset.csv" or "dataset.json" with your dataset file name
dataset_name = "dataset.csv" # Change to "dataset.json" if using JSON
dataset_path = dataset_name
if dataset_name.endswith('.csv'):
# Convert CSV to JSON for consistency
print(f"Converting {dataset_name} to JSON format...")
df = pd.read_csv(dataset_path)
df.to_json('dataset.json', orient='records', lines=True)
dataset_path = 'dataset.json'
# Load dataset
print(f"Loading dataset from {dataset_path}...")
dataset = load_dataset('json', data_files=dataset_path)
# Step 3: Split dataset into training and validation
# 85% training, 15% validation to monitor model performance
print("Splitting dataset into training and validation sets...")
train_test_split = dataset['train'].train_test_split(test_size=0.15, seed=42)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']
# Step 4: Download and load tokenizer and model
print("Downloading T5-small model and tokenizer...")
tokenizer = T5Tokenizer.from_pretrained('t5-small')
model = T5ForConditionalGeneration.from_pretrained('t5-small')
# Save model weights locally for fine-tuning
model.save_pretrained('./t5_small_weights')
tokenizer.save_pretrained('./t5_small_weights')
print("Model and tokenizer saved to './t5_small_weights'")
# Step 5: Preprocess dataset
# This ensures the input questions and answers are properly tokenized for T5
def preprocess_data(examples):
# Add "question:" prefix to inputs and clean whitespace
inputs = ["question: " + q.strip() for q in examples['input']]
targets = [r.strip() for r in examples['response']]
# Tokenize inputs (questions)
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding='max_length')
# Tokenize labels (answers)
labels = tokenizer(targets, max_length=64, truncation=True, padding='max_length')
# Replace pad token IDs in labels with -100 to ignore them in loss calculation
model_inputs['labels'] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
]
return model_inputs
# Apply preprocessing to training and validation datasets
print("Preprocessing datasets...")
processed_train_dataset = train_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
processed_eval_dataset = eval_dataset.map(preprocess_data, batched=True, remove_columns=['input', 'response'])
# Step 6: Define training arguments
# These settings control how the model is fine-tuned
training_args = TrainingArguments(
output_dir='./results', # Directory to save training outputs
num_train_epochs=10, # Number of training iterations over the dataset
per_device_train_batch_size=2, # Batch size per device (GPU/CPU)
gradient_accumulation_steps=2, # Accumulate gradients to simulate larger batch size
learning_rate=3e-4, # Learning rate for optimization
save_steps=500, # Save model checkpoint every 500 steps
save_total_limit=2, # Keep only the last 2 checkpoints
logging_steps=50, # Log training metrics every 50 steps
eval_strategy="steps", # Evaluate model during training at regular intervals
eval_steps=100, # Evaluate every 100 steps
load_best_model_at_end=True, # Load the best model based on validation loss
metric_for_best_model="eval_loss", # Use validation loss to select best model
greater_is_better=False, # Lower validation loss is better
gradient_checkpointing=True, # Save memory during training
max_grad_norm=1.0, # Clip gradients to prevent exploding gradients
)
# Step 7: Initialize Trainer
# The Trainer handles the fine-tuning process
print("Initializing Trainer...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=processed_train_dataset,
eval_dataset=processed_eval_dataset,
)
# Step 8: Train the model
print("Starting training...")
trainer.train()
print("Training finished.")
# Step 9: Plot training and validation loss
# This helps students visualize model performance
print("Generating training and validation loss plot...")
logs = trainer.state.log_history
steps = [log['step'] for log in logs if 'loss' in log or 'eval_loss' in log]
train_loss = [log['loss'] for log in logs if 'loss' in log]
eval_loss = [log['eval_loss'] for log in logs if 'eval_loss' in log]
plt.figure(figsize=(10, 5))
if train_loss:
plt.plot(steps[:len(train_loss)], train_loss, label='Training Loss')
if eval_loss:
plt.plot(steps[:len(eval_loss)], eval_loss, label='Validation Loss')
plt.xlabel('Step')
plt.ylabel('Loss')
plt.title('Training and Validation Loss Over Time')
plt.legend()
plt.grid(True)
plt.savefig('training_metrics.png')
plt.show()
# Step 10: Save the fine-tuned model
final_model_save_path = './finetuned_t5'
model.save_pretrained(final_model_save_path)
tokenizer.save_pretrained(final_model_save_path)
print(f"Model fine-tuned and saved to '{final_model_save_path}'")
print("Training metrics plot saved as 'training_metrics.png'")