Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- checkpoints/020000/pretrained_model/config.json +64 -0
- checkpoints/020000/pretrained_model/model.safetensors +3 -0
- checkpoints/020000/pretrained_model/train_config.json +170 -0
- checkpoints/020000/training_state/optimizer_param_groups.json +189 -0
- checkpoints/020000/training_state/optimizer_state.safetensors +3 -0
- checkpoints/020000/training_state/rng_state.safetensors +3 -0
- checkpoints/020000/training_state/training_step.json +3 -0
- checkpoints/040000/pretrained_model/config.json +64 -0
- checkpoints/040000/pretrained_model/model.safetensors +3 -0
- checkpoints/040000/pretrained_model/train_config.json +170 -0
- checkpoints/040000/training_state/optimizer_param_groups.json +189 -0
- checkpoints/040000/training_state/optimizer_state.safetensors +3 -0
- checkpoints/040000/training_state/rng_state.safetensors +3 -0
- checkpoints/040000/training_state/training_step.json +3 -0
- checkpoints/100000/pretrained_model/config.json +64 -0
- checkpoints/100000/pretrained_model/model.safetensors +3 -0
- checkpoints/100000/pretrained_model/train_config.json +170 -0
- checkpoints/100000/training_state/optimizer_param_groups.json +189 -0
- checkpoints/100000/training_state/optimizer_state.safetensors +3 -0
- checkpoints/100000/training_state/rng_state.safetensors +3 -0
- checkpoints/100000/training_state/training_step.json +3 -0
- checkpoints/last/pretrained_model/config.json +64 -0
- checkpoints/last/pretrained_model/model.safetensors +3 -0
- checkpoints/last/pretrained_model/train_config.json +170 -0
- checkpoints/last/training_state/optimizer_param_groups.json +189 -0
- checkpoints/last/training_state/optimizer_state.safetensors +3 -0
- checkpoints/last/training_state/rng_state.safetensors +3 -0
- checkpoints/last/training_state/training_step.json +3 -0
- wandb/debug-internal.log +7 -0
- wandb/debug.log +22 -0
- wandb/latest-run/files/output.log +384 -0
- wandb/latest-run/files/requirements.txt +241 -0
- wandb/latest-run/files/wandb-metadata.json +111 -0
- wandb/latest-run/logs/debug-core.log +6 -0
- wandb/latest-run/logs/debug-internal.log +7 -0
- wandb/latest-run/logs/debug.log +22 -0
- wandb/latest-run/run-ipo2f6m2.wandb +3 -0
- wandb/run-20250413_071149-ipo2f6m2/files/output.log +384 -0
- wandb/run-20250413_071149-ipo2f6m2/files/requirements.txt +241 -0
- wandb/run-20250413_071149-ipo2f6m2/files/wandb-metadata.json +111 -0
- wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log +6 -0
- wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log +7 -0
- wandb/run-20250413_071149-ipo2f6m2/logs/debug.log +22 -0
- wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
wandb/latest-run/run-ipo2f6m2.wandb filter=lfs diff=lfs merge=lfs -text
|
37 |
+
wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb filter=lfs diff=lfs merge=lfs -text
|
checkpoints/020000/pretrained_model/config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "act",
|
3 |
+
"n_obs_steps": 1,
|
4 |
+
"normalization_mapping": {
|
5 |
+
"VISUAL": "MEAN_STD",
|
6 |
+
"STATE": "MEAN_STD",
|
7 |
+
"ACTION": "MEAN_STD"
|
8 |
+
},
|
9 |
+
"input_features": {
|
10 |
+
"observation.state": {
|
11 |
+
"type": "STATE",
|
12 |
+
"shape": [
|
13 |
+
6
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"observation.images.static_right": {
|
17 |
+
"type": "VISUAL",
|
18 |
+
"shape": [
|
19 |
+
3,
|
20 |
+
480,
|
21 |
+
640
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation.images.static_left": {
|
25 |
+
"type": "VISUAL",
|
26 |
+
"shape": [
|
27 |
+
3,
|
28 |
+
480,
|
29 |
+
640
|
30 |
+
]
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"output_features": {
|
34 |
+
"action": {
|
35 |
+
"type": "ACTION",
|
36 |
+
"shape": [
|
37 |
+
6
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"device": "cuda",
|
42 |
+
"use_amp": false,
|
43 |
+
"chunk_size": 100,
|
44 |
+
"n_action_steps": 100,
|
45 |
+
"vision_backbone": "resnet18",
|
46 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
47 |
+
"replace_final_stride_with_dilation": false,
|
48 |
+
"pre_norm": false,
|
49 |
+
"dim_model": 512,
|
50 |
+
"n_heads": 8,
|
51 |
+
"dim_feedforward": 3200,
|
52 |
+
"feedforward_activation": "relu",
|
53 |
+
"n_encoder_layers": 4,
|
54 |
+
"n_decoder_layers": 1,
|
55 |
+
"use_vae": true,
|
56 |
+
"latent_dim": 32,
|
57 |
+
"n_vae_encoder_layers": 4,
|
58 |
+
"temporal_ensemble_coeff": null,
|
59 |
+
"dropout": 0.1,
|
60 |
+
"kl_weight": 10.0,
|
61 |
+
"optimizer_lr": 1e-05,
|
62 |
+
"optimizer_weight_decay": 0.0001,
|
63 |
+
"optimizer_lr_backbone": 1e-05
|
64 |
+
}
|
checkpoints/020000/pretrained_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bff596e9291427989f11699f36c3ffd1a8bd63369b739943bab7121543e37d82
|
3 |
+
size 206701096
|
checkpoints/020000/pretrained_model/train_config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset": {
|
3 |
+
"repo_id": "rjgpinel/chickenToPlate",
|
4 |
+
"root": null,
|
5 |
+
"episodes": null,
|
6 |
+
"image_transforms": {
|
7 |
+
"enable": false,
|
8 |
+
"max_num_transforms": 3,
|
9 |
+
"random_order": false,
|
10 |
+
"tfs": {
|
11 |
+
"brightness": {
|
12 |
+
"weight": 1.0,
|
13 |
+
"type": "ColorJitter",
|
14 |
+
"kwargs": {
|
15 |
+
"brightness": [
|
16 |
+
0.8,
|
17 |
+
1.2
|
18 |
+
]
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"contrast": {
|
22 |
+
"weight": 1.0,
|
23 |
+
"type": "ColorJitter",
|
24 |
+
"kwargs": {
|
25 |
+
"contrast": [
|
26 |
+
0.8,
|
27 |
+
1.2
|
28 |
+
]
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"saturation": {
|
32 |
+
"weight": 1.0,
|
33 |
+
"type": "ColorJitter",
|
34 |
+
"kwargs": {
|
35 |
+
"saturation": [
|
36 |
+
0.5,
|
37 |
+
1.5
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"hue": {
|
42 |
+
"weight": 1.0,
|
43 |
+
"type": "ColorJitter",
|
44 |
+
"kwargs": {
|
45 |
+
"hue": [
|
46 |
+
-0.05,
|
47 |
+
0.05
|
48 |
+
]
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"sharpness": {
|
52 |
+
"weight": 1.0,
|
53 |
+
"type": "SharpnessJitter",
|
54 |
+
"kwargs": {
|
55 |
+
"sharpness": [
|
56 |
+
0.5,
|
57 |
+
1.5
|
58 |
+
]
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"revision": null,
|
64 |
+
"use_imagenet_stats": true,
|
65 |
+
"video_backend": "torchcodec"
|
66 |
+
},
|
67 |
+
"env": null,
|
68 |
+
"policy": {
|
69 |
+
"type": "act",
|
70 |
+
"n_obs_steps": 1,
|
71 |
+
"normalization_mapping": {
|
72 |
+
"VISUAL": "MEAN_STD",
|
73 |
+
"STATE": "MEAN_STD",
|
74 |
+
"ACTION": "MEAN_STD"
|
75 |
+
},
|
76 |
+
"input_features": {
|
77 |
+
"observation.state": {
|
78 |
+
"type": "STATE",
|
79 |
+
"shape": [
|
80 |
+
6
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"observation.images.static_right": {
|
84 |
+
"type": "VISUAL",
|
85 |
+
"shape": [
|
86 |
+
3,
|
87 |
+
480,
|
88 |
+
640
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"observation.images.static_left": {
|
92 |
+
"type": "VISUAL",
|
93 |
+
"shape": [
|
94 |
+
3,
|
95 |
+
480,
|
96 |
+
640
|
97 |
+
]
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"output_features": {
|
101 |
+
"action": {
|
102 |
+
"type": "ACTION",
|
103 |
+
"shape": [
|
104 |
+
6
|
105 |
+
]
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"device": "cuda",
|
109 |
+
"use_amp": false,
|
110 |
+
"chunk_size": 100,
|
111 |
+
"n_action_steps": 100,
|
112 |
+
"vision_backbone": "resnet18",
|
113 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
114 |
+
"replace_final_stride_with_dilation": false,
|
115 |
+
"pre_norm": false,
|
116 |
+
"dim_model": 512,
|
117 |
+
"n_heads": 8,
|
118 |
+
"dim_feedforward": 3200,
|
119 |
+
"feedforward_activation": "relu",
|
120 |
+
"n_encoder_layers": 4,
|
121 |
+
"n_decoder_layers": 1,
|
122 |
+
"use_vae": true,
|
123 |
+
"latent_dim": 32,
|
124 |
+
"n_vae_encoder_layers": 4,
|
125 |
+
"temporal_ensemble_coeff": null,
|
126 |
+
"dropout": 0.1,
|
127 |
+
"kl_weight": 10.0,
|
128 |
+
"optimizer_lr": 1e-05,
|
129 |
+
"optimizer_weight_decay": 0.0001,
|
130 |
+
"optimizer_lr_backbone": 1e-05
|
131 |
+
},
|
132 |
+
"output_dir": "outputs/train/act_bs8_chickenToPlate",
|
133 |
+
"job_name": "act_trial_bs8_chickenToPlate",
|
134 |
+
"resume": false,
|
135 |
+
"seed": 1000,
|
136 |
+
"num_workers": 4,
|
137 |
+
"batch_size": 8,
|
138 |
+
"steps": 100000,
|
139 |
+
"eval_freq": 20000,
|
140 |
+
"log_freq": 200,
|
141 |
+
"save_checkpoint": true,
|
142 |
+
"save_freq": 20000,
|
143 |
+
"use_policy_training_preset": true,
|
144 |
+
"optimizer": {
|
145 |
+
"type": "adamw",
|
146 |
+
"lr": 1e-05,
|
147 |
+
"weight_decay": 0.0001,
|
148 |
+
"grad_clip_norm": 10.0,
|
149 |
+
"betas": [
|
150 |
+
0.9,
|
151 |
+
0.999
|
152 |
+
],
|
153 |
+
"eps": 1e-08
|
154 |
+
},
|
155 |
+
"scheduler": null,
|
156 |
+
"eval": {
|
157 |
+
"n_episodes": 50,
|
158 |
+
"batch_size": 50,
|
159 |
+
"use_async_envs": false
|
160 |
+
},
|
161 |
+
"wandb": {
|
162 |
+
"enable": true,
|
163 |
+
"disable_artifact": false,
|
164 |
+
"project": "lerobot",
|
165 |
+
"entity": null,
|
166 |
+
"notes": null,
|
167 |
+
"run_id": null,
|
168 |
+
"mode": null
|
169 |
+
}
|
170 |
+
}
|
checkpoints/020000/training_state/optimizer_param_groups.json
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"lr": 1e-05,
|
4 |
+
"betas": [
|
5 |
+
0.9,
|
6 |
+
0.999
|
7 |
+
],
|
8 |
+
"eps": 1e-08,
|
9 |
+
"weight_decay": 0.0001,
|
10 |
+
"amsgrad": false,
|
11 |
+
"foreach": null,
|
12 |
+
"maximize": false,
|
13 |
+
"capturable": false,
|
14 |
+
"differentiable": false,
|
15 |
+
"fused": null,
|
16 |
+
"params": [
|
17 |
+
0,
|
18 |
+
1,
|
19 |
+
2,
|
20 |
+
3,
|
21 |
+
4,
|
22 |
+
5,
|
23 |
+
6,
|
24 |
+
7,
|
25 |
+
8,
|
26 |
+
9,
|
27 |
+
10,
|
28 |
+
11,
|
29 |
+
12,
|
30 |
+
13,
|
31 |
+
14,
|
32 |
+
15,
|
33 |
+
16,
|
34 |
+
17,
|
35 |
+
18,
|
36 |
+
19,
|
37 |
+
20,
|
38 |
+
21,
|
39 |
+
22,
|
40 |
+
23,
|
41 |
+
24,
|
42 |
+
25,
|
43 |
+
26,
|
44 |
+
27,
|
45 |
+
28,
|
46 |
+
29,
|
47 |
+
30,
|
48 |
+
31,
|
49 |
+
32,
|
50 |
+
33,
|
51 |
+
34,
|
52 |
+
35,
|
53 |
+
36,
|
54 |
+
37,
|
55 |
+
38,
|
56 |
+
39,
|
57 |
+
40,
|
58 |
+
41,
|
59 |
+
42,
|
60 |
+
43,
|
61 |
+
44,
|
62 |
+
45,
|
63 |
+
46,
|
64 |
+
47,
|
65 |
+
48,
|
66 |
+
49,
|
67 |
+
50,
|
68 |
+
51,
|
69 |
+
52,
|
70 |
+
53,
|
71 |
+
54,
|
72 |
+
55,
|
73 |
+
56,
|
74 |
+
57,
|
75 |
+
58,
|
76 |
+
59,
|
77 |
+
60,
|
78 |
+
61,
|
79 |
+
62,
|
80 |
+
63,
|
81 |
+
64,
|
82 |
+
65,
|
83 |
+
66,
|
84 |
+
67,
|
85 |
+
68,
|
86 |
+
69,
|
87 |
+
70,
|
88 |
+
71,
|
89 |
+
72,
|
90 |
+
73,
|
91 |
+
74,
|
92 |
+
75,
|
93 |
+
76,
|
94 |
+
77,
|
95 |
+
78,
|
96 |
+
79,
|
97 |
+
80,
|
98 |
+
81,
|
99 |
+
82,
|
100 |
+
83,
|
101 |
+
84,
|
102 |
+
85,
|
103 |
+
86,
|
104 |
+
87,
|
105 |
+
88,
|
106 |
+
89,
|
107 |
+
90,
|
108 |
+
91,
|
109 |
+
92,
|
110 |
+
93,
|
111 |
+
94,
|
112 |
+
95,
|
113 |
+
96,
|
114 |
+
97,
|
115 |
+
98,
|
116 |
+
99,
|
117 |
+
100,
|
118 |
+
101,
|
119 |
+
102,
|
120 |
+
103,
|
121 |
+
104,
|
122 |
+
105,
|
123 |
+
106,
|
124 |
+
107,
|
125 |
+
108,
|
126 |
+
109,
|
127 |
+
110,
|
128 |
+
111,
|
129 |
+
112,
|
130 |
+
113,
|
131 |
+
114,
|
132 |
+
115,
|
133 |
+
116,
|
134 |
+
117,
|
135 |
+
118,
|
136 |
+
119,
|
137 |
+
120,
|
138 |
+
121,
|
139 |
+
122,
|
140 |
+
123,
|
141 |
+
124,
|
142 |
+
125,
|
143 |
+
126,
|
144 |
+
127,
|
145 |
+
128,
|
146 |
+
129,
|
147 |
+
130,
|
148 |
+
131,
|
149 |
+
132
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"lr": 1e-05,
|
154 |
+
"betas": [
|
155 |
+
0.9,
|
156 |
+
0.999
|
157 |
+
],
|
158 |
+
"eps": 1e-08,
|
159 |
+
"weight_decay": 0.0001,
|
160 |
+
"amsgrad": false,
|
161 |
+
"foreach": null,
|
162 |
+
"maximize": false,
|
163 |
+
"capturable": false,
|
164 |
+
"differentiable": false,
|
165 |
+
"fused": null,
|
166 |
+
"params": [
|
167 |
+
133,
|
168 |
+
134,
|
169 |
+
135,
|
170 |
+
136,
|
171 |
+
137,
|
172 |
+
138,
|
173 |
+
139,
|
174 |
+
140,
|
175 |
+
141,
|
176 |
+
142,
|
177 |
+
143,
|
178 |
+
144,
|
179 |
+
145,
|
180 |
+
146,
|
181 |
+
147,
|
182 |
+
148,
|
183 |
+
149,
|
184 |
+
150,
|
185 |
+
151,
|
186 |
+
152
|
187 |
+
]
|
188 |
+
}
|
189 |
+
]
|
checkpoints/020000/training_state/optimizer_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:503fd41b76c66a05022de71185f12fdf8429eb6e8550a91ad99daf25d69e12c7
|
3 |
+
size 412817652
|
checkpoints/020000/training_state/rng_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd259ede210ba3bbe4ea2d4e7794ffb647d7398e52645950a6cac1974cd10cf3
|
3 |
+
size 15708
|
checkpoints/020000/training_state/training_step.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"step": 20000
|
3 |
+
}
|
checkpoints/040000/pretrained_model/config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "act",
|
3 |
+
"n_obs_steps": 1,
|
4 |
+
"normalization_mapping": {
|
5 |
+
"VISUAL": "MEAN_STD",
|
6 |
+
"STATE": "MEAN_STD",
|
7 |
+
"ACTION": "MEAN_STD"
|
8 |
+
},
|
9 |
+
"input_features": {
|
10 |
+
"observation.state": {
|
11 |
+
"type": "STATE",
|
12 |
+
"shape": [
|
13 |
+
6
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"observation.images.static_right": {
|
17 |
+
"type": "VISUAL",
|
18 |
+
"shape": [
|
19 |
+
3,
|
20 |
+
480,
|
21 |
+
640
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation.images.static_left": {
|
25 |
+
"type": "VISUAL",
|
26 |
+
"shape": [
|
27 |
+
3,
|
28 |
+
480,
|
29 |
+
640
|
30 |
+
]
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"output_features": {
|
34 |
+
"action": {
|
35 |
+
"type": "ACTION",
|
36 |
+
"shape": [
|
37 |
+
6
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"device": "cuda",
|
42 |
+
"use_amp": false,
|
43 |
+
"chunk_size": 100,
|
44 |
+
"n_action_steps": 100,
|
45 |
+
"vision_backbone": "resnet18",
|
46 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
47 |
+
"replace_final_stride_with_dilation": false,
|
48 |
+
"pre_norm": false,
|
49 |
+
"dim_model": 512,
|
50 |
+
"n_heads": 8,
|
51 |
+
"dim_feedforward": 3200,
|
52 |
+
"feedforward_activation": "relu",
|
53 |
+
"n_encoder_layers": 4,
|
54 |
+
"n_decoder_layers": 1,
|
55 |
+
"use_vae": true,
|
56 |
+
"latent_dim": 32,
|
57 |
+
"n_vae_encoder_layers": 4,
|
58 |
+
"temporal_ensemble_coeff": null,
|
59 |
+
"dropout": 0.1,
|
60 |
+
"kl_weight": 10.0,
|
61 |
+
"optimizer_lr": 1e-05,
|
62 |
+
"optimizer_weight_decay": 0.0001,
|
63 |
+
"optimizer_lr_backbone": 1e-05
|
64 |
+
}
|
checkpoints/040000/pretrained_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4faf4e9773087a51d32a2cff410f40baffbfc8e57ed89ea5eec8c9d0dd3b124e
|
3 |
+
size 206701096
|
checkpoints/040000/pretrained_model/train_config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset": {
|
3 |
+
"repo_id": "rjgpinel/chickenToPlate",
|
4 |
+
"root": null,
|
5 |
+
"episodes": null,
|
6 |
+
"image_transforms": {
|
7 |
+
"enable": false,
|
8 |
+
"max_num_transforms": 3,
|
9 |
+
"random_order": false,
|
10 |
+
"tfs": {
|
11 |
+
"brightness": {
|
12 |
+
"weight": 1.0,
|
13 |
+
"type": "ColorJitter",
|
14 |
+
"kwargs": {
|
15 |
+
"brightness": [
|
16 |
+
0.8,
|
17 |
+
1.2
|
18 |
+
]
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"contrast": {
|
22 |
+
"weight": 1.0,
|
23 |
+
"type": "ColorJitter",
|
24 |
+
"kwargs": {
|
25 |
+
"contrast": [
|
26 |
+
0.8,
|
27 |
+
1.2
|
28 |
+
]
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"saturation": {
|
32 |
+
"weight": 1.0,
|
33 |
+
"type": "ColorJitter",
|
34 |
+
"kwargs": {
|
35 |
+
"saturation": [
|
36 |
+
0.5,
|
37 |
+
1.5
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"hue": {
|
42 |
+
"weight": 1.0,
|
43 |
+
"type": "ColorJitter",
|
44 |
+
"kwargs": {
|
45 |
+
"hue": [
|
46 |
+
-0.05,
|
47 |
+
0.05
|
48 |
+
]
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"sharpness": {
|
52 |
+
"weight": 1.0,
|
53 |
+
"type": "SharpnessJitter",
|
54 |
+
"kwargs": {
|
55 |
+
"sharpness": [
|
56 |
+
0.5,
|
57 |
+
1.5
|
58 |
+
]
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"revision": null,
|
64 |
+
"use_imagenet_stats": true,
|
65 |
+
"video_backend": "torchcodec"
|
66 |
+
},
|
67 |
+
"env": null,
|
68 |
+
"policy": {
|
69 |
+
"type": "act",
|
70 |
+
"n_obs_steps": 1,
|
71 |
+
"normalization_mapping": {
|
72 |
+
"VISUAL": "MEAN_STD",
|
73 |
+
"STATE": "MEAN_STD",
|
74 |
+
"ACTION": "MEAN_STD"
|
75 |
+
},
|
76 |
+
"input_features": {
|
77 |
+
"observation.state": {
|
78 |
+
"type": "STATE",
|
79 |
+
"shape": [
|
80 |
+
6
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"observation.images.static_right": {
|
84 |
+
"type": "VISUAL",
|
85 |
+
"shape": [
|
86 |
+
3,
|
87 |
+
480,
|
88 |
+
640
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"observation.images.static_left": {
|
92 |
+
"type": "VISUAL",
|
93 |
+
"shape": [
|
94 |
+
3,
|
95 |
+
480,
|
96 |
+
640
|
97 |
+
]
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"output_features": {
|
101 |
+
"action": {
|
102 |
+
"type": "ACTION",
|
103 |
+
"shape": [
|
104 |
+
6
|
105 |
+
]
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"device": "cuda",
|
109 |
+
"use_amp": false,
|
110 |
+
"chunk_size": 100,
|
111 |
+
"n_action_steps": 100,
|
112 |
+
"vision_backbone": "resnet18",
|
113 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
114 |
+
"replace_final_stride_with_dilation": false,
|
115 |
+
"pre_norm": false,
|
116 |
+
"dim_model": 512,
|
117 |
+
"n_heads": 8,
|
118 |
+
"dim_feedforward": 3200,
|
119 |
+
"feedforward_activation": "relu",
|
120 |
+
"n_encoder_layers": 4,
|
121 |
+
"n_decoder_layers": 1,
|
122 |
+
"use_vae": true,
|
123 |
+
"latent_dim": 32,
|
124 |
+
"n_vae_encoder_layers": 4,
|
125 |
+
"temporal_ensemble_coeff": null,
|
126 |
+
"dropout": 0.1,
|
127 |
+
"kl_weight": 10.0,
|
128 |
+
"optimizer_lr": 1e-05,
|
129 |
+
"optimizer_weight_decay": 0.0001,
|
130 |
+
"optimizer_lr_backbone": 1e-05
|
131 |
+
},
|
132 |
+
"output_dir": "outputs/train/act_bs8_chickenToPlate",
|
133 |
+
"job_name": "act_trial_bs8_chickenToPlate",
|
134 |
+
"resume": false,
|
135 |
+
"seed": 1000,
|
136 |
+
"num_workers": 4,
|
137 |
+
"batch_size": 8,
|
138 |
+
"steps": 100000,
|
139 |
+
"eval_freq": 20000,
|
140 |
+
"log_freq": 200,
|
141 |
+
"save_checkpoint": true,
|
142 |
+
"save_freq": 20000,
|
143 |
+
"use_policy_training_preset": true,
|
144 |
+
"optimizer": {
|
145 |
+
"type": "adamw",
|
146 |
+
"lr": 1e-05,
|
147 |
+
"weight_decay": 0.0001,
|
148 |
+
"grad_clip_norm": 10.0,
|
149 |
+
"betas": [
|
150 |
+
0.9,
|
151 |
+
0.999
|
152 |
+
],
|
153 |
+
"eps": 1e-08
|
154 |
+
},
|
155 |
+
"scheduler": null,
|
156 |
+
"eval": {
|
157 |
+
"n_episodes": 50,
|
158 |
+
"batch_size": 50,
|
159 |
+
"use_async_envs": false
|
160 |
+
},
|
161 |
+
"wandb": {
|
162 |
+
"enable": true,
|
163 |
+
"disable_artifact": false,
|
164 |
+
"project": "lerobot",
|
165 |
+
"entity": null,
|
166 |
+
"notes": null,
|
167 |
+
"run_id": null,
|
168 |
+
"mode": null
|
169 |
+
}
|
170 |
+
}
|
checkpoints/040000/training_state/optimizer_param_groups.json
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"lr": 1e-05,
|
4 |
+
"betas": [
|
5 |
+
0.9,
|
6 |
+
0.999
|
7 |
+
],
|
8 |
+
"eps": 1e-08,
|
9 |
+
"weight_decay": 0.0001,
|
10 |
+
"amsgrad": false,
|
11 |
+
"foreach": null,
|
12 |
+
"maximize": false,
|
13 |
+
"capturable": false,
|
14 |
+
"differentiable": false,
|
15 |
+
"fused": null,
|
16 |
+
"params": [
|
17 |
+
0,
|
18 |
+
1,
|
19 |
+
2,
|
20 |
+
3,
|
21 |
+
4,
|
22 |
+
5,
|
23 |
+
6,
|
24 |
+
7,
|
25 |
+
8,
|
26 |
+
9,
|
27 |
+
10,
|
28 |
+
11,
|
29 |
+
12,
|
30 |
+
13,
|
31 |
+
14,
|
32 |
+
15,
|
33 |
+
16,
|
34 |
+
17,
|
35 |
+
18,
|
36 |
+
19,
|
37 |
+
20,
|
38 |
+
21,
|
39 |
+
22,
|
40 |
+
23,
|
41 |
+
24,
|
42 |
+
25,
|
43 |
+
26,
|
44 |
+
27,
|
45 |
+
28,
|
46 |
+
29,
|
47 |
+
30,
|
48 |
+
31,
|
49 |
+
32,
|
50 |
+
33,
|
51 |
+
34,
|
52 |
+
35,
|
53 |
+
36,
|
54 |
+
37,
|
55 |
+
38,
|
56 |
+
39,
|
57 |
+
40,
|
58 |
+
41,
|
59 |
+
42,
|
60 |
+
43,
|
61 |
+
44,
|
62 |
+
45,
|
63 |
+
46,
|
64 |
+
47,
|
65 |
+
48,
|
66 |
+
49,
|
67 |
+
50,
|
68 |
+
51,
|
69 |
+
52,
|
70 |
+
53,
|
71 |
+
54,
|
72 |
+
55,
|
73 |
+
56,
|
74 |
+
57,
|
75 |
+
58,
|
76 |
+
59,
|
77 |
+
60,
|
78 |
+
61,
|
79 |
+
62,
|
80 |
+
63,
|
81 |
+
64,
|
82 |
+
65,
|
83 |
+
66,
|
84 |
+
67,
|
85 |
+
68,
|
86 |
+
69,
|
87 |
+
70,
|
88 |
+
71,
|
89 |
+
72,
|
90 |
+
73,
|
91 |
+
74,
|
92 |
+
75,
|
93 |
+
76,
|
94 |
+
77,
|
95 |
+
78,
|
96 |
+
79,
|
97 |
+
80,
|
98 |
+
81,
|
99 |
+
82,
|
100 |
+
83,
|
101 |
+
84,
|
102 |
+
85,
|
103 |
+
86,
|
104 |
+
87,
|
105 |
+
88,
|
106 |
+
89,
|
107 |
+
90,
|
108 |
+
91,
|
109 |
+
92,
|
110 |
+
93,
|
111 |
+
94,
|
112 |
+
95,
|
113 |
+
96,
|
114 |
+
97,
|
115 |
+
98,
|
116 |
+
99,
|
117 |
+
100,
|
118 |
+
101,
|
119 |
+
102,
|
120 |
+
103,
|
121 |
+
104,
|
122 |
+
105,
|
123 |
+
106,
|
124 |
+
107,
|
125 |
+
108,
|
126 |
+
109,
|
127 |
+
110,
|
128 |
+
111,
|
129 |
+
112,
|
130 |
+
113,
|
131 |
+
114,
|
132 |
+
115,
|
133 |
+
116,
|
134 |
+
117,
|
135 |
+
118,
|
136 |
+
119,
|
137 |
+
120,
|
138 |
+
121,
|
139 |
+
122,
|
140 |
+
123,
|
141 |
+
124,
|
142 |
+
125,
|
143 |
+
126,
|
144 |
+
127,
|
145 |
+
128,
|
146 |
+
129,
|
147 |
+
130,
|
148 |
+
131,
|
149 |
+
132
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"lr": 1e-05,
|
154 |
+
"betas": [
|
155 |
+
0.9,
|
156 |
+
0.999
|
157 |
+
],
|
158 |
+
"eps": 1e-08,
|
159 |
+
"weight_decay": 0.0001,
|
160 |
+
"amsgrad": false,
|
161 |
+
"foreach": null,
|
162 |
+
"maximize": false,
|
163 |
+
"capturable": false,
|
164 |
+
"differentiable": false,
|
165 |
+
"fused": null,
|
166 |
+
"params": [
|
167 |
+
133,
|
168 |
+
134,
|
169 |
+
135,
|
170 |
+
136,
|
171 |
+
137,
|
172 |
+
138,
|
173 |
+
139,
|
174 |
+
140,
|
175 |
+
141,
|
176 |
+
142,
|
177 |
+
143,
|
178 |
+
144,
|
179 |
+
145,
|
180 |
+
146,
|
181 |
+
147,
|
182 |
+
148,
|
183 |
+
149,
|
184 |
+
150,
|
185 |
+
151,
|
186 |
+
152
|
187 |
+
]
|
188 |
+
}
|
189 |
+
]
|
