File size: 2,350 Bytes
e05a388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac373ba
 
 
 
 
e05a388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac373ba
 
 
 
 
 
 
 
 
 
e05a388
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv2-er-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv2-er-ner

This model is a fine-tuned version of [renjithks/layoutlmv2-cord-ner](https://huggingface.co/renjithks/layoutlmv2-cord-ner) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1710
- Precision: 0.6987
- Recall: 0.6968
- F1: 0.6977
- Accuracy: 0.9622

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 22   | 0.2635          | 0.4513    | 0.3724 | 0.4080 | 0.9282   |
| No log        | 2.0   | 44   | 0.2537          | 0.4459    | 0.4824 | 0.4634 | 0.9327   |
| No log        | 3.0   | 66   | 0.2027          | 0.6367    | 0.5487 | 0.5894 | 0.9486   |
| No log        | 4.0   | 88   | 0.1943          | 0.6126    | 0.6446 | 0.6282 | 0.9547   |
| No log        | 5.0   | 110  | 0.1840          | 0.6644    | 0.6756 | 0.6699 | 0.9559   |
| No log        | 6.0   | 132  | 0.1719          | 0.6819    | 0.6319 | 0.6559 | 0.9610   |
| No log        | 7.0   | 154  | 0.1698          | 0.6471    | 0.6827 | 0.6644 | 0.9598   |
| No log        | 8.0   | 176  | 0.1767          | 0.7022    | 0.6685 | 0.6850 | 0.9604   |
| No log        | 9.0   | 198  | 0.1661          | 0.6973    | 0.6953 | 0.6963 | 0.9630   |
| No log        | 10.0  | 220  | 0.1710          | 0.6987    | 0.6968 | 0.6977 | 0.9622   |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.9.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6