|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageOps |
|
from torchvision import transforms |
|
from transformers import BaseImageProcessor, BatchFeature, TensorType |
|
|
|
|
|
def _select_best_resolution( |
|
img_width: int, img_height: int, target_ratios: List[List[int]], patch_size: int |
|
): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
img_width: the original widths of images. |
|
img_height: the original heights of images. |
|
target_ratios (2d numpy array): dimension size (M,2) |
|
patch_size (int): image patch size |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
|
|
aspect_ratio = img_width / img_height |
|
best_ratio_diff = float("inf") |
|
best_ratio_w, best_ratio_h = 1, 1 |
|
area = np.int32(img_width) * np.int32(img_height) |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio_w, best_ratio_h = ratio[0], ratio[1] |
|
elif ( |
|
ratio_diff == best_ratio_diff |
|
and area > 0.5 * patch_size * patch_size * ratio[0] * ratio[1] |
|
): |
|
best_ratio_w, best_ratio_h = ratio[0], ratio[1] |
|
|
|
return best_ratio_w, best_ratio_h |
|
|
|
|
|
def _split_image( |
|
image: Image.Image, |
|
split_image: bool, |
|
split_ratio: List[List[int]], |
|
patch_size: int, |
|
) -> List[Image.Image]: |
|
""" |
|
Split image into multiple patches |
|
|
|
Args: |
|
image (PIL.Image): Input image. |
|
split_image (bool): Whether to split the image into patches. |
|
split_ratio (2d numpy array): dimension size (M,2) |
|
patch_size (int): image patch size |
|
|
|
Returns: |
|
List[PIL.Image]: List of splitted images. |
|
""" |
|
if split_image: |
|
ratio_width, ratio_height = _select_best_resolution( |
|
image.width, image.height, split_ratio, patch_size |
|
) |
|
resize_width = patch_size * ratio_width |
|
resize_height = patch_size * ratio_height |
|
blocks = ratio_width * ratio_height |
|
resized_img = image.resize((resize_width, resize_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (resize_width // patch_size)) * patch_size, |
|
(i // (resize_width // patch_size)) * patch_size, |
|
((i % (resize_width // patch_size)) + 1) * patch_size, |
|
((i // (resize_width // patch_size)) + 1) * patch_size, |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if len(processed_images) != 1: |
|
processed_images.insert(0, image) |
|
return processed_images |
|
else: |
|
return [image] |
|
|
|
|
|
def keep_ratio_resize_and_pixel_mask( |
|
img: Image.Image, max_size, min_size=336, padding_value=0 |
|
): |
|
""" |
|
Resize an image while maintaining aspect ratio and create a pixel mask. |
|
|
|
Args: |
|
img (PIL.Image): Input image. |
|
max_size (int): Maximum size for the larger dimension of the image. |
|
min_size (int, optional): Minimum size for the smaller dimension. Defaults to 336. |
|
padding_value (int, optional): Value used for padding. Defaults to 0. |
|
|
|
Returns: |
|
tuple: A tuple containing: |
|
- PIL.Image: Resized and padded image. |
|
- torch.Tensor: Boolean pixel mask. This mask is a 2D tensor of shape (max_size, max_size) where: |
|
- True (1) values indicate pixels that belong to the original resized image. |
|
- False (0) values indicate pixels that are part of the padding. |
|
The mask helps distinguish between actual image content and padded areas in subsequent processing steps. |
|
""" |
|
img = img.convert("RGB") |
|
|
|
scale = max_size / max(img.size) |
|
|
|
w, h = img.size |
|
if w >= h: |
|
new_size = (max_size, max(int(h * scale), min_size)) |
|
else: |
|
new_size = (max(int(w * scale), min_size), max_size) |
|
|
|
img_resized = img.resize(new_size, resample=Image.Resampling.BICUBIC) |
|
|
|
|
|
padding_right, padding_bottom = max_size - new_size[0], max_size - new_size[1] |
|
img_padded = ImageOps.expand( |
|
img_resized, (0, 0, padding_right, padding_bottom), fill=padding_value |
|
) |
|
|
|
|
|
pixel_mask = torch.zeros(max_size, max_size) |
|
pixel_mask[: new_size[1], : new_size[0]] = 1 |
|
pixel_mask = pixel_mask.bool() |
|
return img_padded, pixel_mask |
|
|
|
|
|
class AriaVisionProcessor(BaseImageProcessor): |
|
""" |
|
A vision processor for the Aria model that handles image preprocessing. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
max_image_size=980, |
|
min_image_size=336, |
|
image_mean=[0.5, 0.5, 0.5], |
|
image_std=[0.5, 0.5, 0.5], |
|
**kwargs, |
|
): |
|
""" |
|