checkpoints/040000/training_state/optimizer_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346e31283a6a313588869cdb5f275724b58f2ca0f69a5a6b4eedef575f1b7f48
|
3 |
+
size 412817652
|
checkpoints/040000/training_state/rng_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0e7f56024c2c5d975e804a563b4df931609b9e9ca7194551c5f099687eccfb
|
3 |
+
size 15708
|
checkpoints/040000/training_state/training_step.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"step": 40000
|
3 |
+
}
|
checkpoints/100000/pretrained_model/config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "act",
|
3 |
+
"n_obs_steps": 1,
|
4 |
+
"normalization_mapping": {
|
5 |
+
"VISUAL": "MEAN_STD",
|
6 |
+
"STATE": "MEAN_STD",
|
7 |
+
"ACTION": "MEAN_STD"
|
8 |
+
},
|
9 |
+
"input_features": {
|
10 |
+
"observation.state": {
|
11 |
+
"type": "STATE",
|
12 |
+
"shape": [
|
13 |
+
6
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"observation.images.static_right": {
|
17 |
+
"type": "VISUAL",
|
18 |
+
"shape": [
|
19 |
+
3,
|
20 |
+
480,
|
21 |
+
640
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation.images.static_left": {
|
25 |
+
"type": "VISUAL",
|
26 |
+
"shape": [
|
27 |
+
3,
|
28 |
+
480,
|
29 |
+
640
|
30 |
+
]
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"output_features": {
|
34 |
+
"action": {
|
35 |
+
"type": "ACTION",
|
36 |
+
"shape": [
|
37 |
+
6
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"device": "cuda",
|
42 |
+
"use_amp": false,
|
43 |
+
"chunk_size": 100,
|
44 |
+
"n_action_steps": 100,
|
45 |
+
"vision_backbone": "resnet18",
|
46 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
47 |
+
"replace_final_stride_with_dilation": false,
|
48 |
+
"pre_norm": false,
|
49 |
+
"dim_model": 512,
|
50 |
+
"n_heads": 8,
|
51 |
+
"dim_feedforward": 3200,
|
52 |
+
"feedforward_activation": "relu",
|
53 |
+
"n_encoder_layers": 4,
|
54 |
+
"n_decoder_layers": 1,
|
55 |
+
"use_vae": true,
|
56 |
+
"latent_dim": 32,
|
57 |
+
"n_vae_encoder_layers": 4,
|
58 |
+
"temporal_ensemble_coeff": null,
|
59 |
+
"dropout": 0.1,
|
60 |
+
"kl_weight": 10.0,
|
61 |
+
"optimizer_lr": 1e-05,
|
62 |
+
"optimizer_weight_decay": 0.0001,
|
63 |
+
"optimizer_lr_backbone": 1e-05
|
64 |
+
}
|
checkpoints/100000/pretrained_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82fcc335eca6aa8037a865d4f4b689ba0f8068f9831da15bd0c14b7b9578c6f4
|
3 |
+
size 206701096
|
checkpoints/100000/pretrained_model/train_config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset": {
|
3 |
+
"repo_id": "rjgpinel/chickenToPlate",
|
4 |
+
"root": null,
|
5 |
+
"episodes": null,
|
6 |
+
"image_transforms": {
|
7 |
+
"enable": false,
|
8 |
+
"max_num_transforms": 3,
|
9 |
+
"random_order": false,
|
10 |
+
"tfs": {
|
11 |
+
"brightness": {
|
12 |
+
"weight": 1.0,
|
13 |
+
"type": "ColorJitter",
|
14 |
+
"kwargs": {
|
15 |
+
"brightness": [
|
16 |
+
0.8,
|
17 |
+
1.2
|
18 |
+
]
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"contrast": {
|
22 |
+
"weight": 1.0,
|
23 |
+
"type": "ColorJitter",
|
24 |
+
"kwargs": {
|
25 |
+
"contrast": [
|
26 |
+
0.8,
|
27 |
+
1.2
|
28 |
+
]
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"saturation": {
|
32 |
+
"weight": 1.0,
|
33 |
+
"type": "ColorJitter",
|
34 |
+
"kwargs": {
|
35 |
+
"saturation": [
|
36 |
+
0.5,
|
37 |
+
1.5
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"hue": {
|
42 |
+
"weight": 1.0,
|
43 |
+
"type": "ColorJitter",
|
44 |
+
"kwargs": {
|
45 |
+
"hue": [
|
46 |
+
-0.05,
|
47 |
+
0.05
|
48 |
+
]
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"sharpness": {
|
52 |
+
"weight": 1.0,
|
53 |
+
"type": "SharpnessJitter",
|
54 |
+
"kwargs": {
|
55 |
+
"sharpness": [
|
56 |
+
0.5,
|
57 |
+
1.5
|
58 |
+
]
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"revision": null,
|
64 |
+
"use_imagenet_stats": true,
|
65 |
+
"video_backend": "torchcodec"
|
66 |
+
},
|
67 |
+
"env": null,
|
68 |
+
"policy": {
|
69 |
+
"type": "act",
|
70 |
+
"n_obs_steps": 1,
|
71 |
+
"normalization_mapping": {
|
72 |
+
"VISUAL": "MEAN_STD",
|
73 |
+
"STATE": "MEAN_STD",
|
74 |
+
"ACTION": "MEAN_STD"
|
75 |
+
},
|
76 |
+
"input_features": {
|
77 |
+
"observation.state": {
|
78 |
+
"type": "STATE",
|
79 |
+
"shape": [
|
80 |
+
6
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"observation.images.static_right": {
|
84 |
+
"type": "VISUAL",
|
85 |
+
"shape": [
|
86 |
+
3,
|
87 |
+
480,
|
88 |
+
640
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"observation.images.static_left": {
|
92 |
+
"type": "VISUAL",
|
93 |
+
"shape": [
|
94 |
+
3,
|
95 |
+
480,
|
96 |
+
640
|
97 |
+
]
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"output_features": {
|
101 |
+
"action": {
|
102 |
+
"type": "ACTION",
|
103 |
+
"shape": [
|
104 |
+
6
|
105 |
+
]
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"device": "cuda",
|
109 |
+
"use_amp": false,
|
110 |
+
"chunk_size": 100,
|
111 |
+
"n_action_steps": 100,
|
112 |
+
"vision_backbone": "resnet18",
|
113 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
114 |
+
"replace_final_stride_with_dilation": false,
|
115 |
+
"pre_norm": false,
|
116 |
+
"dim_model": 512,
|
117 |
+
"n_heads": 8,
|
118 |
+
"dim_feedforward": 3200,
|
119 |
+
"feedforward_activation": "relu",
|
120 |
+
"n_encoder_layers": 4,
|
121 |
+
"n_decoder_layers": 1,
|
122 |
+
"use_vae": true,
|
123 |
+
"latent_dim": 32,
|
124 |
+
"n_vae_encoder_layers": 4,
|
125 |
+
"temporal_ensemble_coeff": null,
|
126 |
+
"dropout": 0.1,
|
127 |
+
"kl_weight": 10.0,
|
128 |
+
"optimizer_lr": 1e-05,
|
129 |
+
"optimizer_weight_decay": 0.0001,
|
130 |
+
"optimizer_lr_backbone": 1e-05
|
131 |
+
},
|
132 |
+
"output_dir": "outputs/train/act_bs8_chickenToPlate",
|
133 |
+
"job_name": "act_trial_bs8_chickenToPlate",
|
134 |
+
"resume": false,
|
135 |
+
"seed": 1000,
|
136 |
+
"num_workers": 4,
|
137 |
+
"batch_size": 8,
|
138 |
+
"steps": 100000,
|
139 |
+
"eval_freq": 20000,
|
140 |
+
"log_freq": 200,
|
141 |
+
"save_checkpoint": true,
|
142 |
+
"save_freq": 20000,
|
143 |
+
"use_policy_training_preset": true,
|
144 |
+
"optimizer": {
|
145 |
+
"type": "adamw",
|
146 |
+
"lr": 1e-05,
|
147 |
+
"weight_decay": 0.0001,
|
148 |
+
"grad_clip_norm": 10.0,
|
149 |
+
"betas": [
|
150 |
+
0.9,
|
151 |
+
0.999
|
152 |
+
],
|
153 |
+
"eps": 1e-08
|
154 |
+
},
|
155 |
+
"scheduler": null,
|
156 |
+
"eval": {
|
157 |
+
"n_episodes": 50,
|
158 |
+
"batch_size": 50,
|
159 |
+
"use_async_envs": false
|
160 |
+
},
|
161 |
+
"wandb": {
|
162 |
+
"enable": true,
|
163 |
+
"disable_artifact": false,
|
164 |
+
"project": "lerobot",
|
165 |
+
"entity": null,
|
166 |
+
"notes": null,
|
167 |
+
"run_id": null,
|
168 |
+
"mode": null
|
169 |
+
}
|
170 |
+
}
|
checkpoints/100000/training_state/optimizer_param_groups.json
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"lr": 1e-05,
|
4 |
+
"betas": [
|
5 |
+
0.9,
|
6 |
+
0.999
|
7 |
+
],
|
8 |
+
"eps": 1e-08,
|
9 |
+
"weight_decay": 0.0001,
|
10 |
+
"amsgrad": false,
|
11 |
+
"foreach": null,
|
12 |
+
"maximize": false,
|
13 |
+
"capturable": false,
|
14 |
+
"differentiable": false,
|
15 |
+
"fused": null,
|
16 |
+
"params": [
|
17 |
+
0,
|
18 |
+
1,
|
19 |
+
2,
|
20 |
+
3,
|
21 |
+
4,
|
22 |
+
5,
|
23 |
+
6,
|
24 |
+
7,
|
25 |
+
8,
|
26 |
+
9,
|
27 |
+
10,
|
28 |
+
11,
|
29 |
+
12,
|
30 |
+
13,
|
31 |
+
14,
|
32 |
+
15,
|
33 |
+
16,
|
34 |
+
17,
|
35 |
+
18,
|
36 |
+
19,
|
37 |
+
20,
|
38 |
+
21,
|
39 |
+
22,
|
40 |
+
23,
|
41 |
+
24,
|
42 |
+
25,
|
43 |
+
26,
|
44 |
+
27,
|
45 |
+
28,
|
46 |
+
29,
|
47 |
+
30,
|
48 |
+
31,
|
49 |
+
32,
|
50 |
+
33,
|
51 |
+
34,
|
52 |
+
35,
|
53 |
+
36,
|
54 |
+
37,
|
55 |
+
38,
|
56 |
+
39,
|
57 |
+
40,
|
58 |
+
41,
|
59 |
+
42,
|
60 |
+
43,
|
61 |
+
44,
|
62 |
+
45,
|
63 |
+
46,
|
64 |
+
47,
|
65 |
+
48,
|
66 |
+
49,
|
67 |
+
50,
|
68 |
+
51,
|
69 |
+
52,
|
70 |
+
53,
|
71 |
+
54,
|
72 |
+
55,
|
73 |
+
56,
|
74 |
+
57,
|
75 |
+
58,
|
76 |
+
59,
|
77 |
+
60,
|
78 |
+
61,
|
79 |
+
62,
|
80 |
+
63,
|
81 |
+
64,
|
82 |
+
65,
|
83 |
+
66,
|
84 |
+
67,
|
85 |
+
68,
|
86 |
+
69,
|
87 |
+
70,
|
88 |
+
71,
|
89 |
+
72,
|
90 |
+
73,
|
91 |
+
74,
|
92 |
+
75,
|
93 |
+
76,
|
94 |
+
77,
|
95 |
+
78,
|
96 |
+
79,
|
97 |
+
80,
|
98 |
+
81,
|
99 |
+
82,
|
100 |
+
83,
|
101 |
+
84,
|
102 |
+
85,
|
103 |
+
86,
|
104 |
+
87,
|
105 |
+
88,
|
106 |
+
89,
|
107 |
+
90,
|
108 |
+
91,
|
109 |
+
92,
|
110 |
+
93,
|
111 |
+
94,
|
112 |
+
95,
|
113 |
+
96,
|
114 |
+
97,
|
115 |
+
98,
|
116 |
+
99,
|
117 |
+
100,
|
118 |
+
101,
|
119 |
+
102,
|
120 |
+
103,
|
121 |
+
104,
|
122 |
+
105,
|
123 |
+
106,
|
124 |
+
107,
|
125 |
+
108,
|
126 |
+
109,
|
127 |
+
110,
|
128 |
+
111,
|
129 |
+
112,
|
130 |
+
113,
|
131 |
+
114,
|
132 |
+
115,
|
133 |
+
116,
|
134 |
+
117,
|
135 |
+
118,
|
136 |
+
119,
|
137 |
+
120,
|
138 |
+
121,
|
139 |
+
122,
|
140 |
+
123,
|
141 |
+
124,
|
142 |
+
125,
|
143 |
+
126,
|
144 |
+
127,
|
145 |
+
128,
|
146 |
+
129,
|
147 |
+
130,
|
148 |
+
131,
|
149 |
+
132
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"lr": 1e-05,
|
154 |
+
"betas": [
|
155 |
+
0.9,
|
156 |
+
0.999
|
157 |
+
],
|
158 |
+
"eps": 1e-08,
|
159 |
+
"weight_decay": 0.0001,
|
160 |
+
"amsgrad": false,
|
161 |
+
"foreach": null,
|
162 |
+
"maximize": false,
|
163 |
+
"capturable": false,
|
164 |
+
"differentiable": false,
|
165 |
+
"fused": null,
|
166 |
+
"params": [
|
167 |
+
133,
|
168 |
+
134,
|
169 |
+
135,
|
170 |
+
136,
|
171 |
+
137,
|
172 |
+
138,
|
173 |
+
139,
|
174 |
+
140,
|
175 |
+
141,
|
176 |
+
142,
|
177 |
+
143,
|
178 |
+
144,
|
179 |
+
145,
|
180 |
+
146,
|
181 |
+
147,
|
182 |
+
148,
|
183 |
+
149,
|
184 |
+
150,
|
185 |
+
151,
|
186 |
+
152
|
187 |
+
]
|
188 |
+
}
|
189 |
+
]
|
checkpoints/100000/training_state/optimizer_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c3a23157e150eb94982329e9302a7658feae92adc13daab19c8dfc7554cccc3
|
3 |
+
size 412817652
|
checkpoints/100000/training_state/rng_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29078e9c09e5c058b106b8f7956be1c76afb02c96977273f19d77bd32e41dc65
|
3 |
+
size 15708
|
checkpoints/100000/training_state/training_step.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"step": 100000
|
3 |
+
}
|
checkpoints/last/pretrained_model/config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"type": "act",
|
3 |
+
"n_obs_steps": 1,
|
4 |
+
"normalization_mapping": {
|
5 |
+
"VISUAL": "MEAN_STD",
|
6 |
+
"STATE": "MEAN_STD",
|
7 |
+
"ACTION": "MEAN_STD"
|
8 |
+
},
|
9 |
+
"input_features": {
|
10 |
+
"observation.state": {
|
11 |
+
"type": "STATE",
|
12 |
+
"shape": [
|
13 |
+
6
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"observation.images.static_right": {
|
17 |
+
"type": "VISUAL",
|
18 |
+
"shape": [
|
19 |
+
3,
|
20 |
+
480,
|
21 |
+
640
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation.images.static_left": {
|
25 |
+
"type": "VISUAL",
|
26 |
+
"shape": [
|
27 |
+
3,
|
28 |
+
480,
|
29 |
+
640
|
30 |
+
]
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"output_features": {
|
34 |
+
"action": {
|
35 |
+
"type": "ACTION",
|
36 |
+
"shape": [
|
37 |
+
6
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"device": "cuda",
|
42 |
+
"use_amp": false,
|
43 |
+
"chunk_size": 100,
|
44 |
+
"n_action_steps": 100,
|
45 |
+
"vision_backbone": "resnet18",
|
46 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
47 |
+
"replace_final_stride_with_dilation": false,
|
48 |
+
"pre_norm": false,
|
49 |
+
"dim_model": 512,
|
50 |
+
"n_heads": 8,
|
51 |
+
"dim_feedforward": 3200,
|
52 |
+
"feedforward_activation": "relu",
|
53 |
+
"n_encoder_layers": 4,
|
54 |
+
"n_decoder_layers": 1,
|
55 |
+
"use_vae": true,
|
56 |
+
"latent_dim": 32,
|
57 |
+
"n_vae_encoder_layers": 4,
|
58 |
+
"temporal_ensemble_coeff": null,
|
59 |
+
"dropout": 0.1,
|
60 |
+
"kl_weight": 10.0,
|
61 |
+
"optimizer_lr": 1e-05,
|
62 |
+
"optimizer_weight_decay": 0.0001,
|
63 |
+
"optimizer_lr_backbone": 1e-05
|
64 |
+
}
|
checkpoints/last/pretrained_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d75c3b78c622eb7476d12b688a6bf3996b97779866be6fa1294b933c312e92
|
3 |
+
size 206701096
|
checkpoints/last/pretrained_model/train_config.json
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset": {
|
3 |
+
"repo_id": "rjgpinel/chickenToPlate",
|
4 |
+
"root": null,
|
5 |
+
"episodes": null,
|
6 |
+
"image_transforms": {
|
7 |
+
"enable": false,
|
8 |
+
"max_num_transforms": 3,
|
9 |
+
"random_order": false,
|
10 |
+
"tfs": {
|
11 |
+
"brightness": {
|
12 |
+
"weight": 1.0,
|
13 |
+
"type": "ColorJitter",
|
14 |
+
"kwargs": {
|
15 |
+
"brightness": [
|
16 |
+
0.8,
|
17 |
+
1.2
|
18 |
+
]
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"contrast": {
|
22 |
+
"weight": 1.0,
|
23 |
+
"type": "ColorJitter",
|
24 |
+
"kwargs": {
|
25 |
+
"contrast": [
|
26 |
+
0.8,
|
27 |
+
1.2
|
28 |
+
]
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"saturation": {
|
32 |
+
"weight": 1.0,
|
33 |
+
"type": "ColorJitter",
|
34 |
+
"kwargs": {
|
35 |
+
"saturation": [
|
36 |
+
0.5,
|
37 |
+
1.5
|
38 |
+
]
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"hue": {
|
42 |
+
"weight": 1.0,
|
43 |
+
"type": "ColorJitter",
|
44 |
+
"kwargs": {
|
45 |
+
"hue": [
|
46 |
+
-0.05,
|
47 |
+
0.05
|
48 |
+
]
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"sharpness": {
|
52 |
+
"weight": 1.0,
|
53 |
+
"type": "SharpnessJitter",
|
54 |
+
"kwargs": {
|
55 |
+
"sharpness": [
|
56 |
+
0.5,
|
57 |
+
1.5
|
58 |
+
]
|
59 |
+
}
|
60 |
+
}
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"revision": null,
|
64 |
+
"use_imagenet_stats": true,
|
65 |
+
"video_backend": "torchcodec"
|
66 |
+
},
|
67 |
+
"env": null,
|
68 |
+
"policy": {
|
69 |
+
"type": "act",
|
70 |
+
"n_obs_steps": 1,
|
71 |
+
"normalization_mapping": {
|
72 |
+
"VISUAL": "MEAN_STD",
|
73 |
+
"STATE": "MEAN_STD",
|
74 |
+
"ACTION": "MEAN_STD"
|
75 |
+
},
|
76 |
+
"input_features": {
|
77 |
+
"observation.state": {
|
78 |
+
"type": "STATE",
|
79 |
+
"shape": [
|
80 |
+
6
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"observation.images.static_right": {
|
84 |
+
"type": "VISUAL",
|
85 |
+
"shape": [
|
86 |
+
3,
|
87 |
+
480,
|
88 |
+
640
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"observation.images.static_left": {
|
92 |
+
"type": "VISUAL",
|
93 |
+
"shape": [
|
94 |
+
3,
|
95 |
+
480,
|
96 |
+
640
|
97 |
+
]
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"output_features": {
|
101 |
+
"action": {
|
102 |
+
"type": "ACTION",
|
103 |
+
"shape": [
|
104 |
+
6
|
105 |
+
]
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"device": "cuda",
|
109 |
+
"use_amp": false,
|
110 |
+
"chunk_size": 100,
|
111 |
+
"n_action_steps": 100,
|
112 |
+
"vision_backbone": "resnet18",
|
113 |
+
"pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
|
114 |
+
"replace_final_stride_with_dilation": false,
|
115 |
+
"pre_norm": false,
|
116 |
+
"dim_model": 512,
|
117 |
+
"n_heads": 8,
|
118 |
+
"dim_feedforward": 3200,
|
119 |
+
"feedforward_activation": "relu",
|
120 |
+
"n_encoder_layers": 4,
|
121 |
+
"n_decoder_layers": 1,
|
122 |
+
"use_vae": true,
|
123 |
+
"latent_dim": 32,
|
124 |
+
"n_vae_encoder_layers": 4,
|
125 |
+
"temporal_ensemble_coeff": null,
|
126 |
+
"dropout": 0.1,
|
127 |
+
"kl_weight": 10.0,
|
128 |
+
"optimizer_lr": 1e-05,
|
129 |
+
"optimizer_weight_decay": 0.0001,
|
130 |
+
"optimizer_lr_backbone": 1e-05
|
131 |
+
},
|
132 |
+
"output_dir": "outputs/train/act_bs8_chickenToPlate",
|
133 |
+
"job_name": "act_trial_bs8_chickenToPlate",
|
134 |
+
"resume": false,
|
135 |
+
"seed": 1000,
|
136 |
+
"num_workers": 4,
|
137 |
+
"batch_size": 8,
|
138 |
+
"steps": 100000,
|
139 |
+
"eval_freq": 20000,
|
140 |
+
"log_freq": 200,
|
141 |
+
"save_checkpoint": true,
|
142 |
+
"save_freq": 20000,
|
143 |
+
"use_policy_training_preset": true,
|
144 |
+
"optimizer": {
|
145 |
+
"type": "adamw",
|
146 |
+
"lr": 1e-05,
|
147 |
+
"weight_decay": 0.0001,
|
148 |
+
"grad_clip_norm": 10.0,
|
149 |
+
"betas": [
|
150 |
+
0.9,
|
151 |
+
0.999
|
152 |
+
],
|
153 |
+
"eps": 1e-08
|
154 |
+
},
|
155 |
+
"scheduler": null,
|
156 |
+
"eval": {
|
157 |
+
"n_episodes": 50,
|
158 |
+
"batch_size": 50,
|
159 |
+
"use_async_envs": false
|
160 |
+
},
|
161 |
+
"wandb": {
|
162 |
+
"enable": true,
|
163 |
+
"disable_artifact": false,
|
164 |
+
"project": "lerobot",
|
165 |
+
"entity": null,
|
166 |
+
"notes": null,
|
167 |
+
"run_id": null,
|
168 |
+
"mode": null
|
169 |
+
}
|
170 |
+
}
|
checkpoints/last/training_state/optimizer_param_groups.json
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"lr": 1e-05,
|
4 |
+
"betas": [
|
5 |
+
0.9,
|
6 |
+
0.999
|
7 |
+
],
|
8 |
+
"eps": 1e-08,
|
9 |
+
"weight_decay": 0.0001,
|
10 |
+
"amsgrad": false,
|
11 |
+
"foreach": null,
|
12 |
+
"maximize": false,
|
13 |
+
"capturable": false,
|
14 |
+
"differentiable": false,
|
15 |
+
"fused": null,
|
16 |
+
"params": [
|
17 |
+
0,
|
18 |
+
1,
|
19 |
+
2,
|
20 |
+
3,
|
21 |
+
4,
|
22 |
+
5,
|
23 |
+
6,
|
24 |
+
7,
|
25 |
+
8,
|
26 |
+
9,
|
27 |
+
10,
|
28 |
+
11,
|
29 |
+
12,
|
30 |
+
13,
|
31 |
+
14,
|
32 |
+
15,
|
33 |
+
16,
|
34 |
+
17,
|
35 |
+
18,
|
36 |
+
19,
|
37 |
+
20,
|
38 |
+
21,
|
39 |
+
22,
|
40 |
+
23,
|
41 |
+
24,
|
42 |
+
25,
|
43 |
+
26,
|
44 |
+
27,
|
45 |
+
28,
|
46 |
+
29,
|
47 |
+
30,
|
48 |
+
31,
|
49 |
+
32,
|
50 |
+
33,
|
51 |
+
34,
|
52 |
+
35,
|
53 |
+
36,
|
54 |
+
37,
|
55 |
+
38,
|
56 |
+
39,
|
57 |
+
40,
|
58 |
+
41,
|
59 |
+
42,
|
60 |
+
43,
|
61 |
+
44,
|
62 |
+
45,
|
63 |
+
46,
|
64 |
+
47,
|
65 |
+
48,
|
66 |
+
49,
|
67 |
+
50,
|
68 |
+
51,
|
69 |
+
52,
|
70 |
+
53,
|
71 |
+
54,
|
72 |
+
55,
|
73 |
+
56,
|
74 |
+
57,
|
75 |
+
58,
|
76 |
+
59,
|
77 |
+
60,
|
78 |
+
61,
|
79 |
+
62,
|
80 |
+
63,
|
81 |
+
64,
|
82 |
+
65,
|
83 |
+
66,
|
84 |
+
67,
|
85 |
+
68,
|
86 |
+
69,
|
87 |
+
70,
|
88 |
+
71,
|
89 |
+
72,
|
90 |
+
73,
|
91 |
+
74,
|
92 |
+
75,
|
93 |
+
76,
|
94 |
+
77,
|
95 |
+
78,
|
96 |
+
79,
|
97 |
+
80,
|
98 |
+
81,
|
99 |
+
82,
|
100 |
+
83,
|
101 |
+
84,
|
102 |
+
85,
|
103 |
+
86,
|
104 |
+
87,
|
105 |
+
88,
|
106 |
+
89,
|
107 |
+
90,
|
108 |
+
91,
|
109 |
+
92,
|
110 |
+
93,
|
111 |
+
94,
|
112 |
+
95,
|
113 |
+
96,
|
114 |
+
97,
|
115 |
+
98,
|
116 |
+
99,
|
117 |
+
100,
|
118 |
+
101,
|
119 |
+
102,
|
120 |
+
103,
|
121 |
+
104,
|
122 |
+
105,
|
123 |
+
106,
|
124 |
+
107,
|
125 |
+
108,
|
126 |
+
109,
|
127 |
+
110,
|
128 |
+
111,
|
129 |
+
112,
|
130 |
+
113,
|
131 |
+
114,
|
132 |
+
115,
|
133 |
+
116,
|
134 |
+
117,
|
135 |
+
118,
|
136 |
+
119,
|
137 |
+
120,
|
138 |
+
121,
|
139 |
+
122,
|
140 |
+
123,
|
141 |
+
124,
|
142 |
+
125,
|
143 |
+
126,
|
144 |
+
127,
|
145 |
+
128,
|
146 |
+
129,
|
147 |
+
130,
|
148 |
+
131,
|
149 |
+
132
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"lr": 1e-05,
|
154 |
+
"betas": [
|
155 |
+
0.9,
|
156 |
+
0.999
|
157 |
+
],
|
158 |
+
"eps": 1e-08,
|
159 |
+
"weight_decay": 0.0001,
|
160 |
+
"amsgrad": false,
|
161 |
+
"foreach": null,
|
162 |
+
"maximize": false,
|
163 |
+
"capturable": false,
|
164 |
+
"differentiable": false,
|
165 |
+
"fused": null,
|
166 |
+
"params": [
|
167 |
+
133,
|
168 |
+
134,
|
169 |
+
135,
|
170 |
+
136,
|
171 |
+
137,
|
172 |
+
138,
|
173 |
+
139,
|
174 |
+
140,
|
175 |
+
141,
|
176 |
+
142,
|
177 |
+
143,
|
178 |
+
144,
|
179 |
+
145,
|
180 |
+
146,
|
181 |
+
147,
|
182 |
+
148,
|
183 |
+
149,
|
184 |
+
150,
|
185 |
+
151,
|
186 |
+
152
|
187 |
+
]
|
188 |
+
}
|
189 |
+
]
|
checkpoints/last/training_state/optimizer_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:549548de67dacf831f72d637f360e188e1bb5a3efc471d1d27584cab26612585
|
3 |
+
size 412817652
|
checkpoints/last/training_state/rng_state.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7c491cf99c2f6a73880dbf0d97ad29c1788b95c2f2478248be5f3d18de16f55
|
3 |
+
size 15708
|
checkpoints/last/training_state/training_step.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"step": 60000
|
3 |
+
}
|
wandb/debug-internal.log
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
|
2 |
+
{"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
|
3 |
+
{"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
|
4 |
+
{"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
|
5 |
+
{"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
|
6 |
+
{"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
|
7 |
+
{"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
|
wandb/debug.log
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
|
2 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
|
3 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
|
4 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
|
5 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
|
6 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
|
7 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
|
8 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
|
9 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
|
10 |
+
config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
|
11 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
|
12 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
|
13 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
14 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
|
15 |
+
2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
|
16 |
+
2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
|
17 |
+
2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
|
18 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
|
19 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
|
20 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
|
21 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
|
22 |
+
2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
|
wandb/latest-run/files/output.log
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Logs will be synced with wandb.
