File size: 2,350 Bytes
e05a388 ac373ba e05a388 ac373ba e05a388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv2-er-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-er-ner
This model is a fine-tuned version of [renjithks/layoutlmv2-cord-ner](https://huggingface.co/renjithks/layoutlmv2-cord-ner) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1710
- Precision: 0.6987
- Recall: 0.6968
- F1: 0.6977
- Accuracy: 0.9622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 22 | 0.2635 | 0.4513 | 0.3724 | 0.4080 | 0.9282 |
| No log | 2.0 | 44 | 0.2537 | 0.4459 | 0.4824 | 0.4634 | 0.9327 |
| No log | 3.0 | 66 | 0.2027 | 0.6367 | 0.5487 | 0.5894 | 0.9486 |
| No log | 4.0 | 88 | 0.1943 | 0.6126 | 0.6446 | 0.6282 | 0.9547 |
| No log | 5.0 | 110 | 0.1840 | 0.6644 | 0.6756 | 0.6699 | 0.9559 |
| No log | 6.0 | 132 | 0.1719 | 0.6819 | 0.6319 | 0.6559 | 0.9610 |
| No log | 7.0 | 154 | 0.1698 | 0.6471 | 0.6827 | 0.6644 | 0.9598 |
| No log | 8.0 | 176 | 0.1767 | 0.7022 | 0.6685 | 0.6850 | 0.9604 |
| No log | 9.0 | 198 | 0.1661 | 0.6973 | 0.6953 | 0.6963 | 0.9630 |
| No log | 10.0 | 220 | 0.1710 | 0.6987 | 0.6968 | 0.6977 | 0.9622 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.9.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6
|