rjgpinel commited on
Commit
479e76d
·
verified ·
1 Parent(s): eaa4686

Upload folder using huggingface_hub

Browse files
Files changed (45) hide show
  1. .gitattributes +2 -0
  2. checkpoints/020000/pretrained_model/config.json +64 -0
  3. checkpoints/020000/pretrained_model/model.safetensors +3 -0
  4. checkpoints/020000/pretrained_model/train_config.json +170 -0
  5. checkpoints/020000/training_state/optimizer_param_groups.json +189 -0
  6. checkpoints/020000/training_state/optimizer_state.safetensors +3 -0
  7. checkpoints/020000/training_state/rng_state.safetensors +3 -0
  8. checkpoints/020000/training_state/training_step.json +3 -0
  9. checkpoints/040000/pretrained_model/config.json +64 -0
  10. checkpoints/040000/pretrained_model/model.safetensors +3 -0
  11. checkpoints/040000/pretrained_model/train_config.json +170 -0
  12. checkpoints/040000/training_state/optimizer_param_groups.json +189 -0
  13. checkpoints/040000/training_state/optimizer_state.safetensors +3 -0
  14. checkpoints/040000/training_state/rng_state.safetensors +3 -0
  15. checkpoints/040000/training_state/training_step.json +3 -0
  16. checkpoints/100000/pretrained_model/config.json +64 -0
  17. checkpoints/100000/pretrained_model/model.safetensors +3 -0
  18. checkpoints/100000/pretrained_model/train_config.json +170 -0
  19. checkpoints/100000/training_state/optimizer_param_groups.json +189 -0
  20. checkpoints/100000/training_state/optimizer_state.safetensors +3 -0
  21. checkpoints/100000/training_state/rng_state.safetensors +3 -0
  22. checkpoints/100000/training_state/training_step.json +3 -0
  23. checkpoints/last/pretrained_model/config.json +64 -0
  24. checkpoints/last/pretrained_model/model.safetensors +3 -0
  25. checkpoints/last/pretrained_model/train_config.json +170 -0
  26. checkpoints/last/training_state/optimizer_param_groups.json +189 -0
  27. checkpoints/last/training_state/optimizer_state.safetensors +3 -0
  28. checkpoints/last/training_state/rng_state.safetensors +3 -0
  29. checkpoints/last/training_state/training_step.json +3 -0
  30. wandb/debug-internal.log +7 -0
  31. wandb/debug.log +22 -0
  32. wandb/latest-run/files/output.log +384 -0
  33. wandb/latest-run/files/requirements.txt +241 -0
  34. wandb/latest-run/files/wandb-metadata.json +111 -0
  35. wandb/latest-run/logs/debug-core.log +6 -0
  36. wandb/latest-run/logs/debug-internal.log +7 -0
  37. wandb/latest-run/logs/debug.log +22 -0
  38. wandb/latest-run/run-ipo2f6m2.wandb +3 -0
  39. wandb/run-20250413_071149-ipo2f6m2/files/output.log +384 -0
  40. wandb/run-20250413_071149-ipo2f6m2/files/requirements.txt +241 -0
  41. wandb/run-20250413_071149-ipo2f6m2/files/wandb-metadata.json +111 -0
  42. wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log +6 -0
  43. wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log +7 -0
  44. wandb/run-20250413_071149-ipo2f6m2/logs/debug.log +22 -0
  45. wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ wandb/latest-run/run-ipo2f6m2.wandb filter=lfs diff=lfs merge=lfs -text
37
+ wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb filter=lfs diff=lfs merge=lfs -text
checkpoints/020000/pretrained_model/config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "act",
3
+ "n_obs_steps": 1,
4
+ "normalization_mapping": {
5
+ "VISUAL": "MEAN_STD",
6
+ "STATE": "MEAN_STD",
7
+ "ACTION": "MEAN_STD"
8
+ },
9
+ "input_features": {
10
+ "observation.state": {
11
+ "type": "STATE",
12
+ "shape": [
13
+ 6
14
+ ]
15
+ },
16
+ "observation.images.static_right": {
17
+ "type": "VISUAL",
18
+ "shape": [
19
+ 3,
20
+ 480,
21
+ 640
22
+ ]
23
+ },
24
+ "observation.images.static_left": {
25
+ "type": "VISUAL",
26
+ "shape": [
27
+ 3,
28
+ 480,
29
+ 640
30
+ ]
31
+ }
32
+ },
33
+ "output_features": {
34
+ "action": {
35
+ "type": "ACTION",
36
+ "shape": [
37
+ 6
38
+ ]
39
+ }
40
+ },
41
+ "device": "cuda",
42
+ "use_amp": false,
43
+ "chunk_size": 100,
44
+ "n_action_steps": 100,
45
+ "vision_backbone": "resnet18",
46
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
47
+ "replace_final_stride_with_dilation": false,
48
+ "pre_norm": false,
49
+ "dim_model": 512,
50
+ "n_heads": 8,
51
+ "dim_feedforward": 3200,
52
+ "feedforward_activation": "relu",
53
+ "n_encoder_layers": 4,
54
+ "n_decoder_layers": 1,
55
+ "use_vae": true,
56
+ "latent_dim": 32,
57
+ "n_vae_encoder_layers": 4,
58
+ "temporal_ensemble_coeff": null,
59
+ "dropout": 0.1,
60
+ "kl_weight": 10.0,
61
+ "optimizer_lr": 1e-05,
62
+ "optimizer_weight_decay": 0.0001,
63
+ "optimizer_lr_backbone": 1e-05
64
+ }
checkpoints/020000/pretrained_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff596e9291427989f11699f36c3ffd1a8bd63369b739943bab7121543e37d82
3
+ size 206701096
checkpoints/020000/pretrained_model/train_config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "rjgpinel/chickenToPlate",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ }
61
+ }
62
+ },
63
+ "revision": null,
64
+ "use_imagenet_stats": true,
65
+ "video_backend": "torchcodec"
66
+ },
67
+ "env": null,
68
+ "policy": {
69
+ "type": "act",
70
+ "n_obs_steps": 1,
71
+ "normalization_mapping": {
72
+ "VISUAL": "MEAN_STD",
73
+ "STATE": "MEAN_STD",
74
+ "ACTION": "MEAN_STD"
75
+ },
76
+ "input_features": {
77
+ "observation.state": {
78
+ "type": "STATE",
79
+ "shape": [
80
+ 6
81
+ ]
82
+ },
83
+ "observation.images.static_right": {
84
+ "type": "VISUAL",
85
+ "shape": [
86
+ 3,
87
+ 480,
88
+ 640
89
+ ]
90
+ },
91
+ "observation.images.static_left": {
92
+ "type": "VISUAL",
93
+ "shape": [
94
+ 3,
95
+ 480,
96
+ 640
97
+ ]
98
+ }
99
+ },
100
+ "output_features": {
101
+ "action": {
102
+ "type": "ACTION",
103
+ "shape": [
104
+ 6
105
+ ]
106
+ }
107
+ },
108
+ "device": "cuda",
109
+ "use_amp": false,
110
+ "chunk_size": 100,
111
+ "n_action_steps": 100,
112
+ "vision_backbone": "resnet18",
113
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
114
+ "replace_final_stride_with_dilation": false,
115
+ "pre_norm": false,
116
+ "dim_model": 512,
117
+ "n_heads": 8,
118
+ "dim_feedforward": 3200,
119
+ "feedforward_activation": "relu",
120
+ "n_encoder_layers": 4,
121
+ "n_decoder_layers": 1,
122