|
2 |
+
INFO 2025-04-13 07:11:50 ndb_utils.py:96 Track this run --> https://wandb.ai/rgarciap/lerobot/runs/ipo2f6m2
|
3 |
+
INFO 2025-04-13 07:11:50 ts/train.py:127 Creating dataset
|
4 |
+
Downloading data: 100%|██████████| 69/69 [00:00<00:00, 140420.66files/s]
|
5 |
+
Generating train split: 19655 examples [00:00, 273149.72 examples/s]
|
6 |
+
INFO 2025-04-13 07:11:51 ts/train.py:138 Creating policy
|
7 |
+
INFO 2025-04-13 07:11:52 ts/train.py:144 Creating optimizer and scheduler
|
8 |
+
INFO 2025-04-13 07:11:52 ts/train.py:156 Output dir: outputs/train/act_bs8_chickenToPlate
|
9 |
+
INFO 2025-04-13 07:11:52 ts/train.py:159 cfg.steps=100000 (100K)
|
10 |
+
INFO 2025-04-13 07:11:52 ts/train.py:160 dataset.num_frames=19655 (20K)
|
11 |
+
INFO 2025-04-13 07:11:52 ts/train.py:161 dataset.num_episodes=69
|
12 |
+
INFO 2025-04-13 07:11:52 ts/train.py:162 num_learnable_params=51597190 (52M)
|
13 |
+
INFO 2025-04-13 07:11:52 ts/train.py:163 num_total_params=51597238 (52M)
|
14 |
+
INFO 2025-04-13 07:11:52 ts/train.py:202 Start offline training on a fixed dataset
|
15 |
+
INFO 2025-04-13 07:12:06 ts/train.py:232 step:200 smpl:2K ep:6 epch:0.08 loss:6.809 grdn:153.932 lr:1.0e-05 updt_s:0.069 data_s:0.003
|
16 |
+
INFO 2025-04-13 07:12:19 ts/train.py:232 step:400 smpl:3K ep:11 epch:0.16 loss:3.046 grdn:85.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
17 |
+
INFO 2025-04-13 07:12:32 ts/train.py:232 step:600 smpl:5K ep:17 epch:0.24 loss:2.598 grdn:75.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
18 |
+
INFO 2025-04-13 07:12:46 ts/train.py:232 step:800 smpl:6K ep:22 epch:0.33 loss:2.264 grdn:69.358 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
19 |
+
INFO 2025-04-13 07:12:59 ts/train.py:232 step:1K smpl:8K ep:28 epch:0.41 loss:2.054 grdn:65.551 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
20 |
+
INFO 2025-04-13 07:13:12 ts/train.py:232 step:1K smpl:10K ep:34 epch:0.49 loss:1.853 grdn:62.666 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
21 |
+
INFO 2025-04-13 07:13:25 ts/train.py:232 step:1K smpl:11K ep:39 epch:0.57 loss:1.696 grdn:59.657 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
22 |
+
INFO 2025-04-13 07:13:38 ts/train.py:232 step:2K smpl:13K ep:45 epch:0.65 loss:1.529 grdn:57.475 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
23 |
+
INFO 2025-04-13 07:13:51 ts/train.py:232 step:2K smpl:14K ep:51 epch:0.73 loss:1.401 grdn:54.794 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
24 |
+
INFO 2025-04-13 07:14:04 ts/train.py:232 step:2K smpl:16K ep:56 epch:0.81 loss:1.279 grdn:52.447 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
25 |
+
INFO 2025-04-13 07:14:17 ts/train.py:232 step:2K smpl:18K ep:62 epch:0.90 loss:1.187 grdn:51.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
26 |
+
INFO 2025-04-13 07:14:30 ts/train.py:232 step:2K smpl:19K ep:67 epch:0.98 loss:1.083 grdn:48.098 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
27 |
+
INFO 2025-04-13 07:14:44 ts/train.py:232 step:3K smpl:21K ep:73 epch:1.06 loss:0.982 grdn:44.752 lr:1.0e-05 updt_s:0.066 data_s:0.003
|
28 |
+
INFO 2025-04-13 07:14:57 ts/train.py:232 step:3K smpl:22K ep:79 epch:1.14 loss:0.905 grdn:43.547 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
29 |
+
INFO 2025-04-13 07:15:10 ts/train.py:232 step:3K smpl:24K ep:84 epch:1.22 loss:0.826 grdn:41.540 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
30 |
+
INFO 2025-04-13 07:15:23 ts/train.py:232 step:3K smpl:26K ep:90 epch:1.30 loss:0.754 grdn:39.048 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
31 |
+
INFO 2025-04-13 07:15:36 ts/train.py:232 step:3K smpl:27K ep:95 epch:1.38 loss:0.710 grdn:38.735 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
32 |
+
INFO 2025-04-13 07:15:49 ts/train.py:232 step:4K smpl:29K ep:101 epch:1.47 loss:0.659 grdn:36.579 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
33 |
+
INFO 2025-04-13 07:16:03 ts/train.py:232 step:4K smpl:30K ep:107 epch:1.55 loss:0.604 grdn:34.616 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
34 |
+
INFO 2025-04-13 07:16:16 ts/train.py:232 step:4K smpl:32K ep:112 epch:1.63 loss:0.562 grdn:32.857 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
35 |
+
INFO 2025-04-13 07:16:29 ts/train.py:232 step:4K smpl:34K ep:118 epch:1.71 loss:0.533 grdn:32.673 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
36 |
+
INFO 2025-04-13 07:16:42 ts/train.py:232 step:4K smpl:35K ep:124 epch:1.79 loss:0.489 grdn:30.663 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
37 |
+
INFO 2025-04-13 07:16:55 ts/train.py:232 step:5K smpl:37K ep:129 epch:1.87 loss:0.473 grdn:30.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
38 |
+
INFO 2025-04-13 07:17:08 ts/train.py:232 step:5K smpl:38K ep:135 epch:1.95 loss:0.444 grdn:29.572 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
39 |
+
INFO 2025-04-13 07:17:21 ts/train.py:232 step:5K smpl:40K ep:140 epch:2.04 loss:0.427 grdn:28.334 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
40 |
+
INFO 2025-04-13 07:17:34 ts/train.py:232 step:5K smpl:42K ep:146 epch:2.12 loss:0.394 grdn:27.066 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
41 |
+
INFO 2025-04-13 07:17:47 ts/train.py:232 step:5K smpl:43K ep:152 epch:2.20 loss:0.384 grdn:26.812 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
42 |
+
INFO 2025-04-13 07:18:00 ts/train.py:232 step:6K smpl:45K ep:157 epch:2.28 loss:0.369 grdn:25.750 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
43 |
+
INFO 2025-04-13 07:18:13 ts/train.py:232 step:6K smpl:46K ep:163 epch:2.36 loss:0.347 grdn:24.628 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
44 |
+
INFO 2025-04-13 07:18:26 ts/train.py:232 step:6K smpl:48K ep:169 epch:2.44 loss:0.345 grdn:25.079 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
45 |
+
INFO 2025-04-13 07:18:39 ts/train.py:232 step:6K smpl:50K ep:174 epch:2.52 loss:0.333 grdn:24.552 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
46 |
+
INFO 2025-04-13 07:18:53 ts/train.py:232 step:6K smpl:51K ep:180 epch:2.60 loss:0.319 grdn:23.761 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
47 |
+
INFO 2025-04-13 07:19:06 ts/train.py:232 step:7K smpl:53K ep:185 epch:2.69 loss:0.313 grdn:23.319 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
48 |
+
INFO 2025-04-13 07:19:19 ts/train.py:232 step:7K smpl:54K ep:191 epch:2.77 loss:0.296 grdn:22.959 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
49 |
+
INFO 2025-04-13 07:19:32 ts/train.py:232 step:7K smpl:56K ep:197 epch:2.85 loss:0.297 grdn:23.434 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
50 |
+
INFO 2025-04-13 07:19:45 ts/train.py:232 step:7K smpl:58K ep:202 epch:2.93 loss:0.290 grdn:22.584 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
51 |
+
INFO 2025-04-13 07:19:59 ts/train.py:232 step:7K smpl:59K ep:208 epch:3.01 loss:0.283 grdn:23.340 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
52 |
+
INFO 2025-04-13 07:20:12 ts/train.py:232 step:8K smpl:61K ep:213 epch:3.09 loss:0.272 grdn:22.151 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
53 |
+
INFO 2025-04-13 07:20:24 ts/train.py:232 step:8K smpl:62K ep:219 epch:3.17 loss:0.267 grdn:22.000 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
54 |
+
INFO 2025-04-13 07:20:38 ts/train.py:232 step:8K smpl:64K ep:225 epch:3.26 loss:0.256 grdn:20.574 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
55 |
+
INFO 2025-04-13 07:20:50 ts/train.py:232 step:8K smpl:66K ep:230 epch:3.34 loss:0.248 grdn:20.914 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
56 |
+
INFO 2025-04-13 07:21:03 ts/train.py:232 step:8K smpl:67K ep:236 epch:3.42 loss:0.251 grdn:21.292 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
57 |
+
INFO 2025-04-13 07:21:17 ts/train.py:232 step:9K smpl:69K ep:242 epch:3.50 loss:0.249 grdn:20.863 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
58 |
+
INFO 2025-04-13 07:21:30 ts/train.py:232 step:9K smpl:70K ep:247 epch:3.58 loss:0.244 grdn:20.995 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
59 |
+
INFO 2025-04-13 07:21:43 ts/train.py:232 step:9K smpl:72K ep:253 epch:3.66 loss:0.241 grdn:20.919 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
60 |
+
INFO 2025-04-13 07:21:56 ts/train.py:232 step:9K smpl:74K ep:258 epch:3.74 loss:0.234 grdn:20.073 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
61 |
+
INFO 2025-04-13 07:22:09 ts/train.py:232 step:9K smpl:75K ep:264 epch:3.83 loss:0.233 grdn:20.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
62 |
+
INFO 2025-04-13 07:22:22 ts/train.py:232 step:10K smpl:77K ep:270 epch:3.91 loss:0.229 grdn:19.897 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
63 |
+
INFO 2025-04-13 07:22:35 ts/train.py:232 step:10K smpl:78K ep:275 epch:3.99 loss:0.224 grdn:20.040 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
64 |
+
INFO 2025-04-13 07:22:49 ts/train.py:232 step:10K smpl:80K ep:281 epch:4.07 loss:0.215 grdn:18.582 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
65 |
+
INFO 2025-04-13 07:23:02 ts/train.py:232 step:10K smpl:82K ep:286 epch:4.15 loss:0.215 grdn:19.444 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
66 |
+
INFO 2025-04-13 07:23:15 ts/train.py:232 step:10K smpl:83K ep:292 epch:4.23 loss:0.213 grdn:19.041 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
67 |
+
INFO 2025-04-13 07:23:28 ts/train.py:232 step:11K smpl:85K ep:298 epch:4.31 loss:0.207 grdn:18.785 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
68 |
+
INFO 2025-04-13 07:23:41 ts/train.py:232 step:11K smpl:86K ep:303 epch:4.40 loss:0.205 grdn:18.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
69 |
+
INFO 2025-04-13 07:23:54 ts/train.py:232 step:11K smpl:88K ep:309 epch:4.48 loss:0.209 grdn:18.879 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
70 |
+
INFO 2025-04-13 07:24:07 ts/train.py:232 step:11K smpl:90K ep:315 epch:4.56 loss:0.197 grdn:18.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
71 |
+
INFO 2025-04-13 07:24:21 ts/train.py:232 step:11K smpl:91K ep:320 epch:4.64 loss:0.201 grdn:18.452 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
72 |
+
INFO 2025-04-13 07:24:34 ts/train.py:232 step:12K smpl:93K ep:326 epch:4.72 loss:0.199 grdn:17.926 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
73 |
+
INFO 2025-04-13 07:24:47 ts/train.py:232 step:12K smpl:94K ep:331 epch:4.80 loss:0.197 grdn:17.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
74 |
+
INFO 2025-04-13 07:25:00 ts/train.py:232 step:12K smpl:96K ep:337 epch:4.88 loss:0.192 grdn:17.747 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
75 |
+
INFO 2025-04-13 07:25:13 ts/train.py:232 step:12K smpl:98K ep:343 epch:4.97 loss:0.187 grdn:17.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
76 |
+
INFO 2025-04-13 07:25:27 ts/train.py:232 step:12K smpl:99K ep:348 epch:5.05 loss:0.186 grdn:16.616 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
77 |
+
INFO 2025-04-13 07:25:39 ts/train.py:232 step:13K smpl:101K ep:354 epch:5.13 loss:0.183 grdn:16.979 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
78 |
+
INFO 2025-04-13 07:25:52 ts/train.py:232 step:13K smpl:102K ep:359 epch:5.21 loss:0.183 grdn:17.301 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
79 |
+
INFO 2025-04-13 07:26:05 ts/train.py:232 step:13K smpl:104K ep:365 epch:5.29 loss:0.181 grdn:16.777 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
80 |
+
INFO 2025-04-13 07:26:18 ts/train.py:232 step:13K smpl:106K ep:371 epch:5.37 loss:0.177 grdn:16.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
81 |
+
INFO 2025-04-13 07:26:32 ts/train.py:232 step:13K smpl:107K ep:376 epch:5.45 loss:0.178 grdn:16.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
82 |
+
INFO 2025-04-13 07:26:45 ts/train.py:232 step:14K smpl:109K ep:382 epch:5.54 loss:0.173 grdn:15.851 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
83 |
+
INFO 2025-04-13 07:26:58 ts/train.py:232 step:14K smpl:110K ep:388 epch:5.62 loss:0.177 grdn:16.146 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
84 |
+
INFO 2025-04-13 07:27:11 ts/train.py:232 step:14K smpl:112K ep:393 epch:5.70 loss:0.172 grdn:16.112 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
85 |
+
INFO 2025-04-13 07:27:24 ts/train.py:232 step:14K smpl:114K ep:399 epch:5.78 loss:0.166 grdn:15.756 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
86 |
+
INFO 2025-04-13 07:27:37 ts/train.py:232 step:14K smpl:115K ep:404 epch:5.86 loss:0.167 grdn:16.241 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
87 |
+
INFO 2025-04-13 07:27:50 ts/train.py:232 step:15K smpl:117K ep:410 epch:5.94 loss:0.169 grdn:16.451 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
88 |
+
INFO 2025-04-13 07:28:04 ts/train.py:232 step:15K smpl:118K ep:416 epch:6.02 loss:0.164 grdn:15.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
89 |
+
INFO 2025-04-13 07:28:17 ts/train.py:232 step:15K smpl:120K ep:421 epch:6.11 loss:0.162 grdn:16.060 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
90 |
+
INFO 2025-04-13 07:28:30 ts/train.py:232 step:15K smpl:122K ep:427 epch:6.19 loss:0.158 grdn:15.626 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
91 |
+
INFO 2025-04-13 07:28:43 ts/train.py:232 step:15K smpl:123K ep:433 epch:6.27 loss:0.156 grdn:15.185 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
92 |
+
INFO 2025-04-13 07:28:56 ts/train.py:232 step:16K smpl:125K ep:438 epch:6.35 loss:0.156 grdn:15.646 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
93 |
+
INFO 2025-04-13 07:29:09 ts/train.py:232 step:16K smpl:126K ep:444 epch:6.43 loss:0.154 grdn:15.384 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
94 |
+
INFO 2025-04-13 07:29:22 ts/train.py:232 step:16K smpl:128K ep:449 epch:6.51 loss:0.156 grdn:15.582 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
95 |
+
INFO 2025-04-13 07:29:35 ts/train.py:232 step:16K smpl:130K ep:455 epch:6.59 loss:0.153 grdn:14.992 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
96 |
+
INFO 2025-04-13 07:29:48 ts/train.py:232 step:16K smpl:131K ep:461 epch:6.68 loss:0.151 grdn:15.471 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
97 |
+
INFO 2025-04-13 07:30:02 ts/train.py:232 step:17K smpl:133K ep:466 epch:6.76 loss:0.152 grdn:14.837 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
98 |
+
INFO 2025-04-13 07:30:15 ts/train.py:232 step:17K smpl:134K ep:472 epch:6.84 loss:0.153 grdn:14.808 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
99 |
+
INFO 2025-04-13 07:30:28 ts/train.py:232 step:17K smpl:136K ep:477 epch:6.92 loss:0.149 grdn:14.183 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
100 |
+
INFO 2025-04-13 07:30:41 ts/train.py:232 step:17K smpl:138K ep:483 epch:7.00 loss:0.153 grdn:15.182 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
101 |
+
INFO 2025-04-13 07:30:54 ts/train.py:232 step:17K smpl:139K ep:489 epch:7.08 loss:0.146 grdn:14.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
102 |
+
INFO 2025-04-13 07:31:08 ts/train.py:232 step:18K smpl:141K ep:494 epch:7.16 loss:0.144 grdn:14.158 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
103 |
+
INFO 2025-04-13 07:31:21 ts/train.py:232 step:18K smpl:142K ep:500 epch:7.24 loss:0.145 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
104 |
+
INFO 2025-04-13 07:31:34 ts/train.py:232 step:18K smpl:144K ep:506 epch:7.33 loss:0.142 grdn:14.397 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
105 |
+
INFO 2025-04-13 07:31:47 ts/train.py:232 step:18K smpl:146K ep:511 epch:7.41 loss:0.139 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
106 |
+
INFO 2025-04-13 07:32:00 ts/train.py:232 step:18K smpl:147K ep:517 epch:7.49 loss:0.139 grdn:13.893 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
107 |
+
INFO 2025-04-13 07:32:13 ts/train.py:232 step:19K smpl:149K ep:522 epch:7.57 loss:0.140 grdn:14.046 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
108 |
+
INFO 2025-04-13 07:32:26 ts/train.py:232 step:19K smpl:150K ep:528 epch:7.65 loss:0.141 grdn:14.334 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
109 |
+
INFO 2025-04-13 07:32:39 ts/train.py:232 step:19K smpl:152K ep:534 epch:7.73 loss:0.135 grdn:13.463 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
110 |
+
INFO 2025-04-13 07:32:52 ts/train.py:232 step:19K smpl:154K ep:539 epch:7.81 loss:0.140 grdn:13.593 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
111 |
+
INFO 2025-04-13 07:33:05 ts/train.py:232 step:19K smpl:155K ep:545 epch:7.90 loss:0.134 grdn:13.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
112 |
+
INFO 2025-04-13 07:33:18 ts/train.py:232 step:20K smpl:157K ep:550 epch:7.98 loss:0.136 grdn:13.459 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
113 |
+
INFO 2025-04-13 07:33:32 ts/train.py:232 step:20K smpl:158K ep:556 epch:8.06 loss:0.133 grdn:14.081 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
114 |
+
INFO 2025-04-13 07:33:45 ts/train.py:232 step:20K smpl:160K ep:562 epch:8.14 loss:0.130 grdn:13.435 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
115 |
+
INFO 2025-04-13 07:33:45 ts/train.py:241 Checkpoint policy after step 20000
|
116 |
+
INFO 2025-04-13 07:34:00 ts/train.py:232 step:20K smpl:162K ep:567 epch:8.22 loss:0.131 grdn:13.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
117 |
+
INFO 2025-04-13 07:34:13 ts/train.py:232 step:20K smpl:163K ep:573 epch:8.30 loss:0.131 grdn:13.245 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
118 |
+
INFO 2025-04-13 07:34:26 ts/train.py:232 step:21K smpl:165K ep:579 epch:8.38 loss:0.131 grdn:13.519 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
119 |
+
INFO 2025-04-13 07:34:39 ts/train.py:232 step:21K smpl:166K ep:584 epch:8.47 loss:0.130 grdn:13.058 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
120 |
+
INFO 2025-04-13 07:34:52 ts/train.py:232 step:21K smpl:168K ep:590 epch:8.55 loss:0.126 grdn:13.520 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
121 |
+
INFO 2025-04-13 07:35:05 ts/train.py:232 step:21K smpl:170K ep:595 epch:8.63 loss:0.125 grdn:12.425 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
122 |
+
INFO 2025-04-13 07:35:19 ts/train.py:232 step:21K smpl:171K ep:601 epch:8.71 loss:0.129 grdn:12.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
123 |
+
INFO 2025-04-13 07:35:32 ts/train.py:232 step:22K smpl:173K ep:607 epch:8.79 loss:0.124 grdn:12.513 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
124 |
+
INFO 2025-04-13 07:35:45 ts/train.py:232 step:22K smpl:174K ep:612 epch:8.87 loss:0.126 grdn:13.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
125 |
+
INFO 2025-04-13 07:35:58 ts/train.py:232 step:22K smpl:176K ep:618 epch:8.95 loss:0.125 grdn:12.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
126 |
+
INFO 2025-04-13 07:36:11 ts/train.py:232 step:22K smpl:178K ep:623 epch:9.04 loss:0.125 grdn:12.803 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
127 |
+
INFO 2025-04-13 07:36:25 ts/train.py:232 step:22K smpl:179K ep:629 epch:9.12 loss:0.123 grdn:13.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
128 |
+
INFO 2025-04-13 07:36:38 ts/train.py:232 step:23K smpl:181K ep:635 epch:9.20 loss:0.120 grdn:11.989 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
129 |
+
INFO 2025-04-13 07:36:51 ts/train.py:232 step:23K smpl:182K ep:640 epch:9.28 loss:0.122 grdn:12.755 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
130 |
+
INFO 2025-04-13 07:37:04 ts/train.py:232 step:23K smpl:184K ep:646 epch:9.36 loss:0.122 grdn:12.659 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
131 |
+
INFO 2025-04-13 07:37:17 ts/train.py:232 step:23K smpl:186K ep:652 epch:9.44 loss:0.121 grdn:11.655 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
132 |
+
INFO 2025-04-13 07:37:30 ts/train.py:232 step:23K smpl:187K ep:657 epch:9.52 loss:0.118 grdn:12.432 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
133 |
+
INFO 2025-04-13 07:37:43 ts/train.py:232 step:24K smpl:189K ep:663 epch:9.61 loss:0.116 grdn:12.006 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
134 |
+
INFO 2025-04-13 07:37:56 ts/train.py:232 step:24K smpl:190K ep:668 epch:9.69 loss:0.119 grdn:12.331 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
135 |
+
INFO 2025-04-13 07:38:09 ts/train.py:232 step:24K smpl:192K ep:674 epch:9.77 loss:0.117 grdn:11.835 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
136 |
+
INFO 2025-04-13 07:38:22 ts/train.py:232 step:24K smpl:194K ep:680 epch:9.85 loss:0.117 grdn:12.136 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
137 |
+
INFO 2025-04-13 07:38:35 ts/train.py:232 step:24K smpl:195K ep:685 epch:9.93 loss:0.114 grdn:11.678 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
138 |
+
INFO 2025-04-13 07:38:48 ts/train.py:232 step:25K smpl:197K ep:691 epch:10.01 loss:0.115 grdn:12.327 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
139 |
+
INFO 2025-04-13 07:39:02 ts/train.py:232 step:25K smpl:198K ep:696 epch:10.09 loss:0.112 grdn:11.804 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
140 |
+
INFO 2025-04-13 07:39:15 ts/train.py:232 step:25K smpl:200K ep:702 epch:10.18 loss:0.112 grdn:12.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
141 |
+
INFO 2025-04-13 07:39:27 ts/train.py:232 step:25K smpl:202K ep:708 epch:10.26 loss:0.113 grdn:12.086 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
142 |
+
INFO 2025-04-13 07:39:40 ts/train.py:232 step:25K smpl:203K ep:713 epch:10.34 loss:0.110 grdn:11.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
143 |
+
INFO 2025-04-13 07:39:53 ts/train.py:232 step:26K smpl:205K ep:719 epch:10.42 loss:0.111 grdn:11.815 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
144 |
+
INFO 2025-04-13 07:40:06 ts/train.py:232 step:26K smpl:206K ep:725 epch:10.50 loss:0.112 grdn:12.033 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
145 |
+
INFO 2025-04-13 07:40:19 ts/train.py:232 step:26K smpl:208K ep:730 epch:10.58 loss:0.112 grdn:11.434 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
146 |
+
INFO 2025-04-13 07:40:32 ts/train.py:232 step:26K smpl:210K ep:736 epch:10.66 loss:0.112 grdn:11.740 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
147 |
+
INFO 2025-04-13 07:40:45 ts/train.py:232 step:26K smpl:211K ep:741 epch:10.75 loss:0.109 grdn:10.975 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
148 |
+
INFO 2025-04-13 07:40:58 ts/train.py:232 step:27K smpl:213K ep:747 epch:10.83 loss:0.109 grdn:11.531 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
149 |
+
INFO 2025-04-13 07:41:11 ts/train.py:232 step:27K smpl:214K ep:753 epch:10.91 loss:0.110 grdn:11.617 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
150 |
+
INFO 2025-04-13 07:41:24 ts/train.py:232 step:27K smpl:216K ep:758 epch:10.99 loss:0.110 grdn:11.680 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
151 |
+
INFO 2025-04-13 07:41:38 ts/train.py:232 step:27K smpl:218K ep:764 epch:11.07 loss:0.106 grdn:11.377 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
152 |
+
INFO 2025-04-13 07:41:51 ts/train.py:232 step:27K smpl:219K ep:770 epch:11.15 loss:0.107 grdn:10.917 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
153 |
+
INFO 2025-04-13 07:42:04 ts/train.py:232 step:28K smpl:221K ep:775 epch:11.23 loss:0.105 grdn:11.053 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
154 |
+
INFO 2025-04-13 07:42:17 ts/train.py:232 step:28K smpl:222K ep:781 epch:11.32 loss:0.105 grdn:11.564 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
155 |
+
INFO 2025-04-13 07:42:30 ts/train.py:232 step:28K smpl:224K ep:786 epch:11.40 loss:0.106 grdn:10.940 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
156 |
+
INFO 2025-04-13 07:42:43 ts/train.py:232 step:28K smpl:226K ep:792 epch:11.48 loss:0.105 grdn:11.703 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
157 |
+
INFO 2025-04-13 07:42:56 ts/train.py:232 step:28K smpl:227K ep:798 epch:11.56 loss:0.106 grdn:11.474 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
158 |
+
INFO 2025-04-13 07:43:09 ts/train.py:232 step:29K smpl:229K ep:803 epch:11.64 loss:0.105 grdn:10.971 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
159 |
+
INFO 2025-04-13 07:43:22 ts/train.py:232 step:29K smpl:230K ep:809 epch:11.72 loss:0.104 grdn:11.014 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
160 |
+
INFO 2025-04-13 07:43:35 ts/train.py:232 step:29K smpl:232K ep:814 epch:11.80 loss:0.106 grdn:12.269 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
161 |
+
INFO 2025-04-13 07:43:48 ts/train.py:232 step:29K smpl:234K ep:820 epch:11.89 loss:0.103 grdn:11.243 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
162 |
+
INFO 2025-04-13 07:44:01 ts/train.py:232 step:29K smpl:235K ep:826 epch:11.97 loss:0.104 grdn:10.805 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
