| from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig | |
| from PIL import Image | |
| import requests | |
| def main(): | |
| load_path = "." | |
| # load the processor | |
| print("Loading processor") | |
| processor = AutoProcessor.from_pretrained( | |
| load_path, | |
| trust_remote_code=True, | |
| torch_dtype='auto', | |
| device_map='auto' | |
| ) | |
| # load the model | |
| print("Loading model") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| load_path, | |
| trust_remote_code=True, | |
| torch_dtype='auto', | |
| device_map='auto' | |
| ) | |
| # process the image and text | |
| print("Processing...") | |
| inputs = processor.process( | |
| images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], | |
| text="Describe this image." | |
| ) | |
| # move inputs to the correct device and make a batch of size 1 | |
| inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
| # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated | |
| print("Generating....") | |
| output = model.generate_from_batch( | |
| inputs, | |
| GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | |
| tokenizer=processor.tokenizer | |
| ) | |
| # only get generated tokens; decode them to text | |
| generated_tokens = output[0,inputs['input_ids'].size(1):] | |
| generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| # print the generated text | |
| print(generated_text) | |
| if __name__ == '__main__': | |
| main() |