ricardoSLabs's picture
End of training
c5125b2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: mozilla_dataset_processed_mel_spec_vit_1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.94

mozilla_dataset_processed_mel_spec_vit_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4348
  • Accuracy: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7532 1.0 11 0.6034 0.6367
0.4888 2.0 22 0.2861 0.9033
0.2919 3.0 33 0.2482 0.92
0.1771 4.0 44 0.2018 0.9233
0.1011 5.0 55 0.2074 0.9233
0.0563 6.0 66 0.2219 0.9367
0.0251 7.0 77 0.2835 0.9333
0.0041 8.0 88 0.3132 0.9367
0.001 9.0 99 0.4014 0.94
0.0 10.0 110 0.4260 0.9433
0.0 11.0 121 0.4316 0.94
0.0 12.0 132 0.4329 0.94
0.0 13.0 143 0.4327 0.9433
0.0 14.0 154 0.4334 0.94
0.0 15.0 165 0.4339 0.94
0.0 16.0 176 0.4340 0.94
0.0 17.0 187 0.4344 0.94
0.0 18.0 198 0.4346 0.94
0.0 19.0 209 0.4347 0.94
0.0 20.0 220 0.4348 0.94

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0