+ "use_vae": true,
123
+ "latent_dim": 32,
124
+ "n_vae_encoder_layers": 4,
125
+ "temporal_ensemble_coeff": null,
126
+ "dropout": 0.1,
127
+ "kl_weight": 10.0,
128
+ "optimizer_lr": 1e-05,
129
+ "optimizer_weight_decay": 0.0001,
130
+ "optimizer_lr_backbone": 1e-05
131
+ },
132
+ "output_dir": "outputs/train/act_bs8_chickenToPlate",
133
+ "job_name": "act_trial_bs8_chickenToPlate",
134
+ "resume": false,
135
+ "seed": 1000,
136
+ "num_workers": 4,
137
+ "batch_size": 8,
138
+ "steps": 100000,
139
+ "eval_freq": 20000,
140
+ "log_freq": 200,
141
+ "save_checkpoint": true,
142
+ "save_freq": 20000,
143
+ "use_policy_training_preset": true,
144
+ "optimizer": {
145
+ "type": "adamw",
146
+ "lr": 1e-05,
147
+ "weight_decay": 0.0001,
148
+ "grad_clip_norm": 10.0,
149
+ "betas": [
150
+ 0.9,
151
+ 0.999
152
+ ],
153
+ "eps": 1e-08
154
+ },
155
+ "scheduler": null,
156
+ "eval": {
157
+ "n_episodes": 50,
158
+ "batch_size": 50,
159
+ "use_async_envs": false
160
+ },
161
+ "wandb": {
162
+ "enable": true,
163
+ "disable_artifact": false,
164
+ "project": "lerobot",
165
+ "entity": null,
166
+ "notes": null,
167
+ "run_id": null,
168
+ "mode": null
169
+ }
170
+ }
checkpoints/020000/training_state/optimizer_param_groups.json ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "lr": 1e-05,
4
+ "betas": [
5
+ 0.9,
6
+ 0.999
7
+ ],
8
+ "eps": 1e-08,
9
+ "weight_decay": 0.0001,
10
+ "amsgrad": false,
11
+ "foreach": null,
12
+ "maximize": false,
13
+ "capturable": false,
14
+ "differentiable": false,
15
+ "fused": null,
16
+ "params": [
17
+ 0,
18
+ 1,
19
+ 2,
20
+ 3,
21
+ 4,
22
+ 5,
23
+ 6,
24
+ 7,
25
+ 8,
26
+ 9,
27
+ 10,
28
+ 11,
29
+ 12,
30
+ 13,
31
+ 14,
32
+ 15,
33
+ 16,
34
+ 17,
35
+ 18,
36
+ 19,
37
+ 20,
38
+ 21,
39
+ 22,
40
+ 23,
41
+ 24,
42
+ 25,
43
+ 26,
44
+ 27,
45
+ 28,
46
+ 29,
47
+ 30,
48
+ 31,
49
+ 32,
50
+ 33,
51
+ 34,
52
+ 35,
53
+ 36,
54
+ 37,
55
+ 38,
56
+ 39,
57
+ 40,
58
+ 41,
59
+ 42,
60
+ 43,
61
+ 44,
62
+ 45,
63
+ 46,
64
+ 47,
65
+ 48,
66
+ 49,
67
+ 50,
68
+ 51,
69
+ 52,
70
+ 53,
71
+ 54,
72
+ 55,
73
+ 56,
74
+ 57,
75
+ 58,
76
+ 59,
77
+ 60,
78
+ 61,
79
+ 62,
80
+ 63,
81
+ 64,
82
+ 65,
83
+ 66,
84
+ 67,
85
+ 68,
86
+ 69,
87
+ 70,
88
+ 71,
89
+ 72,
90
+ 73,
91
+ 74,
92
+ 75,
93
+ 76,
94
+ 77,
95
+ 78,
96
+ 79,
97
+ 80,
98
+ 81,
99
+ 82,
100
+ 83,
101
+ 84,
102
+ 85,
103
+ 86,
104
+ 87,
105
+ 88,
106
+ 89,
107
+ 90,
108
+ 91,
109
+ 92,
110
+ 93,
111
+ 94,
112
+ 95,
113
+ 96,
114
+ 97,
115
+ 98,
116
+ 99,
117
+ 100,
118
+ 101,
119
+ 102,
120
+ 103,
121
+ 104,
122
+ 105,
123
+ 106,
124
+ 107,
125
+ 108,
126
+ 109,
127
+ 110,
128
+ 111,
129
+ 112,
130
+ 113,
131
+ 114,
132
+ 115,
133
+ 116,
134
+ 117,
135
+ 118,
136
+ 119,
137
+ 120,
138
+ 121,
139
+ 122,
140
+ 123,
141
+ 124,
142
+ 125,
143
+ 126,
144
+ 127,
145
+ 128,
146
+ 129,
147
+ 130,
148
+ 131,
149
+ 132
150
+ ]
151
+ },
152
+ {
153
+ "lr": 1e-05,
154
+ "betas": [
155
+ 0.9,
156
+ 0.999
157
+ ],
158
+ "eps": 1e-08,
159
+ "weight_decay": 0.0001,
160
+ "amsgrad": false,
161
+ "foreach": null,
162
+ "maximize": false,
163
+ "capturable": false,
164