163 |
+
INFO 2025-04-13 07:44:15 ts/train.py:232 step:30K smpl:237K ep:831 epch:12.05 loss:0.100 grdn:10.175 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
164 |
+
INFO 2025-04-13 07:44:28 ts/train.py:232 step:30K smpl:238K ep:837 epch:12.13 loss:0.102 grdn:10.500 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
165 |
+
INFO 2025-04-13 07:44:41 ts/train.py:232 step:30K smpl:240K ep:843 epch:12.21 loss:0.100 grdn:10.632 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
166 |
+
INFO 2025-04-13 07:44:54 ts/train.py:232 step:30K smpl:242K ep:848 epch:12.29 loss:0.101 grdn:10.989 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
167 |
+
INFO 2025-04-13 07:45:07 ts/train.py:232 step:30K smpl:243K ep:854 epch:12.37 loss:0.098 grdn:10.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
168 |
+
INFO 2025-04-13 07:45:20 ts/train.py:232 step:31K smpl:245K ep:859 epch:12.45 loss:0.101 grdn:10.633 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
169 |
+
INFO 2025-04-13 07:45:33 ts/train.py:232 step:31K smpl:246K ep:865 epch:12.54 loss:0.100 grdn:10.785 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
170 |
+
INFO 2025-04-13 07:45:46 ts/train.py:232 step:31K smpl:248K ep:871 epch:12.62 loss:0.099 grdn:10.262 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
171 |
+
INFO 2025-04-13 07:45:59 ts/train.py:232 step:31K smpl:250K ep:876 epch:12.70 loss:0.100 grdn:10.483 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
172 |
+
INFO 2025-04-13 07:46:12 ts/train.py:232 step:31K smpl:251K ep:882 epch:12.78 loss:0.098 grdn:10.116 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
173 |
+
INFO 2025-04-13 07:46:25 ts/train.py:232 step:32K smpl:253K ep:887 epch:12.86 loss:0.096 grdn:10.274 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
174 |
+
INFO 2025-04-13 07:46:38 ts/train.py:232 step:32K smpl:254K ep:893 epch:12.94 loss:0.099 grdn:10.698 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
175 |
+
INFO 2025-04-13 07:46:52 ts/train.py:232 step:32K smpl:256K ep:899 epch:13.02 loss:0.098 grdn:10.042 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
176 |
+
INFO 2025-04-13 07:47:05 ts/train.py:232 step:32K smpl:258K ep:904 epch:13.11 loss:0.097 grdn:10.860 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
177 |
+
INFO 2025-04-13 07:47:18 ts/train.py:232 step:32K smpl:259K ep:910 epch:13.19 loss:0.097 grdn:10.217 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
178 |
+
INFO 2025-04-13 07:47:31 ts/train.py:232 step:33K smpl:261K ep:916 epch:13.27 loss:0.094 grdn:10.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
179 |
+
INFO 2025-04-13 07:47:44 ts/train.py:232 step:33K smpl:262K ep:921 epch:13.35 loss:0.095 grdn:10.433 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
180 |
+
INFO 2025-04-13 07:47:57 ts/train.py:232 step:33K smpl:264K ep:927 epch:13.43 loss:0.096 grdn:10.295 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
181 |
+
INFO 2025-04-13 07:48:10 ts/train.py:232 step:33K smpl:266K ep:932 epch:13.51 loss:0.096 grdn:10.294 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
182 |
+
INFO 2025-04-13 07:48:24 ts/train.py:232 step:33K smpl:267K ep:938 epch:13.59 loss:0.095 grdn:10.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
183 |
+
INFO 2025-04-13 07:48:37 ts/train.py:232 step:34K smpl:269K ep:944 epch:13.68 loss:0.093 grdn:9.761 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
184 |
+
INFO 2025-04-13 07:48:50 ts/train.py:232 step:34K smpl:270K ep:949 epch:13.76 loss:0.095 grdn:10.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
185 |
+
INFO 2025-04-13 07:49:03 ts/train.py:232 step:34K smpl:272K ep:955 epch:13.84 loss:0.094 grdn:9.866 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
186 |
+
INFO 2025-04-13 07:49:16 ts/train.py:232 step:34K smpl:274K ep:960 epch:13.92 loss:0.093 grdn:9.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
187 |
+
INFO 2025-04-13 07:49:30 ts/train.py:232 step:34K smpl:275K ep:966 epch:14.00 loss:0.094 grdn:9.887 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
188 |
+
INFO 2025-04-13 07:49:43 ts/train.py:232 step:35K smpl:277K ep:972 epch:14.08 loss:0.092 grdn:10.045 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
189 |
+
INFO 2025-04-13 07:49:56 ts/train.py:232 step:35K smpl:278K ep:977 epch:14.16 loss:0.092 grdn:9.508 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
190 |
+
INFO 2025-04-13 07:50:09 ts/train.py:232 step:35K smpl:280K ep:983 epch:14.25 loss:0.089 grdn:9.537 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
191 |
+
INFO 2025-04-13 07:50:21 ts/train.py:232 step:35K smpl:282K ep:989 epch:14.33 loss:0.090 grdn:9.587 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
192 |
+
INFO 2025-04-13 07:50:35 ts/train.py:232 step:35K smpl:283K ep:994 epch:14.41 loss:0.091 grdn:9.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
193 |
+
INFO 2025-04-13 07:50:48 ts/train.py:232 step:36K smpl:285K ep:1000 epch:14.49 loss:0.091 grdn:10.239 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
194 |
+
INFO 2025-04-13 07:51:01 ts/train.py:232 step:36K smpl:286K ep:1K epch:14.57 loss:0.091 grdn:9.974 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
195 |
+
INFO 2025-04-13 07:51:14 ts/train.py:232 step:36K smpl:288K ep:1K epch:14.65 loss:0.090 grdn:9.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
196 |
+
INFO 2025-04-13 07:51:27 ts/train.py:232 step:36K smpl:290K ep:1K epch:14.73 loss:0.092 grdn:9.628 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
197 |
+
INFO 2025-04-13 07:51:40 ts/train.py:232 step:36K smpl:291K ep:1K epch:14.82 loss:0.093 grdn:10.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
198 |
+
INFO 2025-04-13 07:51:53 ts/train.py:232 step:37K smpl:293K ep:1K epch:14.90 loss:0.091 grdn:9.530 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
199 |
+
INFO 2025-04-13 07:52:06 ts/train.py:232 step:37K smpl:294K ep:1K epch:14.98 loss:0.090 grdn:9.397 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
200 |
+
INFO 2025-04-13 07:52:19 ts/train.py:232 step:37K smpl:296K ep:1K epch:15.06 loss:0.087 grdn:9.458 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
201 |
+
INFO 2025-04-13 07:52:32 ts/train.py:232 step:37K smpl:298K ep:1K epch:15.14 loss:0.089 grdn:9.436 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
202 |
+
INFO 2025-04-13 07:52:45 ts/train.py:232 step:37K smpl:299K ep:1K epch:15.22 loss:0.089 grdn:9.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
203 |
+
INFO 2025-04-13 07:52:59 ts/train.py:232 step:38K smpl:301K ep:1K epch:15.30 loss:0.090 grdn:9.182 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
204 |
+
INFO 2025-04-13 07:53:12 ts/train.py:232 step:38K smpl:302K ep:1K epch:15.39 loss:0.089 grdn:9.066 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
205 |
+
INFO 2025-04-13 07:53:25 ts/train.py:232 step:38K smpl:304K ep:1K epch:15.47 loss:0.088 grdn:9.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
206 |
+
INFO 2025-04-13 07:53:38 ts/train.py:232 step:38K smpl:306K ep:1K epch:15.55 loss:0.087 grdn:9.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
207 |
+
INFO 2025-04-13 07:53:51 ts/train.py:232 step:38K smpl:307K ep:1K epch:15.63 loss:0.090 grdn:9.841 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
208 |
+
INFO 2025-04-13 07:54:04 ts/train.py:232 step:39K smpl:309K ep:1K epch:15.71 loss:0.088 grdn:8.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
209 |
+
INFO 2025-04-13 07:54:17 ts/train.py:232 step:39K smpl:310K ep:1K epch:15.79 loss:0.086 grdn:9.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
210 |
+
INFO 2025-04-13 07:54:30 ts/train.py:232 step:39K smpl:312K ep:1K epch:15.87 loss:0.087 grdn:9.112 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
211 |
+
INFO 2025-04-13 07:54:43 ts/train.py:232 step:39K smpl:314K ep:1K epch:15.96 loss:0.086 grdn:9.395 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
212 |
+
INFO 2025-04-13 07:54:56 ts/train.py:232 step:39K smpl:315K ep:1K epch:16.04 loss:0.087 grdn:9.777 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
213 |
+
INFO 2025-04-13 07:55:09 ts/train.py:232 step:40K smpl:317K ep:1K epch:16.12 loss:0.085 grdn:9.514 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
214 |
+
INFO 2025-04-13 07:55:22 ts/train.py:232 step:40K smpl:318K ep:1K epch:16.20 loss:0.086 grdn:9.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
215 |
+
INFO 2025-04-13 07:55:36 ts/train.py:232 step:40K smpl:320K ep:1K epch:16.28 loss:0.085 grdn:8.910 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
216 |
+
INFO 2025-04-13 07:55:36 ts/train.py:241 Checkpoint policy after step 40000
|
217 |
+
INFO 2025-04-13 07:55:51 ts/train.py:232 step:40K smpl:322K ep:1K epch:16.36 loss:0.086 grdn:9.050 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
218 |
+
INFO 2025-04-13 07:56:04 ts/train.py:232 step:40K smpl:323K ep:1K epch:16.44 loss:0.087 grdn:8.999 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
219 |
+
INFO 2025-04-13 07:56:17 ts/train.py:232 step:41K smpl:325K ep:1K epch:16.53 loss:0.083 grdn:8.985 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
220 |
+
INFO 2025-04-13 07:56:30 ts/train.py:232 step:41K smpl:326K ep:1K epch:16.61 loss:0.085 grdn:9.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
221 |
+
INFO 2025-04-13 07:56:43 ts/train.py:232 step:41K smpl:328K ep:1K epch:16.69 loss:0.084 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
222 |
+
INFO 2025-04-13 07:56:56 ts/train.py:232 step:41K smpl:330K ep:1K epch:16.77 loss:0.082 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
223 |
+
INFO 2025-04-13 07:57:09 ts/train.py:232 step:41K smpl:331K ep:1K epch:16.85 loss:0.085 grdn:9.034 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
224 |
+
INFO 2025-04-13 07:57:22 ts/train.py:232 step:42K smpl:333K ep:1K epch:16.93 loss:0.086 grdn:8.891 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
225 |
+
INFO 2025-04-13 07:57:36 ts/train.py:232 step:42K smpl:334K ep:1K epch:17.01 loss:0.083 grdn:8.731 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
226 |
+
INFO 2025-04-13 07:57:49 ts/train.py:232 step:42K smpl:336K ep:1K epch:17.09 loss:0.083 grdn:8.673 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
227 |
+
INFO 2025-04-13 07:58:02 ts/train.py:232 step:42K smpl:338K ep:1K epch:17.18 loss:0.083 grdn:8.493 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
228 |
+
INFO 2025-04-13 07:58:15 ts/train.py:232 step:42K smpl:339K ep:1K epch:17.26 loss:0.082 grdn:8.963 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
229 |
+
INFO 2025-04-13 07:58:29 ts/train.py:232 step:43K smpl:341K ep:1K epch:17.34 loss:0.083 grdn:9.732 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
230 |
+
INFO 2025-04-13 07:58:42 ts/train.py:232 step:43K smpl:342K ep:1K epch:17.42 loss:0.085 grdn:9.295 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
231 |
+
INFO 2025-04-13 07:58:55 ts/train.py:232 step:43K smpl:344K ep:1K epch:17.50 loss:0.082 grdn:8.752 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
232 |
+
INFO 2025-04-13 07:59:08 ts/train.py:232 step:43K smpl:346K ep:1K epch:17.58 loss:0.080 grdn:8.553 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
233 |
+
INFO 2025-04-13 07:59:21 ts/train.py:232 step:43K smpl:347K ep:1K epch:17.66 loss:0.082 grdn:8.904 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
234 |
+
INFO 2025-04-13 07:59:34 ts/train.py:232 step:44K smpl:349K ep:1K epch:17.75 loss:0.081 grdn:8.554 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
235 |
+
INFO 2025-04-13 07:59:47 ts/train.py:232 step:44K smpl:350K ep:1K epch:17.83 loss:0.081 grdn:8.590 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
236 |
+
INFO 2025-04-13 08:00:00 ts/train.py:232 step:44K smpl:352K ep:1K epch:17.91 loss:0.081 grdn:8.783 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
237 |
+
INFO 2025-04-13 08:00:13 ts/train.py:232 step:44K smpl:354K ep:1K epch:17.99 loss:0.080 grdn:8.536 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
238 |
+
INFO 2025-04-13 08:00:27 ts/train.py:232 step:44K smpl:355K ep:1K epch:18.07 loss:0.081 grdn:8.852 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
239 |
+
INFO 2025-04-13 08:00:40 ts/train.py:232 step:45K smpl:357K ep:1K epch:18.15 loss:0.078 grdn:8.251 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
240 |
+
INFO 2025-04-13 08:00:53 ts/train.py:232 step:45K smpl:358K ep:1K epch:18.23 loss:0.082 grdn:8.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
241 |
+
INFO 2025-04-13 08:01:05 ts/train.py:232 step:45K smpl:360K ep:1K epch:18.32 loss:0.080 grdn:8.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
242 |
+
INFO 2025-04-13 08:01:19 ts/train.py:232 step:45K smpl:362K ep:1K epch:18.40 loss:0.080 grdn:8.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
243 |
+
INFO 2025-04-13 08:01:31 ts/train.py:232 step:45K smpl:363K ep:1K epch:18.48 loss:0.079 grdn:8.374 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
244 |
+
INFO 2025-04-13 08:01:44 ts/train.py:232 step:46K smpl:365K ep:1K epch:18.56 loss:0.078 grdn:8.490 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
245 |
+
INFO 2025-04-13 08:01:57 ts/train.py:232 step:46K smpl:366K ep:1K epch:18.64 loss:0.082 grdn:8.518 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
246 |
+
INFO 2025-04-13 08:02:10 ts/train.py:232 step:46K smpl:368K ep:1K epch:18.72 loss:0.078 grdn:8.154 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
247 |
+
INFO 2025-04-13 08:02:23 ts/train.py:232 step:46K smpl:370K ep:1K epch:18.80 loss:0.079 grdn:8.821 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
248 |
+
INFO 2025-04-13 08:02:36 ts/train.py:232 step:46K smpl:371K ep:1K epch:18.89 loss:0.079 grdn:8.709 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
249 |
+
INFO 2025-04-13 08:02:49 ts/train.py:232 step:47K smpl:373K ep:1K epch:18.97 loss:0.079 grdn:8.873 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
250 |
+
INFO 2025-04-13 08:03:03 ts/train.py:232 step:47K smpl:374K ep:1K epch:19.05 loss:0.080 grdn:8.770 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
251 |
+
INFO 2025-04-13 08:03:16 ts/train.py:232 step:47K smpl:376K ep:1K epch:19.13 loss:0.079 grdn:8.501 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
252 |
+
INFO 2025-04-13 08:03:29 ts/train.py:232 step:47K smpl:378K ep:1K epch:19.21 loss:0.079 grdn:8.482 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
253 |
+
INFO 2025-04-13 08:03:42 ts/train.py:232 step:47K smpl:379K ep:1K epch:19.29 loss:0.077 grdn:8.125 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
254 |
+
INFO 2025-04-13 08:03:55 ts/train.py:232 step:48K smpl:381K ep:1K epch:19.37 loss:0.078 grdn:8.142 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
255 |
+
INFO 2025-04-13 08:04:08 ts/train.py:232 step:48K smpl:382K ep:1K epch:19.46 loss:0.076 grdn:8.312 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
256 |
+
INFO 2025-04-13 08:04:21 ts/train.py:232 step:48K smpl:384K ep:1K epch:19.54 loss:0.078 grdn:8.743 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
257 |
+
INFO 2025-04-13 08:04:34 ts/train.py:232 step:48K smpl:386K ep:1K epch:19.62 loss:0.079 grdn:8.650 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
258 |
+
INFO 2025-04-13 08:04:47 ts/train.py:232 step:48K smpl:387K ep:1K epch:19.70 loss:0.076 grdn:8.555 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
259 |
+
INFO 2025-04-13 08:05:00 ts/train.py:232 step:49K smpl:389K ep:1K epch:19.78 loss:0.076 grdn:8.133 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
260 |
+
INFO 2025-04-13 08:05:13 ts/train.py:232 step:49K smpl:390K ep:1K epch:19.86 loss:0.078 grdn:7.931 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
261 |
+
INFO 2025-04-13 08:05:26 ts/train.py:232 step:49K smpl:392K ep:1K epch:19.94 loss:0.075 grdn:8.111 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
262 |
+
INFO 2025-04-13 08:05:40 ts/train.py:232 step:49K smpl:394K ep:1K epch:20.03 loss:0.077 grdn:8.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
263 |
+
INFO 2025-04-13 08:05:53 ts/train.py:232 step:49K smpl:395K ep:1K epch:20.11 loss:0.075 grdn:8.283 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
264 |
+
INFO 2025-04-13 08:06:06 ts/train.py:232 step:50K smpl:397K ep:1K epch:20.19 loss:0.077 grdn:8.476 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
265 |
+
INFO 2025-04-13 08:06:19 ts/train.py:232 step:50K smpl:398K ep:1K epch:20.27 loss:0.076 grdn:8.140 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
266 |
+
INFO 2025-04-13 08:06:32 ts/train.py:232 step:50K smpl:400K ep:1K epch:20.35 loss:0.075 grdn:7.948 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
267 |
+
INFO 2025-04-13 08:06:45 ts/train.py:232 step:50K smpl:402K ep:1K epch:20.43 loss:0.074 grdn:7.931 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
268 |
+
INFO 2025-04-13 08:06:58 ts/train.py:232 step:50K smpl:403K ep:1K epch:20.51 loss:0.075 grdn:7.934 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
269 |
+
INFO 2025-04-13 08:07:11 ts/train.py:232 step:51K smpl:405K ep:1K epch:20.60 loss:0.074 grdn:8.062 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
270 |
+
INFO 2025-04-13 08:07:25 ts/train.py:232 step:51K smpl:406K ep:1K epch:20.68 loss:0.077 grdn:8.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
271 |
+
INFO 2025-04-13 08:07:38 ts/train.py:232 step:51K smpl:408K ep:1K epch:20.76 loss:0.075 grdn:8.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
272 |
+
INFO 2025-04-13 08:07:51 ts/train.py:232 step:51K smpl:410K ep:1K epch:20.84 loss:0.075 grdn:7.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
273 |
+
INFO 2025-04-13 08:08:04 ts/train.py:232 step:51K smpl:411K ep:1K epch:20.92 loss:0.075 grdn:8.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
274 |
+
INFO 2025-04-13 08:08:17 ts/train.py:232 step:52K smpl:413K ep:1K epch:21.00 loss:0.073 grdn:7.712 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
275 |
+
INFO 2025-04-13 08:08:31 ts/train.py:232 step:52K smpl:414K ep:1K epch:21.08 loss:0.074 grdn:8.426 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
276 |
+
INFO 2025-04-13 08:08:44 ts/train.py:232 step:52K smpl:416K ep:1K epch:21.17 loss:0.074 grdn:7.754 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
277 |
+
INFO 2025-04-13 08:08:57 ts/train.py:232 step:52K smpl:418K ep:1K epch:21.25 loss:0.075 grdn:7.790 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
278 |
+
INFO 2025-04-13 08:09:10 ts/train.py:232 step:52K smpl:419K ep:1K epch:21.33 loss:0.074 grdn:7.899 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
279 |
+
INFO 2025-04-13 08:09:23 ts/train.py:232 step:53K smpl:421K ep:1K epch:21.41 loss:0.074 grdn:8.311 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
280 |
+
INFO 2025-04-13 08:09:36 ts/train.py:232 step:53K smpl:422K ep:1K epch:21.49 loss:0.076 grdn:8.117 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
281 |
+
INFO 2025-04-13 08:09:49 ts/train.py:232 step:53K smpl:424K ep:1K epch:21.57 loss:0.076 grdn:8.266 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
282 |
+
INFO 2025-04-13 08:10:02 ts/train.py:232 step:53K smpl:426K ep:1K epch:21.65 loss:0.074 grdn:7.910 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
283 |
+
INFO 2025-04-13 08:10:15 ts/train.py:232 step:53K smpl:427K ep:1K epch:21.73 loss:0.071 grdn:7.449 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
284 |
+
INFO 2025-04-13 08:10:33 ts/train.py:232 step:54K smpl:429K ep:2K epch:21.82 loss:0.075 grdn:7.902 lr:1.0e-05 updt_s:0.064 data_s:0.027
|
285 |
+
INFO 2025-04-13 08:10:46 ts/train.py:232 step:54K smpl:430K ep:2K epch:21.90 loss:0.072 grdn:7.497 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
286 |
+
INFO 2025-04-13 08:10:59 ts/train.py:232 step:54K smpl:432K ep:2K epch:21.98 loss:0.072 grdn:7.870 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
287 |
+
INFO 2025-04-13 08:11:13 ts/train.py:232 step:54K smpl:434K ep:2K epch:22.06 loss:0.072 grdn:8.095 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
288 |
+
INFO 2025-04-13 08:11:26 ts/train.py:232 step:54K smpl:435K ep:2K epch:22.14 loss:0.071 grdn:7.866 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
289 |
+
INFO 2025-04-13 08:11:39 ts/train.py:232 step:55K smpl:437K ep:2K epch:22.22 loss:0.071 grdn:7.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
290 |
+
INFO 2025-04-13 08:11:52 ts/train.py:232 step:55K smpl:438K ep:2K epch:22.30 loss:0.074 grdn:7.789 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
291 |
+
INFO 2025-04-13 08:12:05 ts/train.py:232 step:55K smpl:440K ep:2K epch:22.39 loss:0.074 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
292 |
+
INFO 2025-04-13 08:12:18 ts/train.py:232 step:55K smpl:442K ep:2K epch:22.47 loss:0.073 grdn:7.568 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
293 |
+
INFO 2025-04-13 08:12:31 ts/train.py:232 step:55K smpl:443K ep:2K epch:22.55 loss:0.074 grdn:8.172 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
294 |
+
INFO 2025-04-13 08:12:44 ts/train.py:232 step:56K smpl:445K ep:2K epch:22.63 loss:0.070 grdn:7.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
295 |
+
INFO 2025-04-13 08:12:57 ts/train.py:232 step:56K smpl:446K ep:2K epch:22.71 loss:0.074 grdn:7.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
296 |
+
INFO 2025-04-13 08:13:11 ts/train.py:232 step:56K smpl:448K ep:2K epch:22.79 loss:0.071 grdn:7.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
297 |
+
INFO 2025-04-13 08:13:24 ts/train.py:232 step:56K smpl:450K ep:2K epch:22.87 loss:0.070 grdn:7.371 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
298 |
+
INFO 2025-04-13 08:13:37 ts/train.py:232 step:56K smpl:451K ep:2K epch:22.96 loss:0.074 grdn:8.149 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
299 |
+
INFO 2025-04-13 08:13:50 ts/train.py:232 step:57K smpl:453K ep:2K epch:23.04 loss:0.072 grdn:7.781 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
300 |
+
INFO 2025-04-13 08:14:03 ts/train.py:232 step:57K smpl:454K ep:2K epch:23.12 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
301 |
+
INFO 2025-04-13 08:14:17 ts/train.py:232 step:57K smpl:456K ep:2K epch:23.20 loss:0.072 grdn:8.014 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
302 |
+
INFO 2025-04-13 08:14:30 ts/train.py:232 step:57K smpl:458K ep:2K epch:23.28 loss:0.069 grdn:7.556 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
303 |
+
INFO 2025-04-13 08:14:43 ts/train.py:232 step:57K smpl:459K ep:2K epch:23.36 loss:0.070 grdn:7.363 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
304 |
+
INFO 2025-04-13 08:14:56 ts/train.py:232 step:58K smpl:461K ep:2K epch:23.44 loss:0.070 grdn:7.559 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
305 |
+
INFO 2025-04-13 08:15:09 ts/train.py:232 step:58K smpl:462K ep:2K epch:23.53 loss:0.069 grdn:7.430 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
306 |
+
INFO 2025-04-13 08:15:22 ts/train.py:232 step:58K smpl:464K ep:2K epch:23.61 loss:0.071 grdn:7.719 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
307 |
+
INFO 2025-04-13 08:15:35 ts/train.py:232 step:58K smpl:466K ep:2K epch:23.69 loss:0.069 grdn:7.546 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
308 |
+
INFO 2025-04-13 08:15:48 ts/train.py:232 step:58K smpl:467K ep:2K epch:23.77 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
309 |
+
INFO 2025-04-13 08:16:01 ts/train.py:232 step:59K smpl:469K ep:2K epch:23.85 loss:0.069 grdn:7.826 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
310 |
+
INFO 2025-04-13 08:16:15 ts/train.py:232 step:59K smpl:470K ep:2K epch:23.93 loss:0.070 grdn:7.962 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
311 |
+
INFO 2025-04-13 08:16:28 ts/train.py:232 step:59K smpl:472K ep:2K epch:24.01 loss:0.069 grdn:7.655 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
312 |
+
INFO 2025-04-13 08:16:41 ts/train.py:232 step:59K smpl:474K ep:2K epch:24.10 loss:0.071 grdn:7.565 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
313 |
+
INFO 2025-04-13 08:16:54 ts/train.py:232 step:59K smpl:475K ep:2K epch:24.18 loss:0.069 grdn:7.356 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
314 |
+
INFO 2025-04-13 08:17:07 ts/train.py:232 step:60K smpl:477K ep:2K epch:24.26 loss:0.070 grdn:7.571 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
315 |
+
INFO 2025-04-13 08:17:20 ts/train.py:232 step:60K smpl:478K ep:2K epch:24.34 loss:0.070 grdn:7.669 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
316 |
+
INFO 2025-04-13 08:17:33 ts/train.py:232 step:60K smpl:480K ep:2K epch:24.42 loss:0.068 grdn:7.210 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
