Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,106 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
|
|
|
|
9 |
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
###
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
license: apache-2.0
|
5 |
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- portugues
|
8 |
+
- portuguese
|
9 |
+
- QA
|
10 |
+
- instruct
|
11 |
+
- phi
|
12 |
+
base_model: meta-llama/Llama-2-13b-chat-hf
|
13 |
+
datasets:
|
14 |
+
- rhaymison/superset
|
15 |
+
pipeline_tag: text-generation
|
16 |
---
|
17 |
|
18 |
+
# portuguese-tom-cat-13b
|
19 |
|
20 |
+
<p align="center">
|
21 |
+
<img src="https://raw.githubusercontent.com/rhaymisonbetini/huggphotos/main/13b.webp" width="50%" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
22 |
+
</p>
|
23 |
|
24 |
|
25 |
+
This model was trained with a superset of 300,000 instructions in Portuguese.
|
26 |
+
The model comes to help fill the gap in models in Portuguese. Tuned from the Llama-2-13b-chat-hf
|
27 |
|
28 |
+
# How to use
|
29 |
|
30 |
+
### FULL MODEL : A100
|
31 |
+
### HALF MODEL: L4
|
32 |
+
### 8bit or 4bit : T4 or V100
|
33 |
|
34 |
+
You can use the model in its normal form up to 4-bit quantization. Below we will use both approaches.
|
35 |
+
Remember that verbs are important in your prompt. Tell your model how to act or behave so that you can guide them along the path of their response.
|
36 |
+
Important points like these help models (even smaller models like 4b) to perform much better.
|
37 |
|
38 |
+
```python
|
39 |
+
!pip install -q -U transformers
|
40 |
+
!pip install -q -U accelerate
|
41 |
+
!pip install -q -U bitsandbytes
|
42 |
|
43 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("rhaymison/portuguese-tom-cat-13b", device_map= {"": 0})
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("rhaymison/portuguese-tom-cat-13b")
|
46 |
+
model.eval()
|
|
|
|
|
|
|
47 |
|
48 |
+
```
|
49 |
|
50 |
+
You can use with Pipeline.
|
51 |
+
```python
|
52 |
|
53 |
+
from transformers import pipeline
|
54 |
+
pipe = pipeline("text-generation",
|
55 |
+
model=model,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
do_sample=True,
|
58 |
+
max_new_tokens=512,
|
59 |
+
num_beams=2,
|
60 |
+
temperature=0.3,
|
61 |
+
top_k=50,
|
62 |
+
top_p=0.95,
|
63 |
+
early_stopping=True,
|
64 |
+
pad_token_id=tokenizer.eos_token_id,
|
65 |
+
)
|
66 |
|
67 |
+
```
|
68 |
|
69 |
+
If you are having a memory problem such as "CUDA Out of memory", you should use 4-bit or 8-bit quantization.
|
70 |
+
For the complete model in colab you will need the A100.
|
71 |
+
If you want to use 4bits or 8bits, T4 or L4 will already solve the problem.
|
72 |
|
73 |
+
# 4bits example
|
74 |
|
75 |
+
```python
|
76 |
+
from transformers import BitsAndBytesConfig
|
77 |
+
import torch
|
78 |
+
nb_4bit_config = BitsAndBytesConfig(
|
79 |
+
load_in_4bit=True,
|
80 |
+
bnb_4bit_quant_type="nf4",
|
81 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
82 |
+
bnb_4bit_use_double_quant=True
|
83 |
+
)
|
84 |
|
85 |
+
model = AutoModelForCausalLM.from_pretrained(
|
86 |
+
base_model,
|
87 |
+
quantization_config=bnb_config,
|
88 |
+
device_map={"": 0}
|
89 |
+
)
|
90 |
|
91 |
+
```
|
92 |
|
|
|
93 |
|
94 |
+
### Comments
|
95 |
|
96 |
+
Any idea, help or report will always be welcome.
|
97 |
|
98 |
+
email: rhaymisoncristian@gmail.com
|
99 |
|
100 |
+
<div style="display:flex; flex-direction:row; justify-content:left">
|
101 |
+
<a href="https://www.linkedin.com/in/rhaymison-cristian-betini-2b3016175/" target="_blank">
|
102 |
+
<img src="https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white">
|
103 |
+
</a>
|
104 |
+
<a href="https://github.com/rhaymisonbetini" target="_blank">
|
105 |
+
<img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white">
|
106 |
+
</a>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|