+ "differentiable": false,
165
+ "fused": null,
166
+ "params": [
167
+ 133,
168
+ 134,
169
+ 135,
170
+ 136,
171
+ 137,
172
+ 138,
173
+ 139,
174
+ 140,
175
+ 141,
176
+ 142,
177
+ 143,
178
+ 144,
179
+ 145,
180
+ 146,
181
+ 147,
182
+ 148,
183
+ 149,
184
+ 150,
185
+ 151,
186
+ 152
187
+ ]
188
+ }
189
+ ]
checkpoints/020000/training_state/optimizer_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:503fd41b76c66a05022de71185f12fdf8429eb6e8550a91ad99daf25d69e12c7
3
+ size 412817652
checkpoints/020000/training_state/rng_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd259ede210ba3bbe4ea2d4e7794ffb647d7398e52645950a6cac1974cd10cf3
3
+ size 15708
checkpoints/020000/training_state/training_step.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "step": 20000
3
+ }
checkpoints/040000/pretrained_model/config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "act",
3
+ "n_obs_steps": 1,
4
+ "normalization_mapping": {
5
+ "VISUAL": "MEAN_STD",
6
+ "STATE": "MEAN_STD",
7
+ "ACTION": "MEAN_STD"
8
+ },
9
+ "input_features": {
10
+ "observation.state": {
11
+ "type": "STATE",
12
+ "shape": [
13
+ 6
14
+ ]
15
+ },
16
+ "observation.images.static_right": {
17
+ "type": "VISUAL",
18
+ "shape": [
19
+ 3,
20
+ 480,
21
+ 640
22
+ ]
23
+ },
24
+ "observation.images.static_left": {
25
+ "type": "VISUAL",
26
+ "shape": [
27
+ 3,
28
+ 480,
29
+ 640
30
+ ]
31
+ }
32
+ },
33
+ "output_features": {
34
+ "action": {
35
+ "type": "ACTION",
36
+ "shape": [
37
+ 6
38
+ ]
39
+ }
40
+ },
41
+ "device": "cuda",
42
+ "use_amp": false,
43
+ "chunk_size": 100,
44
+ "n_action_steps": 100,
45
+ "vision_backbone": "resnet18",
46
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
47
+ "replace_final_stride_with_dilation": false,
48
+ "pre_norm": false,
49
+ "dim_model": 512,
50
+ "n_heads": 8,
51
+ "dim_feedforward": 3200,
52
+ "feedforward_activation": "relu",
53
+ "n_encoder_layers": 4,
54
+ "n_decoder_layers": 1,
55
+ "use_vae": true,
56
+ "latent_dim": 32,
57
+ "n_vae_encoder_layers": 4,
58
+ "temporal_ensemble_coeff": null,
59
+ "dropout": 0.1,
60
+ "kl_weight": 10.0,
61
+ "optimizer_lr": 1e-05,
62
+ "optimizer_weight_decay": 0.0001,
63
+ "optimizer_lr_backbone": 1e-05
64
+ }
checkpoints/040000/pretrained_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4faf4e9773087a51d32a2cff410f40baffbfc8e57ed89ea5eec8c9d0dd3b124e
3
+ size 206701096
checkpoints/040000/pretrained_model/train_config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "rjgpinel/chickenToPlate",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ }
61
+ }
62
+ },
63
+ "revision": null,
64
+ "use_imagenet_stats": true,
65
+ "video_backend": "torchcodec"
66
+ },
67
+ "env": null,
68
+ "policy": {
69
+ "type": "act",
70
+ "n_obs_steps": 1,
71
+ "normalization_mapping": {
72
+ "VISUAL": "MEAN_STD",
73
+ "STATE": "MEAN_STD",
74
+ "ACTION": "MEAN_STD"
75
+ },
76
+ "input_features": {
77
+ "observation.state": {
78
+ "type": "STATE",
79
+ "shape": [
80
+ 6
81
+ ]
82
+ },
83
+ "observation.images.static_right": {
84
+ "type": "VISUAL",
85
+ "shape": [
86
+ 3,
87
+ 480,
88