317 |
+
INFO 2025-04-13 08:17:33 ts/train.py:241 Checkpoint policy after step 60000
|
318 |
+
INFO 2025-04-13 08:17:49 ts/train.py:232 step:60K smpl:482K ep:2K epch:24.50 loss:0.066 grdn:7.068 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
319 |
+
INFO 2025-04-13 08:18:02 ts/train.py:232 step:60K smpl:483K ep:2K epch:24.58 loss:0.069 grdn:7.378 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
320 |
+
INFO 2025-04-13 08:18:15 ts/train.py:232 step:61K smpl:485K ep:2K epch:24.67 loss:0.066 grdn:7.443 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
321 |
+
INFO 2025-04-13 08:18:28 ts/train.py:232 step:61K smpl:486K ep:2K epch:24.75 loss:0.069 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
322 |
+
INFO 2025-04-13 08:18:41 ts/train.py:232 step:61K smpl:488K ep:2K epch:24.83 loss:0.070 grdn:7.414 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
323 |
+
INFO 2025-04-13 08:18:54 ts/train.py:232 step:61K smpl:490K ep:2K epch:24.91 loss:0.068 grdn:7.350 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
324 |
+
INFO 2025-04-13 08:19:07 ts/train.py:232 step:61K smpl:491K ep:2K epch:24.99 loss:0.070 grdn:7.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
325 |
+
INFO 2025-04-13 08:19:21 ts/train.py:232 step:62K smpl:493K ep:2K epch:25.07 loss:0.069 grdn:7.381 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
326 |
+
INFO 2025-04-13 08:19:34 ts/train.py:232 step:62K smpl:494K ep:2K epch:25.15 loss:0.068 grdn:7.491 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
327 |
+
INFO 2025-04-13 08:19:47 ts/train.py:232 step:62K smpl:496K ep:2K epch:25.24 loss:0.069 grdn:7.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
328 |
+
INFO 2025-04-13 08:20:00 ts/train.py:232 step:62K smpl:498K ep:2K epch:25.32 loss:0.067 grdn:7.148 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
329 |
+
INFO 2025-04-13 08:20:13 ts/train.py:232 step:62K smpl:499K ep:2K epch:25.40 loss:0.066 grdn:7.036 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
330 |
+
INFO 2025-04-13 08:20:27 ts/train.py:232 step:63K smpl:501K ep:2K epch:25.48 loss:0.069 grdn:7.520 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
331 |
+
INFO 2025-04-13 08:20:40 ts/train.py:232 step:63K smpl:502K ep:2K epch:25.56 loss:0.068 grdn:7.298 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
332 |
+
INFO 2025-04-13 08:20:53 ts/train.py:232 step:63K smpl:504K ep:2K epch:25.64 loss:0.065 grdn:7.105 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
333 |
+
INFO 2025-04-13 08:21:06 ts/train.py:232 step:63K smpl:506K ep:2K epch:25.72 loss:0.068 grdn:6.887 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
334 |
+
INFO 2025-04-13 08:21:19 ts/train.py:232 step:63K smpl:507K ep:2K epch:25.81 loss:0.066 grdn:7.273 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
335 |
+
INFO 2025-04-13 08:21:32 ts/train.py:232 step:64K smpl:509K ep:2K epch:25.89 loss:0.065 grdn:6.902 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
336 |
+
INFO 2025-04-13 08:21:45 ts/train.py:232 step:64K smpl:510K ep:2K epch:25.97 loss:0.066 grdn:6.634 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
337 |
+
INFO 2025-04-13 08:21:59 ts/train.py:232 step:64K smpl:512K ep:2K epch:26.05 loss:0.068 grdn:7.504 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
338 |
+
INFO 2025-04-13 08:22:12 ts/train.py:232 step:64K smpl:514K ep:2K epch:26.13 loss:0.067 grdn:7.349 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
339 |
+
INFO 2025-04-13 08:22:25 ts/train.py:232 step:64K smpl:515K ep:2K epch:26.21 loss:0.066 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
340 |
+
INFO 2025-04-13 08:22:38 ts/train.py:232 step:65K smpl:517K ep:2K epch:26.29 loss:0.066 grdn:7.175 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
341 |
+
INFO 2025-04-13 08:22:51 ts/train.py:232 step:65K smpl:518K ep:2K epch:26.37 loss:0.067 grdn:7.547 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
342 |
+
INFO 2025-04-13 08:23:04 ts/train.py:232 step:65K smpl:520K ep:2K epch:26.46 loss:0.065 grdn:7.369 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
343 |
+
INFO 2025-04-13 08:23:17 ts/train.py:232 step:65K smpl:522K ep:2K epch:26.54 loss:0.065 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
344 |
+
INFO 2025-04-13 08:23:30 ts/train.py:232 step:65K smpl:523K ep:2K epch:26.62 loss:0.066 grdn:7.048 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
345 |
+
INFO 2025-04-13 08:23:44 ts/train.py:232 step:66K smpl:525K ep:2K epch:26.70 loss:0.065 grdn:6.854 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
346 |
+
INFO 2025-04-13 08:23:57 ts/train.py:232 step:66K smpl:526K ep:2K epch:26.78 loss:0.065 grdn:6.905 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
347 |
+
INFO 2025-04-13 08:24:10 ts/train.py:232 step:66K smpl:528K ep:2K epch:26.86 loss:0.064 grdn:6.686 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
348 |
+
INFO 2025-04-13 08:24:23 ts/train.py:232 step:66K smpl:530K ep:2K epch:26.94 loss:0.065 grdn:6.974 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
349 |
+
INFO 2025-04-13 08:24:36 ts/train.py:232 step:66K smpl:531K ep:2K epch:27.03 loss:0.066 grdn:7.432 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
350 |
+
INFO 2025-04-13 08:24:49 ts/train.py:232 step:67K smpl:533K ep:2K epch:27.11 loss:0.064 grdn:6.749 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
351 |
+
INFO 2025-04-13 08:25:02 ts/train.py:232 step:67K smpl:534K ep:2K epch:27.19 loss:0.065 grdn:7.442 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
352 |
+
INFO 2025-04-13 08:25:16 ts/train.py:232 step:67K smpl:536K ep:2K epch:27.27 loss:0.065 grdn:6.788 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
353 |
+
INFO 2025-04-13 08:25:29 ts/train.py:232 step:67K smpl:538K ep:2K epch:27.35 loss:0.066 grdn:7.083 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
354 |
+
INFO 2025-04-13 08:25:42 ts/train.py:232 step:67K smpl:539K ep:2K epch:27.43 loss:0.064 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
355 |
+
INFO 2025-04-13 08:25:55 ts/train.py:232 step:68K smpl:541K ep:2K epch:27.51 loss:0.064 grdn:6.878 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
356 |
+
INFO 2025-04-13 08:26:08 ts/train.py:232 step:68K smpl:542K ep:2K epch:27.60 loss:0.064 grdn:6.684 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
357 |
+
INFO 2025-04-13 08:26:21 ts/train.py:232 step:68K smpl:544K ep:2K epch:27.68 loss:0.065 grdn:7.029 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
358 |
+
INFO 2025-04-13 08:26:34 ts/train.py:232 step:68K smpl:546K ep:2K epch:27.76 loss:0.066 grdn:7.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
359 |
+
INFO 2025-04-13 08:26:47 ts/train.py:232 step:68K smpl:547K ep:2K epch:27.84 loss:0.065 grdn:6.955 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
360 |
+
INFO 2025-04-13 08:27:00 ts/train.py:232 step:69K smpl:549K ep:2K epch:27.92 loss:0.065 grdn:6.922 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
361 |
+
INFO 2025-04-13 08:27:14 ts/train.py:232 step:69K smpl:550K ep:2K epch:28.00 loss:0.065 grdn:7.078 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
362 |
+
INFO 2025-04-13 08:27:27 ts/train.py:232 step:69K smpl:552K ep:2K epch:28.08 loss:0.064 grdn:6.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
363 |
+
INFO 2025-04-13 08:27:40 ts/train.py:232 step:69K smpl:554K ep:2K epch:28.17 loss:0.063 grdn:6.870 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
364 |
+
INFO 2025-04-13 08:27:53 ts/train.py:232 step:69K smpl:555K ep:2K epch:28.25 loss:0.063 grdn:7.024 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
365 |
+
INFO 2025-04-13 08:28:06 ts/train.py:232 step:70K smpl:557K ep:2K epch:28.33 loss:0.064 grdn:6.969 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
366 |
+
INFO 2025-04-13 08:28:20 ts/train.py:232 step:70K smpl:558K ep:2K epch:28.41 loss:0.064 grdn:6.757 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
367 |
+
INFO 2025-04-13 08:28:33 ts/train.py:232 step:70K smpl:560K ep:2K epch:28.49 loss:0.065 grdn:6.888 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
368 |
+
INFO 2025-04-13 08:28:46 ts/train.py:232 step:70K smpl:562K ep:2K epch:28.57 loss:0.066 grdn:6.895 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
369 |
+
INFO 2025-04-13 08:28:59 ts/train.py:232 step:70K smpl:563K ep:2K epch:28.65 loss:0.064 grdn:6.967 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
370 |
+
INFO 2025-04-13 08:29:12 ts/train.py:232 step:71K smpl:565K ep:2K epch:28.74 loss:0.064 grdn:7.085 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
371 |
+
INFO 2025-04-13 08:29:25 ts/train.py:232 step:71K smpl:566K ep:2K epch:28.82 loss:0.064 grdn:6.958 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
372 |
+
INFO 2025-04-13 08:29:38 ts/train.py:232 step:71K smpl:568K ep:2K epch:28.90 loss:0.063 grdn:6.867 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
373 |
+
INFO 2025-04-13 08:29:51 ts/train.py:232 step:71K smpl:570K ep:2K epch:28.98 loss:0.064 grdn:7.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
374 |
+
INFO 2025-04-13 08:30:04 ts/train.py:232 step:71K smpl:571K ep:2K epch:29.06 loss:0.063 grdn:6.572 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
375 |
+
INFO 2025-04-13 08:30:17 ts/train.py:232 step:72K smpl:573K ep:2K epch:29.14 loss:0.061 grdn:6.608 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
376 |
+
INFO 2025-04-13 08:30:30 ts/train.py:232 step:72K smpl:574K ep:2K epch:29.22 loss:0.063 grdn:6.892 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
377 |
+
INFO 2025-04-13 08:30:44 ts/train.py:232 step:72K smpl:576K ep:2K epch:29.31 loss:0.063 grdn:6.639 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
378 |
+
INFO 2025-04-13 08:30:57 ts/train.py:232 step:72K smpl:578K ep:2K epch:29.39 loss:0.064 grdn:6.885 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
379 |
+
INFO 2025-04-13 08:31:10 ts/train.py:232 step:72K smpl:579K ep:2K epch:29.47 loss:0.062 grdn:6.901 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
380 |
+
INFO 2025-04-13 08:31:23 ts/train.py:232 step:73K smpl:581K ep:2K epch:29.55 loss:0.064 grdn:7.140 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
381 |
+
INFO 2025-04-13 08:31:36 ts/train.py:232 step:73K smpl:582K ep:2K epch:29.63 loss:0.062 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
382 |
+
INFO 2025-04-13 08:31:49 ts/train.py:232 step:73K smpl:584K ep:2K epch:29.71 loss:0.064 grdn:6.793 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
383 |
+
INFO 2025-04-13 08:32:02 ts/train.py:232 step:73K smpl:586K ep:2K epch:29.79 loss:0.065 grdn:6.861 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
384 |
+
INFO 2025-04-13 08:32:15 ts/train.py:232 step:73K smpl:587K ep:2K epch:29.88 loss:0.061 grdn:6.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
wandb/latest-run/files/requirements.txt
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
setuptools==75.8.0
|
2 |
+
wheel==0.45.1
|
3 |
+
pip==25.0
|
4 |
+
wcwidth==0.2.13
|
5 |
+
triton==3.2.0
|
6 |
+
pytz==2025.2
|
7 |
+
PyOpenGL==3.1.9
|
8 |
+
nvidia-cusparselt-cu12==0.6.2
|
9 |
+
mpmath==1.3.0
|
10 |
+
glfw==2.8.0
|
11 |
+
Farama-Notifications==0.0.4
|
12 |
+
asciitree==0.3.3
|
13 |
+
antlr4-python3-runtime==4.9.3
|
14 |
+
zipp==3.21.0
|
15 |
+
xxhash==3.5.0
|
16 |
+
wrapt==1.17.2
|
17 |
+
urllib3==2.4.0
|
18 |
+
tzdata==2025.2
|
19 |
+
typing_extensions==4.13.2
|
20 |
+
tqdm==4.67.1
|
21 |
+
TorchCodec==0.2.1
|
22 |
+
toml==0.10.2
|
23 |
+
termcolor==3.0.1
|
24 |
+
sympy==1.13.1
|
25 |
+
soupsieve==2.6
|
26 |
+
smmap==5.0.2
|
27 |
+
six==1.17.0
|
28 |
+
setproctitle==1.3.5
|
29 |
+
safetensors==0.5.3
|
30 |
+
regex==2024.11.6
|
31 |
+
pyzmq==26.4.0
|
32 |
+
PyYAML==6.0.2
|
33 |
+
PySocks==1.7.1
|
34 |
+
pyparsing==3.2.3
|
35 |
+
pygame==2.6.1
|
36 |
+
pycparser==2.22
|
37 |
+
pyarrow==19.0.1
|
38 |
+
psutil==7.0.0
|
39 |
+
protobuf==5.29.4
|
40 |
+
propcache==0.3.1
|
41 |
+
prompt_toolkit==3.0.50
|
42 |
+
platformdirs==4.3.7
|
43 |
+
pillow==11.1.0
|
44 |
+
pfzy==0.3.4
|
45 |
+
packaging==24.2
|
46 |
+
orderly-set==5.4.0
|
47 |
+
nvidia-nvtx-cu12==12.4.127
|
48 |
+
nvidia-nvjitlink-cu12==12.4.127
|
49 |
+
nvidia-nccl-cu12==2.21.5
|
50 |
+
nvidia-curand-cu12==10.3.5.147
|
51 |
+
nvidia-cufft-cu12==11.2.1.3
|
52 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
53 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
54 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
55 |
+
nvidia-cublas-cu12==12.4.5.8
|
56 |
+
networkx==3.4.2
|
57 |
+
mypy-extensions==1.0.0
|
58 |
+
mergedeep==1.3.4
|
59 |
+
MarkupSafe==3.0.2
|
60 |
+
lxml==5.3.2
|
61 |
+
llvmlite==0.44.0
|
62 |
+
itsdangerous==2.2.0
|
63 |
+
imageio-ffmpeg==0.6.0
|
64 |
+
idna==3.10
|
65 |
+
hf_transfer==0.1.9
|
66 |
+
fsspec==2024.12.0
|
67 |
+
frozenlist==1.5.0
|
68 |
+
filelock==3.18.0
|
69 |
+
fasteners==0.19
|
70 |
+
evdev==1.9.1
|
71 |
+
einops==0.8.1
|
72 |
+
dill==0.3.8
|
73 |
+
cmake==4.0.0
|
74 |
+
cloudpickle==3.1.1
|
75 |
+
click==8.1.8
|
76 |
+
charset-normalizer==3.4.1
|
77 |
+
certifi==2025.1.31
|
78 |
+
blinker==1.9.0
|
79 |
+
av==14.3.0
|
80 |
+
attrs==25.3.0
|
81 |
+
async-timeout==5.0.1
|
82 |
+
annotated-types==0.7.0
|
83 |
+
aiohappyeyeballs==2.6.1
|
84 |
+
absl-py==2.2.2
|
85 |
+
Werkzeug==3.1.3
|
86 |
+
typing-inspection==0.4.0
|
87 |
+
typing-inspect==0.9.0
|
88 |
+
tifffile==2025.3.30
|
89 |
+
shapely==2.1.0
|
90 |
+
sentry-sdk==2.25.1
|
91 |
+
scipy==1.15.2
|
92 |
+
rerun-sdk==0.22.1
|
93 |
+
requests==2.32.3
|
94 |
+
pyyaml-include==1.4.1
|
95 |
+
python-xlib==0.33
|
96 |
+
python-dateutil==2.9.0.post0
|
97 |
+
pydantic_core==2.33.1
|
98 |
+
opencv-python-headless==4.11.0.86
|
99 |
+
opencv-python==4.11.0.86
|
100 |
+
omegaconf==2.3.0
|
101 |
+
nvidia-cusparse-cu12==12.3.1.170
|
102 |
+
nvidia-cudnn-cu12==9.1.0.70
|
103 |
+
numcodecs==0.13.1
|
104 |
+
multiprocess==0.70.16
|
105 |
+
multidict==6.4.3
|
106 |
+
mujoco==2.3.7
|
107 |
+
lazy_loader==0.4
|
108 |
+
labmaze==1.0.6
|
109 |
+
jsonlines==4.0.0
|
110 |
+
Jinja2==3.1.6
|
111 |
+
inquirerpy==0.3.4
|
112 |
+
importlib_metadata==8.6.1
|
113 |
+
imageio==2.37.0
|
114 |
+
h5py==3.13.0
|
115 |
+
gymnasium==0.29.1
|
116 |
+
gitdb==4.0.12
|
117 |
+
docker-pycreds==0.4.0
|
118 |
+
dm-tree==0.1.9
|
119 |
+
deepdiff==8.4.2
|
120 |
+
cffi==1.17.1
|
121 |
+
beautifulsoup4==4.13.3
|
122 |
+
aiosignal==1.3.2
|
123 |
+
zarr==2.18.3
|
124 |
+
yarl==1.19.0
|
125 |
+
scikit-image==0.25.2
|
126 |
+
pynput==1.8.1
|
127 |
+
pymunk==6.11.1
|
128 |
+
pydantic==2.11.3
|
129 |
+
pandas==2.2.3
|
130 |
+
nvidia-cusolver-cu12==11.6.1.9
|
131 |
+
huggingface-hub==0.30.2
|
132 |
+
GitPython==3.1.44
|
133 |
+
Flask==3.1.0
|
134 |
+
draccus==0.10.0
|
135 |
+
dm-env==1.6
|
136 |
+
wandb==0.19.9
|
137 |
+
torch==2.6.0
|
138 |
+
gym-pusht==0.1.5
|
139 |
+
gdown==5.2.0
|
140 |
+
dm-control==1.0.14
|
141 |
+
diffusers==0.33.1
|
142 |
+
aiohttp==3.11.16
|
143 |
+
torchvision==0.21.0
|
144 |
+
gym-aloha==0.1.1
|
145 |
+
datasets==3.5.0
|
146 |
+
pyserial==3.5
|
147 |
+
feetech-servo-sdk==1.0.0
|
148 |
+
python-json-logger==3.3.0
|
149 |
+
Pygments==2.19.1
|
150 |
+
tokenizers==0.21.1
|
151 |
+
transformers==4.51.2
|
152 |
+
pycountry==24.6.1
|
153 |
+
lerobot==0.1.0
|
154 |
+
tomli==2.2.1
|
155 |
+
pluggy==1.5.0
|
156 |
+
iniconfig==2.1.0
|
157 |
+
exceptiongroup==1.2.2
|
158 |
+
pytest==8.3.5
|
159 |
+
sentencepiece==0.2.0
|
160 |
+
py-cpuinfo==9.0.0
|
161 |
+
nanobind==2.6.1
|
162 |
+
fastrlock==0.8.3
|
163 |
+
blake3==1.0.4
|
164 |
+
websockets==15.0.1
|
165 |
+
uvloop==0.21.0
|
166 |
+
sniffio==1.3.1
|
167 |
+
shellingham==1.5.4
|
168 |
+
rpds-py==0.24.0
|
169 |
+
python-multipart==0.0.20
|
170 |
+
python-dotenv==1.1.0
|
171 |
+
prometheus_client==0.21.1
|
172 |
+
partial-json-parser==0.2.1.1.post5
|
173 |
+
numpy==2.2.4
|
174 |
+
numpy==2.1.3
|
175 |
+
referencing==0.36.2
|
176 |
+
numba==0.61.0
|
177 |
+
ninja==1.11.1.4
|
178 |
+
nest-asyncio==1.6.0
|
179 |
+
msgspec==0.19.0
|
180 |
+
msgpack==1.1.0
|
181 |
+
mdurl==0.1.2
|
182 |
+
llguidance==0.7.14
|
183 |
+
lark==1.2.2
|
184 |
+
jiter==0.9.0
|
185 |
+
interegular==0.3.3
|
186 |
+
httptools==0.6.4
|
187 |
+
hf-xet==1.0.3
|
188 |
+
h11==0.14.0
|
189 |
+
gguf==0.10.0
|
190 |
+
dnspython==2.7.0
|
191 |
+
distro==1.9.0
|
192 |
+
diskcache==5.6.3
|
193 |
+
cupy-cuda12x==13.4.1
|
194 |
+
cachetools==5.5.2
|
195 |
+
astor==0.8.1
|
196 |
+
anyio==4.9.0
|
197 |
+
airportsdata==20250224
|
198 |
+
watchfiles==1.0.5
|
199 |
+
uvicorn==0.34.0
|
200 |
+
tiktoken==0.9.0
|
201 |
+
starlette==0.46.1
|
202 |
+
markdown-it-py==3.0.0
|
203 |
+
jsonschema-specifications==2024.10.1
|
204 |
+
httpcore==1.0.8
|
205 |
+
email_validator==2.2.0
|
206 |
+
depyf==0.18.0
|
207 |
+
rich==14.0.0
|
208 |
+
prometheus-fastapi-instrumentator==7.1.0
|
209 |
+
lm-format-enforcer==0.10.11
|
210 |
+
jsonschema==4.23.0
|
211 |
+
httpx==0.28.1
|
212 |
+
fastapi==0.115.12
|
213 |
+
xformers==0.0.29.post2
|
214 |
+
typer==0.15.2
|
215 |
+
torchaudio==2.6.0
|
216 |
+
rich-toolkit==0.14.1
|
217 |
+
ray==2.43.0
|
218 |
+
outlines_core==0.1.26
|
219 |
+
openai==1.73.0
|
220 |
+
mistral_common==1.5.4
|
221 |
+
xgrammar==0.1.17
|
222 |
+
outlines==0.1.11
|
223 |
+
fastapi-cli==0.0.7
|
224 |
+
compressed-tensors==0.9.2
|
225 |
+
vllm==0.8.3
|
226 |
+
autocommand==2.2.2
|
227 |
+
backports.tarfile==1.2.0
|
228 |
+
importlib_metadata==8.0.0
|
229 |
+
inflect==7.3.1
|
230 |
+
jaraco.collections==5.1.0
|
231 |
+
jaraco.context==5.3.0
|
232 |
+
jaraco.functools==4.0.1
|
233 |
+
jaraco.text==3.12.1
|
234 |
+
more-itertools==10.3.0
|
235 |
+
packaging==24.2
|
236 |
+
platformdirs==4.2.2
|
237 |
+
tomli==2.0.1
|
238 |
+
typeguard==4.3.0
|
239 |
+
typing_extensions==4.12.2
|
240 |
+
wheel==0.43.0
|
241 |
+
zipp==3.19.2
|
wandb/latest-run/files/wandb-metadata.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.14.0-427.26.1.el9_4.x86_64-x86_64-with-glibc2.34",
|
3 |
+
"python": "CPython 3.10.13",
|
4 |
+
"startedAt": "2025-04-13T05:11:49.829796Z",
|
5 |
+
"args": [
|
6 |
+
"--dataset.repo_id=rjgpinel/chickenToPlate",
|
7 |
+
"--policy.type=act",
|
8 |
+
"--output_dir=outputs/train/act_bs8_chickenToPlate",
|
9 |
+
"--job_name=act_trial_bs8_chickenToPlate",
|
10 |
+
"--policy.device=cuda",
|
11 |
+
"--wandb.enable=true"
|
12 |
+
],
|
13 |
+
"program": "/home/rgarciap/Code/lerobot/lerobot/scripts/train.py",
|
14 |
+
"codePath": "lerobot/scripts/train.py",
|
15 |
+
"git": {
|
16 |
+
"remote": "[email protected]:rjgpinel/lerobot.git",
|
17 |
+
"commit": "d292028da73ca5e4abb134d13d4a8ff18c08e1a2"
|
18 |
+
},
|
19 |
+
"root": "outputs/train/act_bs8_chickenToPlate",
|
20 |
+
"host": "gpu012",
|
21 |
+
"executable": "/home/rgarciap/miniconda3/envs/lerobot/bin/python",
|
22 |
+
"codePathLocal": "lerobot/scripts/train.py",
|
23 |
+
"cpu_count": 32,
|
24 |
+
"cpu_count_logical": 64,
|
25 |
+
"gpu": "NVIDIA A100-SXM4-80GB",
|
26 |
+
"gpu_count": 1,
|
27 |
+
"disk": {
|
28 |
+
"/": {
|
29 |
+
"total": "135085682688",
|
30 |
+
"used": "3655208960"
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"memory": {
|
34 |
+
"total": "270171365376"
|
35 |
+
},
|
36 |
+
"cpu": {
|
37 |
+
"count": 32,
|
38 |
+
"countLogical": 64
|
39 |
+
},
|
40 |
+
"gpu_nvidia": [
|
41 |
+
{
|
42 |
+
"name": "NVIDIA A100-SXM4-80GB",
|
43 |
+
"memoryTotal": "85899345920",
|
44 |
+
"cudaCores": 6912,
|
45 |
+
"architecture": "Ampere"
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"slurm": {
|
49 |
+
"cluster_name": "cleps",
|
50 |
+
"conf": "/var/spool/slurm/d/conf-cache/slurm.conf",
|
51 |
+
"cpu_bind": "quiet,mask_cpu:0x000000000000FF00",
|
52 |
+
"cpu_bind_list": "0x000000000000FF00",
|
53 |
+
"cpu_bind_type": "mask_cpu:",
|
54 |
+
"cpu_bind_verbose": "quiet",
|
55 |
+
"cpus_on_node": "16",
|
56 |
+
"cpus_per_task": "8",
|
57 |
+
"distribution": "cyclic",
|
58 |
+
"gpus_on_node": "1",
|
59 |
+
"gtids": "0",
|
60 |
+
"hint": "nomultithread",
|
61 |
+
"job_account": "willow",
|
62 |
+
"job_cpus_per_node": "8",
|
63 |
+
"job_end_time": "1744557103",
|
64 |
+
"job_gid": "21076",
|
65 |
+
"job_gpus": "1",
|
66 |
+
"job_id": "3984516",
|
67 |
+
"job_name": "act_training",
|
68 |
+
"job_nodelist": "gpu012",
|
69 |
+
"job_num_nodes": "1",
|
70 |
+
"job_partition": "willow",
|
71 |
+
"job_qos": "normal",
|
72 |
+
"job_start_time": "1744521103",
|
73 |
+
"job_uid": "662847",
|
74 |
+
"job_user": "rgarciap",
|
75 |
+
"jobid": "3984516",
|
76 |
+
"launch_node_ipaddr": "10.224.2.12",
|
77 |
+
"localid": "0",
|
78 |
+
"mem_per_node": "40960",
|
79 |
+
"mpi_type": "pmix_v4",
|
80 |
+
"nnodes": "1",
|
81 |
+
"nodeid": "0",
|
82 |
+
"nodelist": "gpu012",
|
83 |
+
"nprocs": "1",
|
84 |
+
"ntasks": "1",
|
85 |
+
"pmix_mapping_serv": "(vector,(0,1,1))",
|
86 |
+
"pmixp_abort_agent_port": "60160",
|
87 |
+
"prio_process": "0",
|
88 |
+
"procid": "0",
|
89 |
+
"script_context": "prolog_task",
|
90 |
+
"srun_comm_host": "10.224.2.12",
|
91 |
+
"srun_comm_port": "60161",
|
92 |
+
"step_gpus": "1",
|
93 |
+
"step_id": "0",
|
94 |
+
"step_launcher_port": "60161",
|
95 |
+
"step_nodelist": "gpu012",
|
96 |
+
"step_num_nodes": "1",
|
97 |
+
"step_num_tasks": "1",
|
98 |
+
"step_tasks_per_node": "1",
|
99 |
+
"stepid": "0",
|
100 |
+
"submit_dir": "/home/rgarciap/Code/lerobot/cleps_scripts/chickenToPlate",
|
101 |
+
"submit_host": "cleps",
|
102 |
+
"task_pid": "2476203",
|
103 |
+
"tasks_per_node": "1",
|
104 |
+
"threads_per_core": "1",
|
105 |
+
"topology_addr": "gpu012",
|
106 |
+
"topology_addr_pattern": "node",
|
107 |
+
"tres_per_task": "cpu:8",
|
108 |
+
"umask": "0022"
|
109 |
+
},
|
110 |
+
"cudaVersion": "12.5"
|
111 |
+
}
|
wandb/latest-run/logs/debug-core.log
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"time":"2025-04-13T07:11:49.620604148+02:00","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpl6h5gsi9/port-2476203.txt","pid":2476203,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false}
|
2 |
+
{"time":"2025-04-13T07:11:49.621232919+02:00","level":"INFO","msg":"Will exit if parent process dies.","ppid":2476203}
|
3 |
+
{"time":"2025-04-13T07:11:49.621227018+02:00","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":37289,"Zone":""}}
|
4 |
+
{"time":"2025-04-13T07:11:49.812573582+02:00","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:37562"}
|
5 |
+
{"time":"2025-04-13T07:11:49.83071304+02:00","level":"INFO","msg":"handleInformInit: received","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
|
6 |
+
{"time":"2025-04-13T07:11:50.06605336+02:00","level":"INFO","msg":"handleInformInit: stream started","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
|
wandb/latest-run/logs/debug-internal.log
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
|
2 |
+
{"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
|
3 |
+
{"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
|
4 |
+
{"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
|
5 |
+
{"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
|
6 |
+
{"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
|
7 |
+
{"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
|
wandb/latest-run/logs/debug.log
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
|
2 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
|
3 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
|
4 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
|
5 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
|
6 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
|
7 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
|
8 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
|
9 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
|
10 |
+
config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
|
11 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
|
12 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
|
13 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
14 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
|
15 |
+
2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
|
16 |
+
2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
|
17 |
+
2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
|
18 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
|
19 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
|
20 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
|
21 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
|
22 |
+
2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
|
wandb/latest-run/run-ipo2f6m2.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06a24d89b4143f7da66fa535ab30ff7be24844b530553c2069d7bca24edffec2
|
3 |
+
size 688128
|
wandb/run-20250413_071149-ipo2f6m2/files/output.log
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Logs will be synced with wandb.