Initialize the AriaVisionProcessor. |
|
|
|
Args: |
|
max_image_size (int, optional): Maximum image size. Defaults to 980. |
|
min_image_size (int, optional): Minimum image size. Defaults to 336. |
|
mean (list, optional): Mean values for normalization. Defaults to [0.5, 0.5, 0.5]. |
|
std (list, optional): Standard deviation values for normalization. Defaults to [0.5, 0.5, 0.5]. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
self.max_image_size = max_image_size |
|
self.min_image_size = min_image_size |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
self.auto_map = { |
|
"AutoProcessor": "processing_aria.AriaProcessor", |
|
"AutoImageProcessor": "vision_processor.AriaVisionProcessor", |
|
} |
|
|
|
|
|
|
|
|
|
self._transform = None |
|
self._set_processor_class("AriaProcessor") |
|
|
|
@property |
|
def transform(self): |
|
if self._transform is None: |
|
|
|
self._transform = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize(self.image_mean, self.image_std), |
|
] |
|
) |
|
return self._transform |
|
|
|
def __call__( |
|
self, |
|
images: Union[Image.Image, List[Image.Image]], |
|
max_image_size: Optional[int] = 980, |
|
min_image_size: Optional[int] = 336, |
|
return_tensors: Optional[Union[str, TensorType]] = "pt", |
|
split_image: Optional[bool] = False, |
|
split_ratio: Optional[List[List[int]]] = [ |
|
[1, 2], |
|
[1, 3], |
|
[1, 4], |
|
[1, 5], |
|
[1, 6], |
|
[1, 7], |
|
[1, 8], |
|
[2, 4], |
|
[2, 3], |
|
[2, 2], |
|
[2, 1], |
|
[3, 1], |
|
[3, 2], |
|
[4, 1], |
|
[4, 2], |
|
[5, 1], |
|
[6, 1], |
|
[7, 1], |
|
[8, 1], |
|
], |
|
): |
|
""" |
|
Process a list of images. |
|
|
|
Args: |
|
images (list): List of PIL.Image objects. |
|
max_image_size (int, optional): Override the default max image size. Defaults to None. |
|
return_tensors (str or TensorType, optional): The type of tensor to return. Defaults to "pt". |
|
split_image (bool, optional): Whether to split the image. Defaults to False. |
|
split_ratio (list, optional): The ratio for splitting the image. Defaults to a list of common split ratios. |
|
Returns: |
|
BatchFeature: A BatchFeature object containing: |
|
- 'pixel_values': Tensor of processed image pixel values. |
|
- 'pixel_mask': Boolean pixel mask. This mask is a 2D tensor of shape (max_size, max_size) where: |
|
- True (1) values indicate pixels that belong to the original resized image. |
|
- False (0) values indicate pixels that are part of the padding. |
|
The mask helps distinguish between actual image content and padded areas in subsequent processing steps. |
|
- 'num_crops': Tensor of the number of crops for each image. |
|
""" |
|
max_size = self.max_image_size if max_image_size is None else max_image_size |
|
min_size = self.min_image_size if min_image_size is None else min_image_size |
|
|
|
if max_size not in [490, 980]: |
|
raise ValueError("max_image_size must be either 490 or 980") |
|
|
|
if isinstance(images, Image.Image): |
|
images = [images] |
|
|
|
pixel_values = [] |
|
pixel_masks = [] |
|
num_crops = [] |
|
|
|
for image in images: |
|
crop_images = _split_image(image, split_image, split_ratio, max_size) |
|
num_crops.append(torch.tensor(len(crop_images))) |
|
for crop_image in crop_images: |
|
img_padded, pixel_mask = keep_ratio_resize_and_pixel_mask( |
|
crop_image, max_size, min_size |
|
) |
|
img_padded = self.transform(img_padded) |
|
pixel_values.append(img_padded) |
|
pixel_masks.append(pixel_mask) |
|
|
|
return BatchFeature( |
|
data={ |
|
"pixel_values": torch.stack(pixel_values), |
|
"pixel_mask": torch.stack(pixel_masks), |
|
"num_crops": torch.stack(num_crops), |
|
}, |
|
tensor_type=return_tensors, |
|
) |
|
|
|
def preprocess( |
|
self, |
|
images, |
|
max_image_size=None, |
|
min_image_size=None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
split_image: Optional[bool] = False, |
|
split_ratio: Optional[List[List[int]]] = [ |
|
[1, 2], |
|
[1, 3], |
|
[1, 4], |
|
[1, 5], |
|
[1, 6], |
|
[1, 7], |
|
[1, 8], |
|
[2, 4], |
|
[2, 3], |
|
[2, 2], |
|
[2, 1], |
|
[3, 1], |
|
[3, 2], |
|
[4, 1], |
|
[4, 2], |
|
[5, 1], |
|
[6, 1], |
|
[7, 1], |
|
[8, 1], |
|
], |
|
): |
|
return self.__call__( |
|
images, |
|
max_image_size=max_image_size, |
|
min_image_size=min_image_size, |
|
return_tensors=return_tensors, |
|
split_image=split_image, |
|
split_ratio=split_ratio, |
|
) |
|
|