+ 640
89
+ ]
90
+ },
91
+ "observation.images.static_left": {
92
+ "type": "VISUAL",
93
+ "shape": [
94
+ 3,
95
+ 480,
96
+ 640
97
+ ]
98
+ }
99
+ },
100
+ "output_features": {
101
+ "action": {
102
+ "type": "ACTION",
103
+ "shape": [
104
+ 6
105
+ ]
106
+ }
107
+ },
108
+ "device": "cuda",
109
+ "use_amp": false,
110
+ "chunk_size": 100,
111
+ "n_action_steps": 100,
112
+ "vision_backbone": "resnet18",
113
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
114
+ "replace_final_stride_with_dilation": false,
115
+ "pre_norm": false,
116
+ "dim_model": 512,
117
+ "n_heads": 8,
118
+ "dim_feedforward": 3200,
119
+ "feedforward_activation": "relu",
120
+ "n_encoder_layers": 4,
121
+ "n_decoder_layers": 1,
122
+ "use_vae": true,
123
+ "latent_dim": 32,
124
+ "n_vae_encoder_layers": 4,
125
+ "temporal_ensemble_coeff": null,
126
+ "dropout": 0.1,
127
+ "kl_weight": 10.0,
128
+ "optimizer_lr": 1e-05,
129
+ "optimizer_weight_decay": 0.0001,
130
+ "optimizer_lr_backbone": 1e-05
131
+ },
132
+ "output_dir": "outputs/train/act_bs8_chickenToPlate",
133
+ "job_name": "act_trial_bs8_chickenToPlate",
134
+ "resume": false,
135
+ "seed": 1000,
136
+ "num_workers": 4,
137
+ "batch_size": 8,
138
+ "steps": 100000,
139
+ "eval_freq": 20000,
140
+ "log_freq": 200,
141
+ "save_checkpoint": true,
142
+ "save_freq": 20000,
143
+ "use_policy_training_preset": true,
144
+ "optimizer": {
145
+ "type": "adamw",
146
+ "lr": 1e-05,
147
+ "weight_decay": 0.0001,
148
+ "grad_clip_norm": 10.0,
149
+ "betas": [
150
+ 0.9,
151
+ 0.999
152
+ ],
153
+ "eps": 1e-08
154
+ },
155
+ "scheduler": null,
156
+ "eval": {
157
+ "n_episodes": 50,
158
+ "batch_size": 50,
159
+ "use_async_envs": false
160
+ },
161
+ "wandb": {
162
+ "enable": true,
163
+ "disable_artifact": false,
164
+ "project": "lerobot",
165
+ "entity": null,
166
+ "notes": null,
167
+ "run_id": null,
168
+ "mode": null
169
+ }
170
+ }
checkpoints/040000/training_state/optimizer_param_groups.json ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "lr": 1e-05,
4
+ "betas": [
5
+ 0.9,
6
+ 0.999
7
+ ],
8
+ "eps": 1e-08,
9
+ "weight_decay": 0.0001,
10
+ "amsgrad": false,
11
+ "foreach": null,
12
+ "maximize": false,
13
+ "capturable": false,
14
+ "differentiable": false,
15
+ "fused": null,
16
+ "params": [
17
+ 0,
18
+ 1,
19
+ 2,
20
+ 3,
21
+ 4,
22
+ 5,
23
+ 6,
24
+ 7,
25
+ 8,
26
+ 9,
27
+ 10,
28
+ 11,
29
+ 12,
30
+ 13,
31
+ 14,
32
+ 15,
33
+ 16,
34
+ 17,
35
+ 18,
36
+ 19,
37
+ 20,
38
+ 21,
39
+ 22,
40
+ 23,
41
+ 24,
42
+ 25,
43
+ 26,
44
+ 27,
45
+ 28,
46
+ 29,
47
+ 30,
48
+ 31,
49
+ 32,
50
+ 33,
51
+ 34,
52
+ 35,
53
+ 36,
54
+ 37,
55
+ 38,
56
+ 39,
57
+ 40,
58
+ 41,
59
+ 42,
60
+ 43,
61
+ 44,
62
+ 45,
63
+ 46,
64
+ 47,
65
+ 48,
66
+ 49,
67
+ 50,
68
+ 51,
69
+ 52,
70
+ 53,
71
+ 54,
72
+ 55,
73
+ 56,
74
+ 57,
75
+ 58,
76
+ 59,
77
+ 60,
78
+ 61,
79
+ 62,
80
+ 63,
81
+ 64,
82
+ 65,
83
+ 66,
84
+ 67,
85
+ 68,
86
+ 69,
87
+ 70,
88
+ 71,
89
+ 72,
90
+ 73,
91
+ 74,
92
+ 75,
93
+ 76,
94
+ 77,
95
+ 78,
96
+ 79,
97
+ 80,
98
+ 81,
99
+ 82,
100
+ 83,
101
+ 84,
102
+ 85,
103
+ 86,
104
+ 87,
105
+ 88,
106