|
2 |
+
INFO 2025-04-13 07:11:50 ndb_utils.py:96 Track this run --> https://wandb.ai/rgarciap/lerobot/runs/ipo2f6m2
|
3 |
+
INFO 2025-04-13 07:11:50 ts/train.py:127 Creating dataset
|
4 |
+
Downloading data: 100%|██████████| 69/69 [00:00<00:00, 140420.66files/s]
|
5 |
+
Generating train split: 19655 examples [00:00, 273149.72 examples/s]
|
6 |
+
INFO 2025-04-13 07:11:51 ts/train.py:138 Creating policy
|
7 |
+
INFO 2025-04-13 07:11:52 ts/train.py:144 Creating optimizer and scheduler
|
8 |
+
INFO 2025-04-13 07:11:52 ts/train.py:156 Output dir: outputs/train/act_bs8_chickenToPlate
|
9 |
+
INFO 2025-04-13 07:11:52 ts/train.py:159 cfg.steps=100000 (100K)
|
10 |
+
INFO 2025-04-13 07:11:52 ts/train.py:160 dataset.num_frames=19655 (20K)
|
11 |
+
INFO 2025-04-13 07:11:52 ts/train.py:161 dataset.num_episodes=69
|
12 |
+
INFO 2025-04-13 07:11:52 ts/train.py:162 num_learnable_params=51597190 (52M)
|
13 |
+
INFO 2025-04-13 07:11:52 ts/train.py:163 num_total_params=51597238 (52M)
|
14 |
+
INFO 2025-04-13 07:11:52 ts/train.py:202 Start offline training on a fixed dataset
|
15 |
+
INFO 2025-04-13 07:12:06 ts/train.py:232 step:200 smpl:2K ep:6 epch:0.08 loss:6.809 grdn:153.932 lr:1.0e-05 updt_s:0.069 data_s:0.003
|
16 |
+
INFO 2025-04-13 07:12:19 ts/train.py:232 step:400 smpl:3K ep:11 epch:0.16 loss:3.046 grdn:85.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
17 |
+
INFO 2025-04-13 07:12:32 ts/train.py:232 step:600 smpl:5K ep:17 epch:0.24 loss:2.598 grdn:75.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
18 |
+
INFO 2025-04-13 07:12:46 ts/train.py:232 step:800 smpl:6K ep:22 epch:0.33 loss:2.264 grdn:69.358 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
19 |
+
INFO 2025-04-13 07:12:59 ts/train.py:232 step:1K smpl:8K ep:28 epch:0.41 loss:2.054 grdn:65.551 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
20 |
+
INFO 2025-04-13 07:13:12 ts/train.py:232 step:1K smpl:10K ep:34 epch:0.49 loss:1.853 grdn:62.666 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
21 |
+
INFO 2025-04-13 07:13:25 ts/train.py:232 step:1K smpl:11K ep:39 epch:0.57 loss:1.696 grdn:59.657 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
22 |
+
INFO 2025-04-13 07:13:38 ts/train.py:232 step:2K smpl:13K ep:45 epch:0.65 loss:1.529 grdn:57.475 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
23 |
+
INFO 2025-04-13 07:13:51 ts/train.py:232 step:2K smpl:14K ep:51 epch:0.73 loss:1.401 grdn:54.794 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
24 |
+
INFO 2025-04-13 07:14:04 ts/train.py:232 step:2K smpl:16K ep:56 epch:0.81 loss:1.279 grdn:52.447 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
25 |
+
INFO 2025-04-13 07:14:17 ts/train.py:232 step:2K smpl:18K ep:62 epch:0.90 loss:1.187 grdn:51.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
26 |
+
INFO 2025-04-13 07:14:30 ts/train.py:232 step:2K smpl:19K ep:67 epch:0.98 loss:1.083 grdn:48.098 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
27 |
+
INFO 2025-04-13 07:14:44 ts/train.py:232 step:3K smpl:21K ep:73 epch:1.06 loss:0.982 grdn:44.752 lr:1.0e-05 updt_s:0.066 data_s:0.003
|
28 |
+
INFO 2025-04-13 07:14:57 ts/train.py:232 step:3K smpl:22K ep:79 epch:1.14 loss:0.905 grdn:43.547 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
29 |
+
INFO 2025-04-13 07:15:10 ts/train.py:232 step:3K smpl:24K ep:84 epch:1.22 loss:0.826 grdn:41.540 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
30 |
+
INFO 2025-04-13 07:15:23 ts/train.py:232 step:3K smpl:26K ep:90 epch:1.30 loss:0.754 grdn:39.048 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
31 |
+
INFO 2025-04-13 07:15:36 ts/train.py:232 step:3K smpl:27K ep:95 epch:1.38 loss:0.710 grdn:38.735 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
32 |
+
INFO 2025-04-13 07:15:49 ts/train.py:232 step:4K smpl:29K ep:101 epch:1.47 loss:0.659 grdn:36.579 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
33 |
+
INFO 2025-04-13 07:16:03 ts/train.py:232 step:4K smpl:30K ep:107 epch:1.55 loss:0.604 grdn:34.616 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
34 |
+
INFO 2025-04-13 07:16:16 ts/train.py:232 step:4K smpl:32K ep:112 epch:1.63 loss:0.562 grdn:32.857 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
35 |
+
INFO 2025-04-13 07:16:29 ts/train.py:232 step:4K smpl:34K ep:118 epch:1.71 loss:0.533 grdn:32.673 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
36 |
+
INFO 2025-04-13 07:16:42 ts/train.py:232 step:4K smpl:35K ep:124 epch:1.79 loss:0.489 grdn:30.663 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
37 |
+
INFO 2025-04-13 07:16:55 ts/train.py:232 step:5K smpl:37K ep:129 epch:1.87 loss:0.473 grdn:30.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
38 |
+
INFO 2025-04-13 07:17:08 ts/train.py:232 step:5K smpl:38K ep:135 epch:1.95 loss:0.444 grdn:29.572 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
39 |
+
INFO 2025-04-13 07:17:21 ts/train.py:232 step:5K smpl:40K ep:140 epch:2.04 loss:0.427 grdn:28.334 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
40 |
+
INFO 2025-04-13 07:17:34 ts/train.py:232 step:5K smpl:42K ep:146 epch:2.12 loss:0.394 grdn:27.066 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
41 |
+
INFO 2025-04-13 07:17:47 ts/train.py:232 step:5K smpl:43K ep:152 epch:2.20 loss:0.384 grdn:26.812 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
42 |
+
INFO 2025-04-13 07:18:00 ts/train.py:232 step:6K smpl:45K ep:157 epch:2.28 loss:0.369 grdn:25.750 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
43 |
+
INFO 2025-04-13 07:18:13 ts/train.py:232 step:6K smpl:46K ep:163 epch:2.36 loss:0.347 grdn:24.628 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
44 |
+
INFO 2025-04-13 07:18:26 ts/train.py:232 step:6K smpl:48K ep:169 epch:2.44 loss:0.345 grdn:25.079 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
45 |
+
INFO 2025-04-13 07:18:39 ts/train.py:232 step:6K smpl:50K ep:174 epch:2.52 loss:0.333 grdn:24.552 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
46 |
+
INFO 2025-04-13 07:18:53 ts/train.py:232 step:6K smpl:51K ep:180 epch:2.60 loss:0.319 grdn:23.761 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
47 |
+
INFO 2025-04-13 07:19:06 ts/train.py:232 step:7K smpl:53K ep:185 epch:2.69 loss:0.313 grdn:23.319 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
48 |
+
INFO 2025-04-13 07:19:19 ts/train.py:232 step:7K smpl:54K ep:191 epch:2.77 loss:0.296 grdn:22.959 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
49 |
+
INFO 2025-04-13 07:19:32 ts/train.py:232 step:7K smpl:56K ep:197 epch:2.85 loss:0.297 grdn:23.434 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
50 |
+
INFO 2025-04-13 07:19:45 ts/train.py:232 step:7K smpl:58K ep:202 epch:2.93 loss:0.290 grdn:22.584 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
51 |
+
INFO 2025-04-13 07:19:59 ts/train.py:232 step:7K smpl:59K ep:208 epch:3.01 loss:0.283 grdn:23.340 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
52 |
+
INFO 2025-04-13 07:20:12 ts/train.py:232 step:8K smpl:61K ep:213 epch:3.09 loss:0.272 grdn:22.151 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
53 |
+
INFO 2025-04-13 07:20:24 ts/train.py:232 step:8K smpl:62K ep:219 epch:3.17 loss:0.267 grdn:22.000 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
54 |
+
INFO 2025-04-13 07:20:38 ts/train.py:232 step:8K smpl:64K ep:225 epch:3.26 loss:0.256 grdn:20.574 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
55 |
+
INFO 2025-04-13 07:20:50 ts/train.py:232 step:8K smpl:66K ep:230 epch:3.34 loss:0.248 grdn:20.914 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
56 |
+
INFO 2025-04-13 07:21:03 ts/train.py:232 step:8K smpl:67K ep:236 epch:3.42 loss:0.251 grdn:21.292 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
57 |
+
INFO 2025-04-13 07:21:17 ts/train.py:232 step:9K smpl:69K ep:242 epch:3.50 loss:0.249 grdn:20.863 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
58 |
+
INFO 2025-04-13 07:21:30 ts/train.py:232 step:9K smpl:70K ep:247 epch:3.58 loss:0.244 grdn:20.995 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
59 |
+
INFO 2025-04-13 07:21:43 ts/train.py:232 step:9K smpl:72K ep:253 epch:3.66 loss:0.241 grdn:20.919 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
60 |
+
INFO 2025-04-13 07:21:56 ts/train.py:232 step:9K smpl:74K ep:258 epch:3.74 loss:0.234 grdn:20.073 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
61 |
+
INFO 2025-04-13 07:22:09 ts/train.py:232 step:9K smpl:75K ep:264 epch:3.83 loss:0.233 grdn:20.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
62 |
+
INFO 2025-04-13 07:22:22 ts/train.py:232 step:10K smpl:77K ep:270 epch:3.91 loss:0.229 grdn:19.897 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
63 |
+
INFO 2025-04-13 07:22:35 ts/train.py:232 step:10K smpl:78K ep:275 epch:3.99 loss:0.224 grdn:20.040 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
64 |
+
INFO 2025-04-13 07:22:49 ts/train.py:232 step:10K smpl:80K ep:281 epch:4.07 loss:0.215 grdn:18.582 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
65 |
+
INFO 2025-04-13 07:23:02 ts/train.py:232 step:10K smpl:82K ep:286 epch:4.15 loss:0.215 grdn:19.444 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
66 |
+
INFO 2025-04-13 07:23:15 ts/train.py:232 step:10K smpl:83K ep:292 epch:4.23 loss:0.213 grdn:19.041 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
67 |
+
INFO 2025-04-13 07:23:28 ts/train.py:232 step:11K smpl:85K ep:298 epch:4.31 loss:0.207 grdn:18.785 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
68 |
+
INFO 2025-04-13 07:23:41 ts/train.py:232 step:11K smpl:86K ep:303 epch:4.40 loss:0.205 grdn:18.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
69 |
+
INFO 2025-04-13 07:23:54 ts/train.py:232 step:11K smpl:88K ep:309 epch:4.48 loss:0.209 grdn:18.879 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
70 |
+
INFO 2025-04-13 07:24:07 ts/train.py:232 step:11K smpl:90K ep:315 epch:4.56 loss:0.197 grdn:18.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
71 |
+
INFO 2025-04-13 07:24:21 ts/train.py:232 step:11K smpl:91K ep:320 epch:4.64 loss:0.201 grdn:18.452 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
72 |
+
INFO 2025-04-13 07:24:34 ts/train.py:232 step:12K smpl:93K ep:326 epch:4.72 loss:0.199 grdn:17.926 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
73 |
+
INFO 2025-04-13 07:24:47 ts/train.py:232 step:12K smpl:94K ep:331 epch:4.80 loss:0.197 grdn:17.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
74 |
+
INFO 2025-04-13 07:25:00 ts/train.py:232 step:12K smpl:96K ep:337 epch:4.88 loss:0.192 grdn:17.747 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
75 |
+
INFO 2025-04-13 07:25:13 ts/train.py:232 step:12K smpl:98K ep:343 epch:4.97 loss:0.187 grdn:17.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
76 |
+
INFO 2025-04-13 07:25:27 ts/train.py:232 step:12K smpl:99K ep:348 epch:5.05 loss:0.186 grdn:16.616 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
77 |
+
INFO 2025-04-13 07:25:39 ts/train.py:232 step:13K smpl:101K ep:354 epch:5.13 loss:0.183 grdn:16.979 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
78 |
+
INFO 2025-04-13 07:25:52 ts/train.py:232 step:13K smpl:102K ep:359 epch:5.21 loss:0.183 grdn:17.301 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
79 |
+
INFO 2025-04-13 07:26:05 ts/train.py:232 step:13K smpl:104K ep:365 epch:5.29 loss:0.181 grdn:16.777 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
80 |
+
INFO 2025-04-13 07:26:18 ts/train.py:232 step:13K smpl:106K ep:371 epch:5.37 loss:0.177 grdn:16.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
81 |
+
INFO 2025-04-13 07:26:32 ts/train.py:232 step:13K smpl:107K ep:376 epch:5.45 loss:0.178 grdn:16.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
82 |
+
INFO 2025-04-13 07:26:45 ts/train.py:232 step:14K smpl:109K ep:382 epch:5.54 loss:0.173 grdn:15.851 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
83 |
+
INFO 2025-04-13 07:26:58 ts/train.py:232 step:14K smpl:110K ep:388 epch:5.62 loss:0.177 grdn:16.146 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
84 |
+
INFO 2025-04-13 07:27:11 ts/train.py:232 step:14K smpl:112K ep:393 epch:5.70 loss:0.172 grdn:16.112 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
85 |
+
INFO 2025-04-13 07:27:24 ts/train.py:232 step:14K smpl:114K ep:399 epch:5.78 loss:0.166 grdn:15.756 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
86 |
+
INFO 2025-04-13 07:27:37 ts/train.py:232 step:14K smpl:115K ep:404 epch:5.86 loss:0.167 grdn:16.241 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
87 |
+
INFO 2025-04-13 07:27:50 ts/train.py:232 step:15K smpl:117K ep:410 epch:5.94 loss:0.169 grdn:16.451 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
88 |
+
INFO 2025-04-13 07:28:04 ts/train.py:232 step:15K smpl:118K ep:416 epch:6.02 loss:0.164 grdn:15.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
89 |
+
INFO 2025-04-13 07:28:17 ts/train.py:232 step:15K smpl:120K ep:421 epch:6.11 loss:0.162 grdn:16.060 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
90 |
+
INFO 2025-04-13 07:28:30 ts/train.py:232 step:15K smpl:122K ep:427 epch:6.19 loss:0.158 grdn:15.626 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
91 |
+
INFO 2025-04-13 07:28:43 ts/train.py:232 step:15K smpl:123K ep:433 epch:6.27 loss:0.156 grdn:15.185 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
92 |
+
INFO 2025-04-13 07:28:56 ts/train.py:232 step:16K smpl:125K ep:438 epch:6.35 loss:0.156 grdn:15.646 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
93 |
+
INFO 2025-04-13 07:29:09 ts/train.py:232 step:16K smpl:126K ep:444 epch:6.43 loss:0.154 grdn:15.384 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
94 |
+
INFO 2025-04-13 07:29:22 ts/train.py:232 step:16K smpl:128K ep:449 epch:6.51 loss:0.156 grdn:15.582 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
95 |
+
INFO 2025-04-13 07:29:35 ts/train.py:232 step:16K smpl:130K ep:455 epch:6.59 loss:0.153 grdn:14.992 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
96 |
+
INFO 2025-04-13 07:29:48 ts/train.py:232 step:16K smpl:131K ep:461 epch:6.68 loss:0.151 grdn:15.471 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
97 |
+
INFO 2025-04-13 07:30:02 ts/train.py:232 step:17K smpl:133K ep:466 epch:6.76 loss:0.152 grdn:14.837 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
98 |
+
INFO 2025-04-13 07:30:15 ts/train.py:232 step:17K smpl:134K ep:472 epch:6.84 loss:0.153 grdn:14.808 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
99 |
+
INFO 2025-04-13 07:30:28 ts/train.py:232 step:17K smpl:136K ep:477 epch:6.92 loss:0.149 grdn:14.183 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
100 |
+
INFO 2025-04-13 07:30:41 ts/train.py:232 step:17K smpl:138K ep:483 epch:7.00 loss:0.153 grdn:15.182 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
101 |
+
INFO 2025-04-13 07:30:54 ts/train.py:232 step:17K smpl:139K ep:489 epch:7.08 loss:0.146 grdn:14.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
102 |
+
INFO 2025-04-13 07:31:08 ts/train.py:232 step:18K smpl:141K ep:494 epch:7.16 loss:0.144 grdn:14.158 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
103 |
+
INFO 2025-04-13 07:31:21 ts/train.py:232 step:18K smpl:142K ep:500 epch:7.24 loss:0.145 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
104 |
+
INFO 2025-04-13 07:31:34 ts/train.py:232 step:18K smpl:144K ep:506 epch:7.33 loss:0.142 grdn:14.397 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
105 |
+
INFO 2025-04-13 07:31:47 ts/train.py:232 step:18K smpl:146K ep:511 epch:7.41 loss:0.139 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
106 |
+
INFO 2025-04-13 07:32:00 ts/train.py:232 step:18K smpl:147K ep:517 epch:7.49 loss:0.139 grdn:13.893 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
107 |
+
INFO 2025-04-13 07:32:13 ts/train.py:232 step:19K smpl:149K ep:522 epch:7.57 loss:0.140 grdn:14.046 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
108 |
+
INFO 2025-04-13 07:32:26 ts/train.py:232 step:19K smpl:150K ep:528 epch:7.65 loss:0.141 grdn:14.334 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
109 |
+
INFO 2025-04-13 07:32:39 ts/train.py:232 step:19K smpl:152K ep:534 epch:7.73 loss:0.135 grdn:13.463 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
110 |
+
INFO 2025-04-13 07:32:52 ts/train.py:232 step:19K smpl:154K ep:539 epch:7.81 loss:0.140 grdn:13.593 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
111 |
+
INFO 2025-04-13 07:33:05 ts/train.py:232 step:19K smpl:155K ep:545 epch:7.90 loss:0.134 grdn:13.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
112 |
+
INFO 2025-04-13 07:33:18 ts/train.py:232 step:20K smpl:157K ep:550 epch:7.98 loss:0.136 grdn:13.459 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
113 |
+
INFO 2025-04-13 07:33:32 ts/train.py:232 step:20K smpl:158K ep:556 epch:8.06 loss:0.133 grdn:14.081 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
114 |
+
INFO 2025-04-13 07:33:45 ts/train.py:232 step:20K smpl:160K ep:562 epch:8.14 loss:0.130 grdn:13.435 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
115 |
+
INFO 2025-04-13 07:33:45 ts/train.py:241 Checkpoint policy after step 20000
|
116 |
+
INFO 2025-04-13 07:34:00 ts/train.py:232 step:20K smpl:162K ep:567 epch:8.22 loss:0.131 grdn:13.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
117 |
+
INFO 2025-04-13 07:34:13 ts/train.py:232 step:20K smpl:163K ep:573 epch:8.30 loss:0.131 grdn:13.245 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
118 |
+
INFO 2025-04-13 07:34:26 ts/train.py:232 step:21K smpl:165K ep:579 epch:8.38 loss:0.131 grdn:13.519 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
119 |
+
INFO 2025-04-13 07:34:39 ts/train.py:232 step:21K smpl:166K ep:584 epch:8.47 loss:0.130 grdn:13.058 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
120 |
+
INFO 2025-04-13 07:34:52 ts/train.py:232 step:21K smpl:168K ep:590 epch:8.55 loss:0.126 grdn:13.520 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
121 |
+
INFO 2025-04-13 07:35:05 ts/train.py:232 step:21K smpl:170K ep:595 epch:8.63 loss:0.125 grdn:12.425 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
122 |
+
INFO 2025-04-13 07:35:19 ts/train.py:232 step:21K smpl:171K ep:601 epch:8.71 loss:0.129 grdn:12.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
123 |
+
INFO 2025-04-13 07:35:32 ts/train.py:232 step:22K smpl:173K ep:607 epch:8.79 loss:0.124 grdn:12.513 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
124 |
+
INFO 2025-04-13 07:35:45 ts/train.py:232 step:22K smpl:174K ep:612 epch:8.87 loss:0.126 grdn:13.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
125 |
+
INFO 2025-04-13 07:35:58 ts/train.py:232 step:22K smpl:176K ep:618 epch:8.95 loss:0.125 grdn:12.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
126 |
+
INFO 2025-04-13 07:36:11 ts/train.py:232 step:22K smpl:178K ep:623 epch:9.04 loss:0.125 grdn:12.803 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
127 |
+
INFO 2025-04-13 07:36:25 ts/train.py:232 step:22K smpl:179K ep:629 epch:9.12 loss:0.123 grdn:13.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
128 |
+
INFO 2025-04-13 07:36:38 ts/train.py:232 step:23K smpl:181K ep:635 epch:9.20 loss:0.120 grdn:11.989 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
129 |
+
INFO 2025-04-13 07:36:51 ts/train.py:232 step:23K smpl:182K ep:640 epch:9.28 loss:0.122 grdn:12.755 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
130 |
+
INFO 2025-04-13 07:37:04 ts/train.py:232 step:23K smpl:184K ep:646 epch:9.36 loss:0.122 grdn:12.659 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
131 |
+
INFO 2025-04-13 07:37:17 ts/train.py:232 step:23K smpl:186K ep:652 epch:9.44 loss:0.121 grdn:11.655 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
132 |
+
INFO 2025-04-13 07:37:30 ts/train.py:232 step:23K smpl:187K ep:657 epch:9.52 loss:0.118 grdn:12.432 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
133 |
+
INFO 2025-04-13 07:37:43 ts/train.py:232 step:24K smpl:189K ep:663 epch:9.61 loss:0.116 grdn:12.006 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
134 |
+
INFO 2025-04-13 07:37:56 ts/train.py:232 step:24K smpl:190K ep:668 epch:9.69 loss:0.119 grdn:12.331 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
135 |
+
INFO 2025-04-13 07:38:09 ts/train.py:232 step:24K smpl:192K ep:674 epch:9.77 loss:0.117 grdn:11.835 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
136 |
+
INFO 2025-04-13 07:38:22 ts/train.py:232 step:24K smpl:194K ep:680 epch:9.85 loss:0.117 grdn:12.136 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
137 |
+
INFO 2025-04-13 07:38:35 ts/train.py:232 step:24K smpl:195K ep:685 epch:9.93 loss:0.114 grdn:11.678 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
138 |
+
INFO 2025-04-13 07:38:48 ts/train.py:232 step:25K smpl:197K ep:691 epch:10.01 loss:0.115 grdn:12.327 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
139 |
+
INFO 2025-04-13 07:39:02 ts/train.py:232 step:25K smpl:198K ep:696 epch:10.09 loss:0.112 grdn:11.804 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
140 |
+
INFO 2025-04-13 07:39:15 ts/train.py:232 step:25K smpl:200K ep:702 epch:10.18 loss:0.112 grdn:12.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
141 |
+
INFO 2025-04-13 07:39:27 ts/train.py:232 step:25K smpl:202K ep:708 epch:10.26 loss:0.113 grdn:12.086 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
142 |
+
INFO 2025-04-13 07:39:40 ts/train.py:232 step:25K smpl:203K ep:713 epch:10.34 loss:0.110 grdn:11.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
143 |
+
INFO 2025-04-13 07:39:53 ts/train.py:232 step:26K smpl:205K ep:719 epch:10.42 loss:0.111 grdn:11.815 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
144 |
+
INFO 2025-04-13 07:40:06 ts/train.py:232 step:26K smpl:206K ep:725 epch:10.50 loss:0.112 grdn:12.033 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
145 |
+
INFO 2025-04-13 07:40:19 ts/train.py:232 step:26K smpl:208K ep:730 epch:10.58 loss:0.112 grdn:11.434 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
146 |
+
INFO 2025-04-13 07:40:32 ts/train.py:232 step:26K smpl:210K ep:736 epch:10.66 loss:0.112 grdn:11.740 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
147 |
+
INFO 2025-04-13 07:40:45 ts/train.py:232 step:26K smpl:211K ep:741 epch:10.75 loss:0.109 grdn:10.975 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
148 |
+
INFO 2025-04-13 07:40:58 ts/train.py:232 step:27K smpl:213K ep:747 epch:10.83 loss:0.109 grdn:11.531 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
149 |
+
INFO 2025-04-13 07:41:11 ts/train.py:232 step:27K smpl:214K ep:753 epch:10.91 loss:0.110 grdn:11.617 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
150 |
+
INFO 2025-04-13 07:41:24 ts/train.py:232 step:27K smpl:216K ep:758 epch:10.99 loss:0.110 grdn:11.680 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
151 |
+
INFO 2025-04-13 07:41:38 ts/train.py:232 step:27K smpl:218K ep:764 epch:11.07 loss:0.106 grdn:11.377 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
152 |
+
INFO 2025-04-13 07:41:51 ts/train.py:232 step:27K smpl:219K ep:770 epch:11.15 loss:0.107 grdn:10.917 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
153 |
+
INFO 2025-04-13 07:42:04 ts/train.py:232 step:28K smpl:221K ep:775 epch:11.23 loss:0.105 grdn:11.053 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
154 |
+
INFO 2025-04-13 07:42:17 ts/train.py:232 step:28K smpl:222K ep:781 epch:11.32 loss:0.105 grdn:11.564 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
155 |
+
INFO 2025-04-13 07:42:30 ts/train.py:232 step:28K smpl:224K ep:786 epch:11.40 loss:0.106 grdn:10.940 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
156 |
+
INFO 2025-04-13 07:42:43 ts/train.py:232 step:28K smpl:226K ep:792 epch:11.48 loss:0.105 grdn:11.703 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
157 |
+
INFO 2025-04-13 07:42:56 ts/train.py:232 step:28K smpl:227K ep:798 epch:11.56 loss:0.106 grdn:11.474 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
158 |
+
INFO 2025-04-13 07:43:09 ts/train.py:232 step:29K smpl:229K ep:803 epch:11.64 loss:0.105 grdn:10.971 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
159 |
+
INFO 2025-04-13 07:43:22 ts/train.py:232 step:29K smpl:230K ep:809 epch:11.72 loss:0.104 grdn:11.014 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
160 |
+
INFO 2025-04-13 07:43:35 ts/train.py:232 step:29K smpl:232K ep:814 epch:11.80 loss:0.106 grdn:12.269 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
161 |
+
INFO 2025-04-13 07:43:48 ts/train.py:232 step:29K smpl:234K ep:820 epch:11.89 loss:0.103 grdn:11.243 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
162 |
+
