--- library_name: transformers base_model: google/flan-t5-large tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: flanT5_Task2 results: [] --- # flanT5_Task2 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9154 - Accuracy: 0.7753 - Precision: 0.7868 - Recall: 0.7553 - F1 score: 0.7707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 1.0303 | 0.4205 | 2500 | 0.8270 | 0.7471 | 0.8088 | 0.6471 | 0.7190 | | 0.9652 | 0.8410 | 5000 | 0.6861 | 0.7118 | 0.9245 | 0.4612 | 0.6154 | | 0.9232 | 1.2616 | 7500 | 0.9442 | 0.7471 | 0.8017 | 0.6565 | 0.7219 | | 0.8457 | 1.6821 | 10000 | 0.9311 | 0.7471 | 0.7869 | 0.6776 | 0.7282 | | 0.7519 | 2.1026 | 12500 | 1.0887 | 0.7682 | 0.8065 | 0.7059 | 0.7528 | | 0.6462 | 2.5231 | 15000 | 1.1780 | 0.7706 | 0.8125 | 0.7035 | 0.7541 | | 0.642 | 2.9437 | 17500 | 1.2434 | 0.7718 | 0.7954 | 0.7318 | 0.7623 | | 0.4436 | 3.3642 | 20000 | 1.3026 | 0.76 | 0.7931 | 0.7035 | 0.7456 | | 0.3762 | 3.7847 | 22500 | 1.6051 | 0.7659 | 0.7678 | 0.7624 | 0.7651 | | 0.2798 | 4.2052 | 25000 | 1.9011 | 0.7671 | 0.7683 | 0.7647 | 0.7665 | | 0.2012 | 4.6257 | 27500 | 1.9154 | 0.7753 | 0.7868 | 0.7553 | 0.7707 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1