+ 89,
107
+ 90,
108
+ 91,
109
+ 92,
110
+ 93,
111
+ 94,
112
+ 95,
113
+ 96,
114
+ 97,
115
+ 98,
116
+ 99,
117
+ 100,
118
+ 101,
119
+ 102,
120
+ 103,
121
+ 104,
122
+ 105,
123
+ 106,
124
+ 107,
125
+ 108,
126
+ 109,
127
+ 110,
128
+ 111,
129
+ 112,
130
+ 113,
131
+ 114,
132
+ 115,
133
+ 116,
134
+ 117,
135
+ 118,
136
+ 119,
137
+ 120,
138
+ 121,
139
+ 122,
140
+ 123,
141
+ 124,
142
+ 125,
143
+ 126,
144
+ 127,
145
+ 128,
146
+ 129,
147
+ 130,
148
+ 131,
149
+ 132
150
+ ]
151
+ },
152
+ {
153
+ "lr": 1e-05,
154
+ "betas": [
155
+ 0.9,
156
+ 0.999
157
+ ],
158
+ "eps": 1e-08,
159
+ "weight_decay": 0.0001,
160
+ "amsgrad": false,
161
+ "foreach": null,
162
+ "maximize": false,
163
+ "capturable": false,
164
+ "differentiable": false,
165
+ "fused": null,
166
+ "params": [
167
+ 133,
168
+ 134,
169
+ 135,
170
+ 136,
171
+ 137,
172
+ 138,
173
+ 139,
174
+ 140,
175
+ 141,
176
+ 142,
177
+ 143,
178
+ 144,
179
+ 145,
180
+ 146,
181
+ 147,
182
+ 148,
183
+ 149,
184
+ 150,
185
+ 151,
186
+ 152
187
+ ]
188
+ }
189
+ ]
checkpoints/040000/training_state/optimizer_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:346e31283a6a313588869cdb5f275724b58f2ca0f69a5a6b4eedef575f1b7f48
3
+ size 412817652
checkpoints/040000/training_state/rng_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a0e7f56024c2c5d975e804a563b4df931609b9e9ca7194551c5f099687eccfb
3
+ size 15708
checkpoints/040000/training_state/training_step.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "step": 40000
3
+ }
checkpoints/100000/pretrained_model/config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "act",
3
+ "n_obs_steps": 1,
4
+ "normalization_mapping": {
5
+ "VISUAL": "MEAN_STD",
6
+ "STATE": "MEAN_STD",
7
+ "ACTION": "MEAN_STD"
8
+ },
9
+ "input_features": {
10
+ "observation.state": {
11
+ "type": "STATE",
12
+ "shape": [
13
+ 6
14
+ ]
15
+ },
16
+ "observation.images.static_right": {
17
+ "type": "VISUAL",
18
+ "shape": [
19
+ 3,
20
+ 480,
21
+ 640
22
+ ]
23
+ },
24
+ "observation.images.static_left": {
25
+ "type": "VISUAL",
26
+ "shape": [
27
+ 3,
28
+ 480,
29
+ 640
30
+ ]
31
+ }
32
+ },
33
+ "output_features": {
34
+ "action": {
35
+ "type": "ACTION",
36
+ "shape": [
37
+ 6
38
+ ]
39
+ }
40
+ },
41
+ "device": "cuda",
42
+ "use_amp": false,
43
+ "chunk_size": 100,
44
+ "n_action_steps": 100,
45
+ "vision_backbone": "resnet18",
46
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
47
+ "replace_final_stride_with_dilation": false,
48
+ "pre_norm": false,
49
+ "dim_model": 512,
50
+ "n_heads": 8,
51
+ "dim_feedforward": 3200,
52
+ "feedforward_activation": "relu",
53
+ "n_encoder_layers": 4,
54
+ "n_decoder_layers": 1,
55
+ "use_vae": true,
56
+ "latent_dim": 32,
57
+ "n_vae_encoder_layers": 4,
58
+ "temporal_ensemble_coeff": null,
59
+ "dropout": 0.1,
60
+ "kl_weight": 10.0,
61
+ "optimizer_lr": 1e-05,
62
+ "optimizer_weight_decay": 0.0001,
63
+ "optimizer_lr_backbone": 1e-05
64
+ }
checkpoints/100000/pretrained_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82fcc335eca6aa8037a865d4f4b689ba0f8068f9831da15bd0c14b7b9578c6f4
3
+ size 206701096