INFO 2025-04-13 07:44:01 ts/train.py:232 step:29K smpl:235K ep:826 epch:11.97 loss:0.104 grdn:10.805 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
163 |
+
INFO 2025-04-13 07:44:15 ts/train.py:232 step:30K smpl:237K ep:831 epch:12.05 loss:0.100 grdn:10.175 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
164 |
+
INFO 2025-04-13 07:44:28 ts/train.py:232 step:30K smpl:238K ep:837 epch:12.13 loss:0.102 grdn:10.500 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
165 |
+
INFO 2025-04-13 07:44:41 ts/train.py:232 step:30K smpl:240K ep:843 epch:12.21 loss:0.100 grdn:10.632 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
166 |
+
INFO 2025-04-13 07:44:54 ts/train.py:232 step:30K smpl:242K ep:848 epch:12.29 loss:0.101 grdn:10.989 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
167 |
+
INFO 2025-04-13 07:45:07 ts/train.py:232 step:30K smpl:243K ep:854 epch:12.37 loss:0.098 grdn:10.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
168 |
+
INFO 2025-04-13 07:45:20 ts/train.py:232 step:31K smpl:245K ep:859 epch:12.45 loss:0.101 grdn:10.633 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
169 |
+
INFO 2025-04-13 07:45:33 ts/train.py:232 step:31K smpl:246K ep:865 epch:12.54 loss:0.100 grdn:10.785 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
170 |
+
INFO 2025-04-13 07:45:46 ts/train.py:232 step:31K smpl:248K ep:871 epch:12.62 loss:0.099 grdn:10.262 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
171 |
+
INFO 2025-04-13 07:45:59 ts/train.py:232 step:31K smpl:250K ep:876 epch:12.70 loss:0.100 grdn:10.483 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
172 |
+
INFO 2025-04-13 07:46:12 ts/train.py:232 step:31K smpl:251K ep:882 epch:12.78 loss:0.098 grdn:10.116 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
173 |
+
INFO 2025-04-13 07:46:25 ts/train.py:232 step:32K smpl:253K ep:887 epch:12.86 loss:0.096 grdn:10.274 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
174 |
+
INFO 2025-04-13 07:46:38 ts/train.py:232 step:32K smpl:254K ep:893 epch:12.94 loss:0.099 grdn:10.698 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
175 |
+
INFO 2025-04-13 07:46:52 ts/train.py:232 step:32K smpl:256K ep:899 epch:13.02 loss:0.098 grdn:10.042 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
176 |
+
INFO 2025-04-13 07:47:05 ts/train.py:232 step:32K smpl:258K ep:904 epch:13.11 loss:0.097 grdn:10.860 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
177 |
+
INFO 2025-04-13 07:47:18 ts/train.py:232 step:32K smpl:259K ep:910 epch:13.19 loss:0.097 grdn:10.217 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
178 |
+
INFO 2025-04-13 07:47:31 ts/train.py:232 step:33K smpl:261K ep:916 epch:13.27 loss:0.094 grdn:10.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
179 |
+
INFO 2025-04-13 07:47:44 ts/train.py:232 step:33K smpl:262K ep:921 epch:13.35 loss:0.095 grdn:10.433 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
180 |
+
INFO 2025-04-13 07:47:57 ts/train.py:232 step:33K smpl:264K ep:927 epch:13.43 loss:0.096 grdn:10.295 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
181 |
+
INFO 2025-04-13 07:48:10 ts/train.py:232 step:33K smpl:266K ep:932 epch:13.51 loss:0.096 grdn:10.294 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
182 |
+
INFO 2025-04-13 07:48:24 ts/train.py:232 step:33K smpl:267K ep:938 epch:13.59 loss:0.095 grdn:10.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
183 |
+
INFO 2025-04-13 07:48:37 ts/train.py:232 step:34K smpl:269K ep:944 epch:13.68 loss:0.093 grdn:9.761 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
184 |
+
INFO 2025-04-13 07:48:50 ts/train.py:232 step:34K smpl:270K ep:949 epch:13.76 loss:0.095 grdn:10.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
185 |
+
INFO 2025-04-13 07:49:03 ts/train.py:232 step:34K smpl:272K ep:955 epch:13.84 loss:0.094 grdn:9.866 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
186 |
+
INFO 2025-04-13 07:49:16 ts/train.py:232 step:34K smpl:274K ep:960 epch:13.92 loss:0.093 grdn:9.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
187 |
+
INFO 2025-04-13 07:49:30 ts/train.py:232 step:34K smpl:275K ep:966 epch:14.00 loss:0.094 grdn:9.887 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
188 |
+
INFO 2025-04-13 07:49:43 ts/train.py:232 step:35K smpl:277K ep:972 epch:14.08 loss:0.092 grdn:10.045 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
189 |
+
INFO 2025-04-13 07:49:56 ts/train.py:232 step:35K smpl:278K ep:977 epch:14.16 loss:0.092 grdn:9.508 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
190 |
+
INFO 2025-04-13 07:50:09 ts/train.py:232 step:35K smpl:280K ep:983 epch:14.25 loss:0.089 grdn:9.537 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
191 |
+
INFO 2025-04-13 07:50:21 ts/train.py:232 step:35K smpl:282K ep:989 epch:14.33 loss:0.090 grdn:9.587 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
192 |
+
INFO 2025-04-13 07:50:35 ts/train.py:232 step:35K smpl:283K ep:994 epch:14.41 loss:0.091 grdn:9.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
193 |
+
INFO 2025-04-13 07:50:48 ts/train.py:232 step:36K smpl:285K ep:1000 epch:14.49 loss:0.091 grdn:10.239 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
194 |
+
INFO 2025-04-13 07:51:01 ts/train.py:232 step:36K smpl:286K ep:1K epch:14.57 loss:0.091 grdn:9.974 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
195 |
+
INFO 2025-04-13 07:51:14 ts/train.py:232 step:36K smpl:288K ep:1K epch:14.65 loss:0.090 grdn:9.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
196 |
+
INFO 2025-04-13 07:51:27 ts/train.py:232 step:36K smpl:290K ep:1K epch:14.73 loss:0.092 grdn:9.628 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
197 |
+
INFO 2025-04-13 07:51:40 ts/train.py:232 step:36K smpl:291K ep:1K epch:14.82 loss:0.093 grdn:10.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
198 |
+
INFO 2025-04-13 07:51:53 ts/train.py:232 step:37K smpl:293K ep:1K epch:14.90 loss:0.091 grdn:9.530 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
199 |
+
INFO 2025-04-13 07:52:06 ts/train.py:232 step:37K smpl:294K ep:1K epch:14.98 loss:0.090 grdn:9.397 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
200 |
+
INFO 2025-04-13 07:52:19 ts/train.py:232 step:37K smpl:296K ep:1K epch:15.06 loss:0.087 grdn:9.458 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
201 |
+
INFO 2025-04-13 07:52:32 ts/train.py:232 step:37K smpl:298K ep:1K epch:15.14 loss:0.089 grdn:9.436 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
202 |
+
INFO 2025-04-13 07:52:45 ts/train.py:232 step:37K smpl:299K ep:1K epch:15.22 loss:0.089 grdn:9.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
203 |
+
INFO 2025-04-13 07:52:59 ts/train.py:232 step:38K smpl:301K ep:1K epch:15.30 loss:0.090 grdn:9.182 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
204 |
+
INFO 2025-04-13 07:53:12 ts/train.py:232 step:38K smpl:302K ep:1K epch:15.39 loss:0.089 grdn:9.066 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
205 |
+
INFO 2025-04-13 07:53:25 ts/train.py:232 step:38K smpl:304K ep:1K epch:15.47 loss:0.088 grdn:9.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
206 |
+
INFO 2025-04-13 07:53:38 ts/train.py:232 step:38K smpl:306K ep:1K epch:15.55 loss:0.087 grdn:9.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
207 |
+
INFO 2025-04-13 07:53:51 ts/train.py:232 step:38K smpl:307K ep:1K epch:15.63 loss:0.090 grdn:9.841 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
208 |
+
INFO 2025-04-13 07:54:04 ts/train.py:232 step:39K smpl:309K ep:1K epch:15.71 loss:0.088 grdn:8.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
209 |
+
INFO 2025-04-13 07:54:17 ts/train.py:232 step:39K smpl:310K ep:1K epch:15.79 loss:0.086 grdn:9.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
210 |
+
INFO 2025-04-13 07:54:30 ts/train.py:232 step:39K smpl:312K ep:1K epch:15.87 loss:0.087 grdn:9.112 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
211 |
+
INFO 2025-04-13 07:54:43 ts/train.py:232 step:39K smpl:314K ep:1K epch:15.96 loss:0.086 grdn:9.395 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
212 |
+
INFO 2025-04-13 07:54:56 ts/train.py:232 step:39K smpl:315K ep:1K epch:16.04 loss:0.087 grdn:9.777 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
213 |
+
INFO 2025-04-13 07:55:09 ts/train.py:232 step:40K smpl:317K ep:1K epch:16.12 loss:0.085 grdn:9.514 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
214 |
+
INFO 2025-04-13 07:55:22 ts/train.py:232 step:40K smpl:318K ep:1K epch:16.20 loss:0.086 grdn:9.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
215 |
+
INFO 2025-04-13 07:55:36 ts/train.py:232 step:40K smpl:320K ep:1K epch:16.28 loss:0.085 grdn:8.910 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
216 |
+
INFO 2025-04-13 07:55:36 ts/train.py:241 Checkpoint policy after step 40000
|
217 |
+
INFO 2025-04-13 07:55:51 ts/train.py:232 step:40K smpl:322K ep:1K epch:16.36 loss:0.086 grdn:9.050 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
218 |
+
INFO 2025-04-13 07:56:04 ts/train.py:232 step:40K smpl:323K ep:1K epch:16.44 loss:0.087 grdn:8.999 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
219 |
+
INFO 2025-04-13 07:56:17 ts/train.py:232 step:41K smpl:325K ep:1K epch:16.53 loss:0.083 grdn:8.985 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
220 |
+
INFO 2025-04-13 07:56:30 ts/train.py:232 step:41K smpl:326K ep:1K epch:16.61 loss:0.085 grdn:9.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
221 |
+
INFO 2025-04-13 07:56:43 ts/train.py:232 step:41K smpl:328K ep:1K epch:16.69 loss:0.084 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
222 |
+
INFO 2025-04-13 07:56:56 ts/train.py:232 step:41K smpl:330K ep:1K epch:16.77 loss:0.082 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
223 |
+
INFO 2025-04-13 07:57:09 ts/train.py:232 step:41K smpl:331K ep:1K epch:16.85 loss:0.085 grdn:9.034 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
224 |
+
INFO 2025-04-13 07:57:22 ts/train.py:232 step:42K smpl:333K ep:1K epch:16.93 loss:0.086 grdn:8.891 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
225 |
+
INFO 2025-04-13 07:57:36 ts/train.py:232 step:42K smpl:334K ep:1K epch:17.01 loss:0.083 grdn:8.731 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
226 |
+
INFO 2025-04-13 07:57:49 ts/train.py:232 step:42K smpl:336K ep:1K epch:17.09 loss:0.083 grdn:8.673 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
227 |
+
INFO 2025-04-13 07:58:02 ts/train.py:232 step:42K smpl:338K ep:1K epch:17.18 loss:0.083 grdn:8.493 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
228 |
+
INFO 2025-04-13 07:58:15 ts/train.py:232 step:42K smpl:339K ep:1K epch:17.26 loss:0.082 grdn:8.963 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
229 |
+
INFO 2025-04-13 07:58:29 ts/train.py:232 step:43K smpl:341K ep:1K epch:17.34 loss:0.083 grdn:9.732 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
230 |
+
INFO 2025-04-13 07:58:42 ts/train.py:232 step:43K smpl:342K ep:1K epch:17.42 loss:0.085 grdn:9.295 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
231 |
+
INFO 2025-04-13 07:58:55 ts/train.py:232 step:43K smpl:344K ep:1K epch:17.50 loss:0.082 grdn:8.752 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
232 |
+
INFO 2025-04-13 07:59:08 ts/train.py:232 step:43K smpl:346K ep:1K epch:17.58 loss:0.080 grdn:8.553 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
233 |
+
INFO 2025-04-13 07:59:21 ts/train.py:232 step:43K smpl:347K ep:1K epch:17.66 loss:0.082 grdn:8.904 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
234 |
+
INFO 2025-04-13 07:59:34 ts/train.py:232 step:44K smpl:349K ep:1K epch:17.75 loss:0.081 grdn:8.554 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
235 |
+
INFO 2025-04-13 07:59:47 ts/train.py:232 step:44K smpl:350K ep:1K epch:17.83 loss:0.081 grdn:8.590 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
236 |
+
INFO 2025-04-13 08:00:00 ts/train.py:232 step:44K smpl:352K ep:1K epch:17.91 loss:0.081 grdn:8.783 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
237 |
+
INFO 2025-04-13 08:00:13 ts/train.py:232 step:44K smpl:354K ep:1K epch:17.99 loss:0.080 grdn:8.536 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
238 |
+
INFO 2025-04-13 08:00:27 ts/train.py:232 step:44K smpl:355K ep:1K epch:18.07 loss:0.081 grdn:8.852 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
239 |
+
INFO 2025-04-13 08:00:40 ts/train.py:232 step:45K smpl:357K ep:1K epch:18.15 loss:0.078 grdn:8.251 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
240 |
+
INFO 2025-04-13 08:00:53 ts/train.py:232 step:45K smpl:358K ep:1K epch:18.23 loss:0.082 grdn:8.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
241 |
+
INFO 2025-04-13 08:01:05 ts/train.py:232 step:45K smpl:360K ep:1K epch:18.32 loss:0.080 grdn:8.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
242 |
+
INFO 2025-04-13 08:01:19 ts/train.py:232 step:45K smpl:362K ep:1K epch:18.40 loss:0.080 grdn:8.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
243 |
+
INFO 2025-04-13 08:01:31 ts/train.py:232 step:45K smpl:363K ep:1K epch:18.48 loss:0.079 grdn:8.374 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
244 |
+
INFO 2025-04-13 08:01:44 ts/train.py:232 step:46K smpl:365K ep:1K epch:18.56 loss:0.078 grdn:8.490 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
245 |
+
INFO 2025-04-13 08:01:57 ts/train.py:232 step:46K smpl:366K ep:1K epch:18.64 loss:0.082 grdn:8.518 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
246 |
+
INFO 2025-04-13 08:02:10 ts/train.py:232 step:46K smpl:368K ep:1K epch:18.72 loss:0.078 grdn:8.154 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
247 |
+
INFO 2025-04-13 08:02:23 ts/train.py:232 step:46K smpl:370K ep:1K epch:18.80 loss:0.079 grdn:8.821 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
248 |
+
INFO 2025-04-13 08:02:36 ts/train.py:232 step:46K smpl:371K ep:1K epch:18.89 loss:0.079 grdn:8.709 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
249 |
+
INFO 2025-04-13 08:02:49 ts/train.py:232 step:47K smpl:373K ep:1K epch:18.97 loss:0.079 grdn:8.873 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
250 |
+
INFO 2025-04-13 08:03:03 ts/train.py:232 step:47K smpl:374K ep:1K epch:19.05 loss:0.080 grdn:8.770 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
251 |
+
INFO 2025-04-13 08:03:16 ts/train.py:232 step:47K smpl:376K ep:1K epch:19.13 loss:0.079 grdn:8.501 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
252 |
+
INFO 2025-04-13 08:03:29 ts/train.py:232 step:47K smpl:378K ep:1K epch:19.21 loss:0.079 grdn:8.482 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
253 |
+
INFO 2025-04-13 08:03:42 ts/train.py:232 step:47K smpl:379K ep:1K epch:19.29 loss:0.077 grdn:8.125 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
254 |
+
INFO 2025-04-13 08:03:55 ts/train.py:232 step:48K smpl:381K ep:1K epch:19.37 loss:0.078 grdn:8.142 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
255 |
+
INFO 2025-04-13 08:04:08 ts/train.py:232 step:48K smpl:382K ep:1K epch:19.46 loss:0.076 grdn:8.312 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
256 |
+
INFO 2025-04-13 08:04:21 ts/train.py:232 step:48K smpl:384K ep:1K epch:19.54 loss:0.078 grdn:8.743 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
257 |
+
INFO 2025-04-13 08:04:34 ts/train.py:232 step:48K smpl:386K ep:1K epch:19.62 loss:0.079 grdn:8.650 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
258 |
+
INFO 2025-04-13 08:04:47 ts/train.py:232 step:48K smpl:387K ep:1K epch:19.70 loss:0.076 grdn:8.555 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
259 |
+
INFO 2025-04-13 08:05:00 ts/train.py:232 step:49K smpl:389K ep:1K epch:19.78 loss:0.076 grdn:8.133 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
260 |
+
INFO 2025-04-13 08:05:13 ts/train.py:232 step:49K smpl:390K ep:1K epch:19.86 loss:0.078 grdn:7.931 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
261 |
+
INFO 2025-04-13 08:05:26 ts/train.py:232 step:49K smpl:392K ep:1K epch:19.94 loss:0.075 grdn:8.111 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
262 |
+
INFO 2025-04-13 08:05:40 ts/train.py:232 step:49K smpl:394K ep:1K epch:20.03 loss:0.077 grdn:8.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
263 |
+
INFO 2025-04-13 08:05:53 ts/train.py:232 step:49K smpl:395K ep:1K epch:20.11 loss:0.075 grdn:8.283 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
264 |
+
INFO 2025-04-13 08:06:06 ts/train.py:232 step:50K smpl:397K ep:1K epch:20.19 loss:0.077 grdn:8.476 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
265 |
+
INFO 2025-04-13 08:06:19 ts/train.py:232 step:50K smpl:398K ep:1K epch:20.27 loss:0.076 grdn:8.140 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
266 |
+
INFO 2025-04-13 08:06:32 ts/train.py:232 step:50K smpl:400K ep:1K epch:20.35 loss:0.075 grdn:7.948 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
267 |
+
INFO 2025-04-13 08:06:45 ts/train.py:232 step:50K smpl:402K ep:1K epch:20.43 loss:0.074 grdn:7.931 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
268 |
+
INFO 2025-04-13 08:06:58 ts/train.py:232 step:50K smpl:403K ep:1K epch:20.51 loss:0.075 grdn:7.934 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
269 |
+
INFO 2025-04-13 08:07:11 ts/train.py:232 step:51K smpl:405K ep:1K epch:20.60 loss:0.074 grdn:8.062 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
270 |
+
INFO 2025-04-13 08:07:25 ts/train.py:232 step:51K smpl:406K ep:1K epch:20.68 loss:0.077 grdn:8.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
271 |
+
INFO 2025-04-13 08:07:38 ts/train.py:232 step:51K smpl:408K ep:1K epch:20.76 loss:0.075 grdn:8.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
272 |
+
INFO 2025-04-13 08:07:51 ts/train.py:232 step:51K smpl:410K ep:1K epch:20.84 loss:0.075 grdn:7.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
273 |
+
INFO 2025-04-13 08:08:04 ts/train.py:232 step:51K smpl:411K ep:1K epch:20.92 loss:0.075 grdn:8.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
274 |
+
INFO 2025-04-13 08:08:17 ts/train.py:232 step:52K smpl:413K ep:1K epch:21.00 loss:0.073 grdn:7.712 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
275 |
+
INFO 2025-04-13 08:08:31 ts/train.py:232 step:52K smpl:414K ep:1K epch:21.08 loss:0.074 grdn:8.426 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
276 |
+
INFO 2025-04-13 08:08:44 ts/train.py:232 step:52K smpl:416K ep:1K epch:21.17 loss:0.074 grdn:7.754 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
277 |
+
INFO 2025-04-13 08:08:57 ts/train.py:232 step:52K smpl:418K ep:1K epch:21.25 loss:0.075 grdn:7.790 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
278 |
+
INFO 2025-04-13 08:09:10 ts/train.py:232 step:52K smpl:419K ep:1K epch:21.33 loss:0.074 grdn:7.899 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
279 |
+
INFO 2025-04-13 08:09:23 ts/train.py:232 step:53K smpl:421K ep:1K epch:21.41 loss:0.074 grdn:8.311 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
280 |
+
INFO 2025-04-13 08:09:36 ts/train.py:232 step:53K smpl:422K ep:1K epch:21.49 loss:0.076 grdn:8.117 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
281 |
+
INFO 2025-04-13 08:09:49 ts/train.py:232 step:53K smpl:424K ep:1K epch:21.57 loss:0.076 grdn:8.266 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
282 |
+
INFO 2025-04-13 08:10:02 ts/train.py:232 step:53K smpl:426K ep:1K epch:21.65 loss:0.074 grdn:7.910 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
283 |
+
INFO 2025-04-13 08:10:15 ts/train.py:232 step:53K smpl:427K ep:1K epch:21.73 loss:0.071 grdn:7.449 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
284 |
+
INFO 2025-04-13 08:10:33 ts/train.py:232 step:54K smpl:429K ep:2K epch:21.82 loss:0.075 grdn:7.902 lr:1.0e-05 updt_s:0.064 data_s:0.027
|
285 |
+
INFO 2025-04-13 08:10:46 ts/train.py:232 step:54K smpl:430K ep:2K epch:21.90 loss:0.072 grdn:7.497 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
286 |
+
INFO 2025-04-13 08:10:59 ts/train.py:232 step:54K smpl:432K ep:2K epch:21.98 loss:0.072 grdn:7.870 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
287 |
+
INFO 2025-04-13 08:11:13 ts/train.py:232 step:54K smpl:434K ep:2K epch:22.06 loss:0.072 grdn:8.095 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
288 |
+
INFO 2025-04-13 08:11:26 ts/train.py:232 step:54K smpl:435K ep:2K epch:22.14 loss:0.071 grdn:7.866 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
289 |
+
INFO 2025-04-13 08:11:39 ts/train.py:232 step:55K smpl:437K ep:2K epch:22.22 loss:0.071 grdn:7.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
290 |
+
INFO 2025-04-13 08:11:52 ts/train.py:232 step:55K smpl:438K ep:2K epch:22.30 loss:0.074 grdn:7.789 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
291 |
+
INFO 2025-04-13 08:12:05 ts/train.py:232 step:55K smpl:440K ep:2K epch:22.39 loss:0.074 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
292 |
+
INFO 2025-04-13 08:12:18 ts/train.py:232 step:55K smpl:442K ep:2K epch:22.47 loss:0.073 grdn:7.568 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
293 |
+
INFO 2025-04-13 08:12:31 ts/train.py:232 step:55K smpl:443K ep:2K epch:22.55 loss:0.074 grdn:8.172 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
294 |
+
INFO 2025-04-13 08:12:44 ts/train.py:232 step:56K smpl:445K ep:2K epch:22.63 loss:0.070 grdn:7.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
295 |
+
INFO 2025-04-13 08:12:57 ts/train.py:232 step:56K smpl:446K ep:2K epch:22.71 loss:0.074 grdn:7.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
296 |
+
INFO 2025-04-13 08:13:11 ts/train.py:232 step:56K smpl:448K ep:2K epch:22.79 loss:0.071 grdn:7.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
297 |
+
INFO 2025-04-13 08:13:24 ts/train.py:232 step:56K smpl:450K ep:2K epch:22.87 loss:0.070 grdn:7.371 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
298 |
+
INFO 2025-04-13 08:13:37 ts/train.py:232 step:56K smpl:451K ep:2K epch:22.96 loss:0.074 grdn:8.149 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
299 |
+
INFO 2025-04-13 08:13:50 ts/train.py:232 step:57K smpl:453K ep:2K epch:23.04 loss:0.072 grdn:7.781 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
300 |
+
INFO 2025-04-13 08:14:03 ts/train.py:232 step:57K smpl:454K ep:2K epch:23.12 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
301 |
+
INFO 2025-04-13 08:14:17 ts/train.py:232 step:57K smpl:456K ep:2K epch:23.20 loss:0.072 grdn:8.014 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
302 |
+
INFO 2025-04-13 08:14:30 ts/train.py:232 step:57K smpl:458K ep:2K epch:23.28 loss:0.069 grdn:7.556 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
303 |
+
INFO 2025-04-13 08:14:43 ts/train.py:232 step:57K smpl:459K ep:2K epch:23.36 loss:0.070 grdn:7.363 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
304 |
+
INFO 2025-04-13 08:14:56 ts/train.py:232 step:58K smpl:461K ep:2K epch:23.44 loss:0.070 grdn:7.559 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
305 |
+
INFO 2025-04-13 08:15:09 ts/train.py:232 step:58K smpl:462K ep:2K epch:23.53 loss:0.069 grdn:7.430 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
306 |
+
INFO 2025-04-13 08:15:22 ts/train.py:232 step:58K smpl:464K ep:2K epch:23.61 loss:0.071 grdn:7.719 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
307 |
+
INFO 2025-04-13 08:15:35 ts/train.py:232 step:58K smpl:466K ep:2K epch:23.69 loss:0.069 grdn:7.546 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
308 |
+
INFO 2025-04-13 08:15:48 ts/train.py:232 step:58K smpl:467K ep:2K epch:23.77 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
309 |
+
INFO 2025-04-13 08:16:01 ts/train.py:232 step:59K smpl:469K ep:2K epch:23.85 loss:0.069 grdn:7.826 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
310 |
+
INFO 2025-04-13 08:16:15 ts/train.py:232 step:59K smpl:470K ep:2K epch:23.93 loss:0.070 grdn:7.962 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
311 |
+
INFO 2025-04-13 08:16:28 ts/train.py:232 step:59K smpl:472K ep:2K epch:24.01 loss:0.069 grdn:7.655 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
312 |
+
INFO 2025-04-13 08:16:41 ts/train.py:232 step:59K smpl:474K ep:2K epch:24.10 loss:0.071 grdn:7.565 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
313 |
+
INFO 2025-04-13 08:16:54 ts/train.py:232 step:59K smpl:475K ep:2K epch:24.18 loss:0.069 grdn:7.356 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
314 |
+
INFO 2025-04-13 08:17:07 ts/train.py:232 step:60K smpl:477K ep:2K epch:24.26 loss:0.070 grdn:7.571 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
315 |
+
INFO 2025-04-13 08:17:20 ts/train.py:232 step:60K smpl:478K ep:2K epch:24.34 loss:0.070 grdn:7.669 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
