from typing import Optional, Union import torch from .layers_registry import norms norms.register(name='layernorm', func=torch.nn.LayerNorm) def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor: if torch.is_autocast_enabled(): if tensor.device.type == 'cuda': dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == 'cpu': dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor @norms.register_class('low_precision_layernorm') class LPLayerNorm(torch.nn.LayerNorm): def __init__(self, normalized_shape: Union[int, list[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias with torch.autocast(enabled=False, device_type=module_device.type): return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) if weight is not None: return output * weight return output @norms.register_class('rmsnorm') class RMSNorm(torch.nn.Module): def __init__(self, normalized_shape: Union[int, list[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): super().__init__() self.eps = eps if weight: self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) else: self.register_parameter('weight', None) def forward(self, x: torch.Tensor) -> torch.Tensor: return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) @norms.register_class('low_precision_rmsnorm') class LPRMSNorm(RMSNorm): def __init__(self, normalized_shape: Union[int, list[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: downcast_x = _cast_if_autocast_enabled(x) downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight with torch.autocast(enabled=False, device_type=x.device.type): return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) @norms.register_class('triton_rmsnorm') class TritonRMSNorm(torch.nn.Module): def __init__(self, normalized_shape: Union[int, list[int], torch.Size], eps: float=1e-05, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): super().__init__() self.eps = eps try: from flash_attn.ops.triton.layer_norm import rms_norm_fn except ImportError: raise ImportError('triton_rms_norm requires Flash Attention to be installed. ' + 'Please pip install flash-attn.') if not isinstance(normalized_shape, int): raise ValueError('TritonRMSNorm only supports 1D tensors') self.rms_norm_fn = rms_norm_fn self.weight = torch.nn.Parameter(torch.ones(normalized_shape, device=device, dtype=dtype)) def forward(self, x: torch.Tensor): return self.rms_norm_fn(x, self.weight, None, residual=None, eps=self.eps, dropout_p=0.0, prenorm=False, residual_in_fp32=False)