checkpoints/100000/pretrained_model/train_config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "rjgpinel/chickenToPlate",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ }
61
+ }
62
+ },
63
+ "revision": null,
64
+ "use_imagenet_stats": true,
65
+ "video_backend": "torchcodec"
66
+ },
67
+ "env": null,
68
+ "policy": {
69
+ "type": "act",
70
+ "n_obs_steps": 1,
71
+ "normalization_mapping": {
72
+ "VISUAL": "MEAN_STD",
73
+ "STATE": "MEAN_STD",
74
+ "ACTION": "MEAN_STD"
75
+ },
76
+ "input_features": {
77
+ "observation.state": {
78
+ "type": "STATE",
79
+ "shape": [
80
+ 6
81
+ ]
82
+ },
83
+ "observation.images.static_right": {
84
+ "type": "VISUAL",
85
+ "shape": [
86
+ 3,
87
+ 480,
88
+ 640
89
+ ]
90
+ },
91
+ "observation.images.static_left": {
92
+ "type": "VISUAL",
93
+ "shape": [
94
+ 3,
95
+ 480,
96
+ 640
97
+ ]
98
+ }
99
+ },
100
+ "output_features": {
101
+ "action": {
102
+ "type": "ACTION",
103
+ "shape": [
104
+ 6
105
+ ]
106
+ }
107
+ },
108
+ "device": "cuda",
109
+ "use_amp": false,
110
+ "chunk_size": 100,
111
+ "n_action_steps": 100,
112
+ "vision_backbone": "resnet18",
113
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
114
+ "replace_final_stride_with_dilation": false,
115
+ "pre_norm": false,
116
+ "dim_model": 512,
117
+ "n_heads": 8,
118
+ "dim_feedforward": 3200,
119
+ "feedforward_activation": "relu",
120
+ "n_encoder_layers": 4,
121
+ "n_decoder_layers": 1,
122
+ "use_vae": true,
123
+ "latent_dim": 32,
124
+ "n_vae_encoder_layers": 4,
125
+ "temporal_ensemble_coeff": null,
126
+ "dropout": 0.1,
127
+ "kl_weight": 10.0,
128
+ "optimizer_lr": 1e-05,
129
+ "optimizer_weight_decay": 0.0001,
130
+ "optimizer_lr_backbone": 1e-05
131
+ },
132
+ "output_dir": "outputs/train/act_bs8_chickenToPlate",
133
+ "job_name": "act_trial_bs8_chickenToPlate",
134
+ "resume": false,
135
+ "seed": 1000,
136
+ "num_workers": 4,
137
+ "batch_size": 8,
138
+ "steps": 100000,
139
+ "eval_freq": 20000,
140
+ "log_freq": 200,
141
+ "save_checkpoint": true,
142
+ "save_freq": 20000,
143
+ "use_policy_training_preset": true,
144
+ "optimizer": {
145
+ "type": "adamw",
146
+ "lr": 1e-05,
147
+ "weight_decay": 0.0001,
148
+ "grad_clip_norm": 10.0,
149
+ "betas": [
150
+ 0.9,
151
+ 0.999
152
+ ],
153
+ "eps": 1e-08
154
+ },
155
+ "scheduler": null,
156
+ "eval": {
157
+ "n_episodes": 50,
158
+ "batch_size": 50,
159
+ "use_async_envs": false
160
+ },
161
+ "wandb": {
162
+ "enable": true,
163
+ "disable_artifact": false,
164
+ "project": "lerobot",
165
+ "entity": null,
166
+ "notes": null,
167
+ "run_id": null,
168
+ "mode": null
169
+ }
170
+ }
checkpoints/100000/training_state/optimizer_param_groups.json ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "lr": 1e-05,
4
+ "betas": [
5
+ 0.9,
6
+ 0.999
7
+ ],
8
+ "eps": 1e-08,
9
+ "weight_decay": 0.0001,
10
+ "amsgrad": false,
11
+ "foreach": null,
12
+ "maximize": false,
13
+ "capturable": false,
14
+ "differentiable": false,
15
+ "fused": null,
16
+ "params": [
17
+ 0,
18
+ 1,
19
+ 2,
20
+ 3,
21
+ 4,
22
+ 5,
23
+ 6,
24
+ 7,
25
+ 8,
26
+ 9,
27