316 |
+
INFO 2025-04-13 08:17:33 ts/train.py:232 step:60K smpl:480K ep:2K epch:24.42 loss:0.068 grdn:7.210 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
317 |
+
INFO 2025-04-13 08:17:33 ts/train.py:241 Checkpoint policy after step 60000
|
318 |
+
INFO 2025-04-13 08:17:49 ts/train.py:232 step:60K smpl:482K ep:2K epch:24.50 loss:0.066 grdn:7.068 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
319 |
+
INFO 2025-04-13 08:18:02 ts/train.py:232 step:60K smpl:483K ep:2K epch:24.58 loss:0.069 grdn:7.378 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
320 |
+
INFO 2025-04-13 08:18:15 ts/train.py:232 step:61K smpl:485K ep:2K epch:24.67 loss:0.066 grdn:7.443 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
321 |
+
INFO 2025-04-13 08:18:28 ts/train.py:232 step:61K smpl:486K ep:2K epch:24.75 loss:0.069 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
322 |
+
INFO 2025-04-13 08:18:41 ts/train.py:232 step:61K smpl:488K ep:2K epch:24.83 loss:0.070 grdn:7.414 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
323 |
+
INFO 2025-04-13 08:18:54 ts/train.py:232 step:61K smpl:490K ep:2K epch:24.91 loss:0.068 grdn:7.350 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
324 |
+
INFO 2025-04-13 08:19:07 ts/train.py:232 step:61K smpl:491K ep:2K epch:24.99 loss:0.070 grdn:7.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
325 |
+
INFO 2025-04-13 08:19:21 ts/train.py:232 step:62K smpl:493K ep:2K epch:25.07 loss:0.069 grdn:7.381 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
326 |
+
INFO 2025-04-13 08:19:34 ts/train.py:232 step:62K smpl:494K ep:2K epch:25.15 loss:0.068 grdn:7.491 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
327 |
+
INFO 2025-04-13 08:19:47 ts/train.py:232 step:62K smpl:496K ep:2K epch:25.24 loss:0.069 grdn:7.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
328 |
+
INFO 2025-04-13 08:20:00 ts/train.py:232 step:62K smpl:498K ep:2K epch:25.32 loss:0.067 grdn:7.148 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
329 |
+
INFO 2025-04-13 08:20:13 ts/train.py:232 step:62K smpl:499K ep:2K epch:25.40 loss:0.066 grdn:7.036 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
330 |
+
INFO 2025-04-13 08:20:27 ts/train.py:232 step:63K smpl:501K ep:2K epch:25.48 loss:0.069 grdn:7.520 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
331 |
+
INFO 2025-04-13 08:20:40 ts/train.py:232 step:63K smpl:502K ep:2K epch:25.56 loss:0.068 grdn:7.298 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
332 |
+
INFO 2025-04-13 08:20:53 ts/train.py:232 step:63K smpl:504K ep:2K epch:25.64 loss:0.065 grdn:7.105 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
333 |
+
INFO 2025-04-13 08:21:06 ts/train.py:232 step:63K smpl:506K ep:2K epch:25.72 loss:0.068 grdn:6.887 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
334 |
+
INFO 2025-04-13 08:21:19 ts/train.py:232 step:63K smpl:507K ep:2K epch:25.81 loss:0.066 grdn:7.273 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
335 |
+
INFO 2025-04-13 08:21:32 ts/train.py:232 step:64K smpl:509K ep:2K epch:25.89 loss:0.065 grdn:6.902 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
336 |
+
INFO 2025-04-13 08:21:45 ts/train.py:232 step:64K smpl:510K ep:2K epch:25.97 loss:0.066 grdn:6.634 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
337 |
+
INFO 2025-04-13 08:21:59 ts/train.py:232 step:64K smpl:512K ep:2K epch:26.05 loss:0.068 grdn:7.504 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
338 |
+
INFO 2025-04-13 08:22:12 ts/train.py:232 step:64K smpl:514K ep:2K epch:26.13 loss:0.067 grdn:7.349 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
339 |
+
INFO 2025-04-13 08:22:25 ts/train.py:232 step:64K smpl:515K ep:2K epch:26.21 loss:0.066 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
340 |
+
INFO 2025-04-13 08:22:38 ts/train.py:232 step:65K smpl:517K ep:2K epch:26.29 loss:0.066 grdn:7.175 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
341 |
+
INFO 2025-04-13 08:22:51 ts/train.py:232 step:65K smpl:518K ep:2K epch:26.37 loss:0.067 grdn:7.547 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
342 |
+
INFO 2025-04-13 08:23:04 ts/train.py:232 step:65K smpl:520K ep:2K epch:26.46 loss:0.065 grdn:7.369 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
343 |
+
INFO 2025-04-13 08:23:17 ts/train.py:232 step:65K smpl:522K ep:2K epch:26.54 loss:0.065 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
344 |
+
INFO 2025-04-13 08:23:30 ts/train.py:232 step:65K smpl:523K ep:2K epch:26.62 loss:0.066 grdn:7.048 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
345 |
+
INFO 2025-04-13 08:23:44 ts/train.py:232 step:66K smpl:525K ep:2K epch:26.70 loss:0.065 grdn:6.854 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
346 |
+
INFO 2025-04-13 08:23:57 ts/train.py:232 step:66K smpl:526K ep:2K epch:26.78 loss:0.065 grdn:6.905 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
347 |
+
INFO 2025-04-13 08:24:10 ts/train.py:232 step:66K smpl:528K ep:2K epch:26.86 loss:0.064 grdn:6.686 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
348 |
+
INFO 2025-04-13 08:24:23 ts/train.py:232 step:66K smpl:530K ep:2K epch:26.94 loss:0.065 grdn:6.974 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
349 |
+
INFO 2025-04-13 08:24:36 ts/train.py:232 step:66K smpl:531K ep:2K epch:27.03 loss:0.066 grdn:7.432 lr:1.0e-05 updt_s:0.064 data_s:0.003
|
350 |
+
INFO 2025-04-13 08:24:49 ts/train.py:232 step:67K smpl:533K ep:2K epch:27.11 loss:0.064 grdn:6.749 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
351 |
+
INFO 2025-04-13 08:25:02 ts/train.py:232 step:67K smpl:534K ep:2K epch:27.19 loss:0.065 grdn:7.442 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
352 |
+
INFO 2025-04-13 08:25:16 ts/train.py:232 step:67K smpl:536K ep:2K epch:27.27 loss:0.065 grdn:6.788 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
353 |
+
INFO 2025-04-13 08:25:29 ts/train.py:232 step:67K smpl:538K ep:2K epch:27.35 loss:0.066 grdn:7.083 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
354 |
+
INFO 2025-04-13 08:25:42 ts/train.py:232 step:67K smpl:539K ep:2K epch:27.43 loss:0.064 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
355 |
+
INFO 2025-04-13 08:25:55 ts/train.py:232 step:68K smpl:541K ep:2K epch:27.51 loss:0.064 grdn:6.878 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
356 |
+
INFO 2025-04-13 08:26:08 ts/train.py:232 step:68K smpl:542K ep:2K epch:27.60 loss:0.064 grdn:6.684 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
357 |
+
INFO 2025-04-13 08:26:21 ts/train.py:232 step:68K smpl:544K ep:2K epch:27.68 loss:0.065 grdn:7.029 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
358 |
+
INFO 2025-04-13 08:26:34 ts/train.py:232 step:68K smpl:546K ep:2K epch:27.76 loss:0.066 grdn:7.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
359 |
+
INFO 2025-04-13 08:26:47 ts/train.py:232 step:68K smpl:547K ep:2K epch:27.84 loss:0.065 grdn:6.955 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
360 |
+
INFO 2025-04-13 08:27:00 ts/train.py:232 step:69K smpl:549K ep:2K epch:27.92 loss:0.065 grdn:6.922 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
361 |
+
INFO 2025-04-13 08:27:14 ts/train.py:232 step:69K smpl:550K ep:2K epch:28.00 loss:0.065 grdn:7.078 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
362 |
+
INFO 2025-04-13 08:27:27 ts/train.py:232 step:69K smpl:552K ep:2K epch:28.08 loss:0.064 grdn:6.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
363 |
+
INFO 2025-04-13 08:27:40 ts/train.py:232 step:69K smpl:554K ep:2K epch:28.17 loss:0.063 grdn:6.870 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
364 |
+
INFO 2025-04-13 08:27:53 ts/train.py:232 step:69K smpl:555K ep:2K epch:28.25 loss:0.063 grdn:7.024 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
365 |
+
INFO 2025-04-13 08:28:06 ts/train.py:232 step:70K smpl:557K ep:2K epch:28.33 loss:0.064 grdn:6.969 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
366 |
+
INFO 2025-04-13 08:28:20 ts/train.py:232 step:70K smpl:558K ep:2K epch:28.41 loss:0.064 grdn:6.757 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
367 |
+
INFO 2025-04-13 08:28:33 ts/train.py:232 step:70K smpl:560K ep:2K epch:28.49 loss:0.065 grdn:6.888 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
368 |
+
INFO 2025-04-13 08:28:46 ts/train.py:232 step:70K smpl:562K ep:2K epch:28.57 loss:0.066 grdn:6.895 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
369 |
+
INFO 2025-04-13 08:28:59 ts/train.py:232 step:70K smpl:563K ep:2K epch:28.65 loss:0.064 grdn:6.967 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
370 |
+
INFO 2025-04-13 08:29:12 ts/train.py:232 step:71K smpl:565K ep:2K epch:28.74 loss:0.064 grdn:7.085 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
371 |
+
INFO 2025-04-13 08:29:25 ts/train.py:232 step:71K smpl:566K ep:2K epch:28.82 loss:0.064 grdn:6.958 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
372 |
+
INFO 2025-04-13 08:29:38 ts/train.py:232 step:71K smpl:568K ep:2K epch:28.90 loss:0.063 grdn:6.867 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
373 |
+
INFO 2025-04-13 08:29:51 ts/train.py:232 step:71K smpl:570K ep:2K epch:28.98 loss:0.064 grdn:7.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
374 |
+
INFO 2025-04-13 08:30:04 ts/train.py:232 step:71K smpl:571K ep:2K epch:29.06 loss:0.063 grdn:6.572 lr:1.0e-05 updt_s:0.065 data_s:0.003
|
375 |
+
INFO 2025-04-13 08:30:17 ts/train.py:232 step:72K smpl:573K ep:2K epch:29.14 loss:0.061 grdn:6.608 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
376 |
+
INFO 2025-04-13 08:30:30 ts/train.py:232 step:72K smpl:574K ep:2K epch:29.22 loss:0.063 grdn:6.892 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
377 |
+
INFO 2025-04-13 08:30:44 ts/train.py:232 step:72K smpl:576K ep:2K epch:29.31 loss:0.063 grdn:6.639 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
378 |
+
INFO 2025-04-13 08:30:57 ts/train.py:232 step:72K smpl:578K ep:2K epch:29.39 loss:0.064 grdn:6.885 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
379 |
+
INFO 2025-04-13 08:31:10 ts/train.py:232 step:72K smpl:579K ep:2K epch:29.47 loss:0.062 grdn:6.901 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
380 |
+
INFO 2025-04-13 08:31:23 ts/train.py:232 step:73K smpl:581K ep:2K epch:29.55 loss:0.064 grdn:7.140 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
381 |
+
INFO 2025-04-13 08:31:36 ts/train.py:232 step:73K smpl:582K ep:2K epch:29.63 loss:0.062 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
382 |
+
INFO 2025-04-13 08:31:49 ts/train.py:232 step:73K smpl:584K ep:2K epch:29.71 loss:0.064 grdn:6.793 lr:1.0e-05 updt_s:0.064 data_s:0.000
|
383 |
+
INFO 2025-04-13 08:32:02 ts/train.py:232 step:73K smpl:586K ep:2K epch:29.79 loss:0.065 grdn:6.861 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
384 |
+
INFO 2025-04-13 08:32:15 ts/train.py:232 step:73K smpl:587K ep:2K epch:29.88 loss:0.061 grdn:6.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
|
wandb/run-20250413_071149-ipo2f6m2/files/requirements.txt
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
setuptools==75.8.0
|
2 |
+
wheel==0.45.1
|
3 |
+
pip==25.0
|
4 |
+
wcwidth==0.2.13
|
5 |
+
triton==3.2.0
|
6 |
+
pytz==2025.2
|
7 |
+
PyOpenGL==3.1.9
|
8 |
+
nvidia-cusparselt-cu12==0.6.2
|
9 |
+
mpmath==1.3.0
|
10 |
+
glfw==2.8.0
|
11 |
+
Farama-Notifications==0.0.4
|
12 |
+
asciitree==0.3.3
|
13 |
+
antlr4-python3-runtime==4.9.3
|
14 |
+
zipp==3.21.0
|
15 |
+
xxhash==3.5.0
|
16 |
+
wrapt==1.17.2
|
17 |
+
urllib3==2.4.0
|
18 |
+
tzdata==2025.2
|
19 |
+
typing_extensions==4.13.2
|
20 |
+
tqdm==4.67.1
|
21 |
+
TorchCodec==0.2.1
|
22 |
+
toml==0.10.2
|
23 |
+
termcolor==3.0.1
|
24 |
+
sympy==1.13.1
|
25 |
+
soupsieve==2.6
|
26 |
+
smmap==5.0.2
|
27 |
+
six==1.17.0
|
28 |
+
setproctitle==1.3.5
|
29 |
+
safetensors==0.5.3
|
30 |
+
regex==2024.11.6
|
31 |
+
pyzmq==26.4.0
|
32 |
+
PyYAML==6.0.2
|
33 |
+
PySocks==1.7.1
|
34 |
+
pyparsing==3.2.3
|
35 |
+
pygame==2.6.1
|
36 |
+
pycparser==2.22
|
37 |
+
pyarrow==19.0.1
|
38 |
+
psutil==7.0.0
|
39 |
+
protobuf==5.29.4
|
40 |
+
propcache==0.3.1
|
41 |
+
prompt_toolkit==3.0.50
|
42 |
+
platformdirs==4.3.7
|
43 |
+
pillow==11.1.0
|
44 |
+
pfzy==0.3.4
|
45 |
+
packaging==24.2
|
46 |
+
orderly-set==5.4.0
|
47 |
+
nvidia-nvtx-cu12==12.4.127
|
48 |
+
nvidia-nvjitlink-cu12==12.4.127
|
49 |
+
nvidia-nccl-cu12==2.21.5
|
50 |
+
nvidia-curand-cu12==10.3.5.147
|
51 |
+
nvidia-cufft-cu12==11.2.1.3
|
52 |
+
nvidia-cuda-runtime-cu12==12.4.127
|
53 |
+
nvidia-cuda-nvrtc-cu12==12.4.127
|
54 |
+
nvidia-cuda-cupti-cu12==12.4.127
|
55 |
+
nvidia-cublas-cu12==12.4.5.8
|
56 |
+
networkx==3.4.2
|
57 |
+
mypy-extensions==1.0.0
|
58 |
+
mergedeep==1.3.4
|
59 |
+
MarkupSafe==3.0.2
|
60 |
+
lxml==5.3.2
|
61 |
+
llvmlite==0.44.0
|
62 |
+
itsdangerous==2.2.0
|
63 |
+
imageio-ffmpeg==0.6.0
|
64 |
+
idna==3.10
|
65 |
+
hf_transfer==0.1.9
|
66 |
+
fsspec==2024.12.0
|
67 |
+
frozenlist==1.5.0
|
68 |
+
filelock==3.18.0
|
69 |
+
fasteners==0.19
|
70 |
+
evdev==1.9.1
|
71 |
+
einops==0.8.1
|
72 |
+
dill==0.3.8
|
73 |
+
cmake==4.0.0
|
74 |
+
cloudpickle==3.1.1
|
75 |
+
click==8.1.8
|
76 |
+
charset-normalizer==3.4.1
|
77 |
+
certifi==2025.1.31
|
78 |
+
blinker==1.9.0
|
79 |
+
av==14.3.0
|
80 |
+
attrs==25.3.0
|
81 |
+
async-timeout==5.0.1
|
82 |
+
annotated-types==0.7.0
|
83 |
+
aiohappyeyeballs==2.6.1
|
84 |
+
absl-py==2.2.2
|
85 |
+
Werkzeug==3.1.3
|
86 |
+
typing-inspection==0.4.0
|
87 |
+
typing-inspect==0.9.0
|
88 |
+
tifffile==2025.3.30
|
89 |
+
shapely==2.1.0
|
90 |
+
sentry-sdk==2.25.1
|
91 |
+
scipy==1.15.2
|
92 |
+
rerun-sdk==0.22.1
|
93 |
+
requests==2.32.3
|
94 |
+
pyyaml-include==1.4.1
|
95 |
+
python-xlib==0.33
|
96 |
+
python-dateutil==2.9.0.post0
|
97 |
+
pydantic_core==2.33.1
|
98 |
+
opencv-python-headless==4.11.0.86
|
99 |
+
opencv-python==4.11.0.86
|
100 |
+
omegaconf==2.3.0
|
101 |
+
nvidia-cusparse-cu12==12.3.1.170
|
102 |
+
nvidia-cudnn-cu12==9.1.0.70
|
103 |
+
numcodecs==0.13.1
|
104 |
+
multiprocess==0.70.16
|
105 |
+
multidict==6.4.3
|
106 |
+
mujoco==2.3.7
|
107 |
+
lazy_loader==0.4
|
108 |
+
labmaze==1.0.6
|
109 |
+
jsonlines==4.0.0
|
110 |
+
Jinja2==3.1.6
|
111 |
+
inquirerpy==0.3.4
|
112 |
+
importlib_metadata==8.6.1
|
113 |
+
imageio==2.37.0
|
114 |
+
h5py==3.13.0
|
115 |
+
gymnasium==0.29.1
|
116 |
+
gitdb==4.0.12
|
117 |
+
docker-pycreds==0.4.0
|
118 |
+
dm-tree==0.1.9
|
119 |
+
deepdiff==8.4.2
|
120 |
+
cffi==1.17.1
|
121 |
+
beautifulsoup4==4.13.3
|
122 |
+
aiosignal==1.3.2
|
123 |
+
zarr==2.18.3
|
124 |
+
yarl==1.19.0
|
125 |
+
scikit-image==0.25.2
|
126 |
+
pynput==1.8.1
|
127 |
+
pymunk==6.11.1
|
128 |
+
pydantic==2.11.3
|
129 |
+
pandas==2.2.3
|
130 |
+
nvidia-cusolver-cu12==11.6.1.9
|
131 |
+
huggingface-hub==0.30.2
|
132 |
+
GitPython==3.1.44
|
133 |
+
Flask==3.1.0
|
134 |
+
draccus==0.10.0
|
135 |
+
dm-env==1.6
|
136 |
+
wandb==0.19.9
|
137 |
+
torch==2.6.0
|
138 |
+
gym-pusht==0.1.5
|
139 |
+
gdown==5.2.0
|
140 |
+
dm-control==1.0.14
|
141 |
+
diffusers==0.33.1
|
142 |
+
aiohttp==3.11.16
|
143 |
+
torchvision==0.21.0
|
144 |
+
gym-aloha==0.1.1
|
145 |
+
datasets==3.5.0
|
146 |
+
pyserial==3.5
|
147 |
+
feetech-servo-sdk==1.0.0
|
148 |
+
python-json-logger==3.3.0
|
149 |
+
Pygments==2.19.1
|
150 |
+
tokenizers==0.21.1
|
151 |
+
transformers==4.51.2
|
152 |
+
pycountry==24.6.1
|
153 |
+
lerobot==0.1.0
|
154 |
+
tomli==2.2.1
|
155 |
+
pluggy==1.5.0
|
156 |
+
iniconfig==2.1.0
|
157 |
+
exceptiongroup==1.2.2
|
158 |
+
pytest==8.3.5
|
159 |
+
sentencepiece==0.2.0
|
160 |
+
py-cpuinfo==9.0.0
|
161 |
+
nanobind==2.6.1
|
162 |
+
fastrlock==0.8.3
|
163 |
+
blake3==1.0.4
|
164 |
+
websockets==15.0.1
|
165 |
+
uvloop==0.21.0
|
166 |
+
sniffio==1.3.1
|
167 |
+
shellingham==1.5.4
|
168 |
+
rpds-py==0.24.0
|
169 |
+
python-multipart==0.0.20
|
170 |
+
python-dotenv==1.1.0
|
171 |
+
prometheus_client==0.21.1
|
172 |
+
partial-json-parser==0.2.1.1.post5
|
173 |
+
numpy==2.2.4
|
174 |
+
numpy==2.1.3
|
175 |
+
referencing==0.36.2
|
176 |
+
numba==0.61.0
|
177 |
+
ninja==1.11.1.4
|
178 |
+
nest-asyncio==1.6.0
|
179 |
+
msgspec==0.19.0
|
180 |
+
msgpack==1.1.0
|
181 |
+
mdurl==0.1.2
|
182 |
+
llguidance==0.7.14
|
183 |
+
lark==1.2.2
|
184 |
+
jiter==0.9.0
|
185 |
+
interegular==0.3.3
|
186 |
+
httptools==0.6.4
|
187 |
+
hf-xet==1.0.3
|
188 |
+
h11==0.14.0
|
189 |
+
gguf==0.10.0
|
190 |
+
dnspython==2.7.0
|
191 |
+
distro==1.9.0
|
192 |
+
diskcache==5.6.3
|
193 |
+
cupy-cuda12x==13.4.1
|
194 |
+
cachetools==5.5.2
|
195 |
+
astor==0.8.1
|
196 |
+
anyio==4.9.0
|
197 |
+
airportsdata==20250224
|
198 |
+
watchfiles==1.0.5
|
199 |
+
uvicorn==0.34.0
|
200 |
+
tiktoken==0.9.0
|
201 |
+
starlette==0.46.1
|
202 |
+
markdown-it-py==3.0.0
|
203 |
+
jsonschema-specifications==2024.10.1
|
204 |
+
httpcore==1.0.8
|
205 |
+
email_validator==2.2.0
|
206 |
+
depyf==0.18.0
|
207 |
+
rich==14.0.0
|
208 |
+
prometheus-fastapi-instrumentator==7.1.0
|
209 |
+
lm-format-enforcer==0.10.11
|
210 |
+
jsonschema==4.23.0
|
211 |
+
httpx==0.28.1
|
212 |
+
fastapi==0.115.12
|
213 |
+
xformers==0.0.29.post2
|
214 |
+
typer==0.15.2
|
215 |
+
torchaudio==2.6.0
|
216 |
+
rich-toolkit==0.14.1
|
217 |
+
ray==2.43.0
|
218 |
+
outlines_core==0.1.26
|
219 |
+
openai==1.73.0
|
220 |
+
mistral_common==1.5.4
|
221 |
+
xgrammar==0.1.17
|
222 |
+
outlines==0.1.11
|
223 |
+
fastapi-cli==0.0.7
|
224 |
+
compressed-tensors==0.9.2
|
225 |
+
vllm==0.8.3
|
226 |
+
autocommand==2.2.2
|
227 |
+
backports.tarfile==1.2.0
|
228 |
+
importlib_metadata==8.0.0
|
229 |
+
inflect==7.3.1
|
230 |
+
jaraco.collections==5.1.0
|
231 |
+
jaraco.context==5.3.0
|
232 |
+
jaraco.functools==4.0.1
|
233 |
+
jaraco.text==3.12.1
|
234 |
+
more-itertools==10.3.0
|
235 |
+
packaging==24.2
|
236 |
+
platformdirs==4.2.2
|
237 |
+
tomli==2.0.1
|
238 |
+
typeguard==4.3.0
|
239 |
+
typing_extensions==4.12.2
|
240 |
+
wheel==0.43.0
|
241 |
+
zipp==3.19.2
|
wandb/run-20250413_071149-ipo2f6m2/files/wandb-metadata.json
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.14.0-427.26.1.el9_4.x86_64-x86_64-with-glibc2.34",
|
3 |
+
"python": "CPython 3.10.13",
|
4 |
+
"startedAt": "2025-04-13T05:11:49.829796Z",
|
5 |
+
"args": [
|
6 |
+
"--dataset.repo_id=rjgpinel/chickenToPlate",
|
7 |
+
"--policy.type=act",
|
8 |
+
"--output_dir=outputs/train/act_bs8_chickenToPlate",
|
9 |
+
"--job_name=act_trial_bs8_chickenToPlate",
|
10 |
+
"--policy.device=cuda",
|
11 |
+
"--wandb.enable=true"
|
12 |
+
],
|
13 |
+
"program": "/home/rgarciap/Code/lerobot/lerobot/scripts/train.py",
|
14 |
+
"codePath": "lerobot/scripts/train.py",
|
15 |
+
"git": {
|
16 |
+
"remote": "[email protected]:rjgpinel/lerobot.git",
|
17 |
+
"commit": "d292028da73ca5e4abb134d13d4a8ff18c08e1a2"
|
18 |
+
},
|
19 |
+
"root": "outputs/train/act_bs8_chickenToPlate",
|
20 |
+
"host": "gpu012",
|
21 |
+
"executable": "/home/rgarciap/miniconda3/envs/lerobot/bin/python",
|
22 |
+
"codePathLocal": "lerobot/scripts/train.py",
|
23 |
+
"cpu_count": 32,
|
24 |
+
"cpu_count_logical": 64,
|
25 |
+
"gpu": "NVIDIA A100-SXM4-80GB",
|
26 |
+
"gpu_count": 1,
|
27 |
+
"disk": {
|
28 |
+
"/": {
|
29 |
+
"total": "135085682688",
|
30 |
+
"used": "3655208960"
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"memory": {
|
34 |
+
"total": "270171365376"
|
35 |
+
},
|
36 |
+
"cpu": {
|
37 |
+
"count": 32,
|
38 |
+
"countLogical": 64
|
39 |
+
},
|
40 |
+
"gpu_nvidia": [
|
41 |
+
{
|
42 |
+
"name": "NVIDIA A100-SXM4-80GB",
|
43 |
+
"memoryTotal": "85899345920",
|
44 |
+
"cudaCores": 6912,
|
45 |
+
"architecture": "Ampere"
|
46 |
+
}
|
47 |
+
],
|
48 |
+
"slurm": {
|
49 |
+
"cluster_name": "cleps",
|
50 |
+
"conf": "/var/spool/slurm/d/conf-cache/slurm.conf",
|
51 |
+
"cpu_bind": "quiet,mask_cpu:0x000000000000FF00",
|
52 |
+
"cpu_bind_list": "0x000000000000FF00",
|
53 |
+
"cpu_bind_type": "mask_cpu:",
|
54 |
+
"cpu_bind_verbose": "quiet",
|
55 |
+
"cpus_on_node": "16",
|
56 |
+
"cpus_per_task": "8",
|
57 |
+
"distribution": "cyclic",
|
58 |
+
"gpus_on_node": "1",
|
59 |
+
"gtids": "0",
|
60 |
+
"hint": "nomultithread",
|
61 |
+
"job_account": "willow",
|
62 |
+
"job_cpus_per_node": "8",
|
63 |
+
"job_end_time": "1744557103",
|
64 |
+
"job_gid": "21076",
|
65 |
+
"job_gpus": "1",
|
66 |
+
"job_id": "3984516",
|
67 |
+
"job_name": "act_training",
|
68 |
+
"job_nodelist": "gpu012",
|
69 |
+
"job_num_nodes": "1",
|
70 |
+
"job_partition": "willow",
|
71 |
+
"job_qos": "normal",
|
72 |
+
"job_start_time": "1744521103",
|
73 |
+
"job_uid": "662847",
|
74 |
+
"job_user": "rgarciap",
|
75 |
+
"jobid": "3984516",
|
76 |
+
"launch_node_ipaddr": "10.224.2.12",
|
77 |
+
"localid": "0",
|
78 |
+
"mem_per_node": "40960",
|
79 |
+
"mpi_type": "pmix_v4",
|
80 |
+
"nnodes": "1",
|
81 |
+
"nodeid": "0",
|
82 |
+
"nodelist": "gpu012",
|
83 |
+
"nprocs": "1",
|
84 |
+
"ntasks": "1",
|
85 |
+
"pmix_mapping_serv": "(vector,(0,1,1))",
|
86 |
+
"pmixp_abort_agent_port": "60160",
|
87 |
+
"prio_process": "0",
|
88 |
+
"procid": "0",
|
89 |
+
"script_context": "prolog_task",
|
90 |
+
"srun_comm_host": "10.224.2.12",
|
91 |
+
"srun_comm_port": "60161",
|
92 |
+
"step_gpus": "1",
|
93 |
+
"step_id": "0",
|
94 |
+
"step_launcher_port": "60161",
|
95 |
+
"step_nodelist": "gpu012",
|
96 |
+
"step_num_nodes": "1",
|
97 |
+
"step_num_tasks": "1",
|
98 |
+
"step_tasks_per_node": "1",
|
99 |
+
"stepid": "0",
|
100 |
+
"submit_dir": "/home/rgarciap/Code/lerobot/cleps_scripts/chickenToPlate",
|
101 |
+
"submit_host": "cleps",
|
102 |
+
"task_pid": "2476203",
|
103 |
+
"tasks_per_node": "1",
|
104 |
+
"threads_per_core": "1",
|
105 |
+
"topology_addr": "gpu012",
|
106 |
+
"topology_addr_pattern": "node",
|
107 |
+
"tres_per_task": "cpu:8",
|
108 |
+
"umask": "0022"
|
109 |
+
},
|
110 |
+
"cudaVersion": "12.5"
|
111 |
+
}
|
wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"time":"2025-04-13T07:11:49.620604148+02:00","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpl6h5gsi9/port-2476203.txt","pid":2476203,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false}
|
2 |
+
{"time":"2025-04-13T07:11:49.621232919+02:00","level":"INFO","msg":"Will exit if parent process dies.","ppid":2476203}
|
3 |
+
{"time":"2025-04-13T07:11:49.621227018+02:00","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":37289,"Zone":""}}
|
4 |
+
{"time":"2025-04-13T07:11:49.812573582+02:00","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:37562"}
|
5 |
+
{"time":"2025-04-13T07:11:49.83071304+02:00","level":"INFO","msg":"handleInformInit: received","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
|
6 |
+
{"time":"2025-04-13T07:11:50.06605336+02:00","level":"INFO","msg":"handleInformInit: stream started","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
|
wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
|
2 |
+
{"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
|
3 |
+
{"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
|
4 |
+
{"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
|
5 |
+
{"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
|
6 |
+
{"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
|
7 |
+
{"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
|
wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
|
2 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
|
3 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
|
4 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
|
5 |
+
2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
|
6 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
|
7 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
|
8 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
|
9 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
|
10 |
+
config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
|
11 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
|
12 |
+
2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
|
13 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
14 |
+
2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
|
15 |
+
2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
|
16 |
+
2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
|
17 |
+
2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
|
18 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
|
19 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
|
20 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
|
21 |
+
2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
|
22 |
+
2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
|
wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06a24d89b4143f7da66fa535ab30ff7be24844b530553c2069d7bca24edffec2
|
3 |
+
size 688128
|