+ 10,
28
+ 11,
29
+ 12,
30
+ 13,
31
+ 14,
32
+ 15,
33
+ 16,
34
+ 17,
35
+ 18,
36
+ 19,
37
+ 20,
38
+ 21,
39
+ 22,
40
+ 23,
41
+ 24,
42
+ 25,
43
+ 26,
44
+ 27,
45
+ 28,
46
+ 29,
47
+ 30,
48
+ 31,
49
+ 32,
50
+ 33,
51
+ 34,
52
+ 35,
53
+ 36,
54
+ 37,
55
+ 38,
56
+ 39,
57
+ 40,
58
+ 41,
59
+ 42,
60
+ 43,
61
+ 44,
62
+ 45,
63
+ 46,
64
+ 47,
65
+ 48,
66
+ 49,
67
+ 50,
68
+ 51,
69
+ 52,
70
+ 53,
71
+ 54,
72
+ 55,
73
+ 56,
74
+ 57,
75
+ 58,
76
+ 59,
77
+ 60,
78
+ 61,
79
+ 62,
80
+ 63,
81
+ 64,
82
+ 65,
83
+ 66,
84
+ 67,
85
+ 68,
86
+ 69,
87
+ 70,
88
+ 71,
89
+ 72,
90
+ 73,
91
+ 74,
92
+ 75,
93
+ 76,
94
+ 77,
95
+ 78,
96
+ 79,
97
+ 80,
98
+ 81,
99
+ 82,
100
+ 83,
101
+ 84,
102
+ 85,
103
+ 86,
104
+ 87,
105
+ 88,
106
+ 89,
107
+ 90,
108
+ 91,
109
+ 92,
110
+ 93,
111
+ 94,
112
+ 95,
113
+ 96,
114
+ 97,
115
+ 98,
116
+ 99,
117
+ 100,
118
+ 101,
119
+ 102,
120
+ 103,
121
+ 104,
122
+ 105,
123
+ 106,
124
+ 107,
125
+ 108,
126
+ 109,
127
+ 110,
128
+ 111,
129
+ 112,
130
+ 113,
131
+ 114,
132
+ 115,
133
+ 116,
134
+ 117,
135
+ 118,
136
+ 119,
137
+ 120,
138
+ 121,
139
+ 122,
140
+ 123,
141
+ 124,
142
+ 125,
143
+ 126,
144
+ 127,
145
+ 128,
146
+ 129,
147
+ 130,
148
+ 131,
149
+ 132
150
+ ]
151
+ },
152
+ {
153
+ "lr": 1e-05,
154
+ "betas": [
155
+ 0.9,
156
+ 0.999
157
+ ],
158
+ "eps": 1e-08,
159
+ "weight_decay": 0.0001,
160
+ "amsgrad": false,
161
+ "foreach": null,
162
+ "maximize": false,
163
+ "capturable": false,
164
+ "differentiable": false,
165
+ "fused": null,
166
+ "params": [
167
+ 133,
168
+ 134,
169
+ 135,
170
+ 136,
171
+ 137,
172
+ 138,
173
+ 139,
174
+ 140,
175
+ 141,
176
+ 142,
177
+ 143,
178
+ 144,
179
+ 145,
180
+ 146,
181
+ 147,
182
+ 148,
183
+ 149,
184
+ 150,
185
+ 151,
186
+ 152
187
+ ]
188
+ }
189
+ ]
checkpoints/100000/training_state/optimizer_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c3a23157e150eb94982329e9302a7658feae92adc13daab19c8dfc7554cccc3
3
+ size 412817652
checkpoints/100000/training_state/rng_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29078e9c09e5c058b106b8f7956be1c76afb02c96977273f19d77bd32e41dc65
3
+ size 15708
checkpoints/100000/training_state/training_step.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "step": 100000
3
+ }
checkpoints/last/pretrained_model/config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "type": "act",
3
+ "n_obs_steps": 1,
4
+ "normalization_mapping": {
5
+ "VISUAL": "MEAN_STD",
6
+ "STATE": "MEAN_STD",
7
+ "ACTION": "MEAN_STD"
8
+ },
9
+ "input_features": {
10
+ "observation.state": {
11
+ "type": "STATE",
12
+ "shape": [
13
+ 6
14
+ ]
15
+ },
16
+ "observation.images.static_right": {
17
+ "type": "VISUAL",
18
+ "shape": [
19
+ 3,
20
+ 480,
21
+ 640
22
+ ]
23
+ },
24
+ "observation.images.static_left": {
25
+ "type": "VISUAL",
26
+ "shape": [
27
+ 3,
28
+ 480,
29
+ 640
30
+ ]
31
+ }
32
+ },
33
+ "output_features": {
34
+ "action": {
35
+ "type": "ACTION",
36
+ "shape": [
37
+ 6
38
+ ]
39
+ }
40
+ },
41
+ "device": "cuda",
42
+ "use_amp": false,
43
+ "chunk_size": 100,
44
+ "n_action_steps": 100,
45
+ "vision_backbone": "resnet18",
46
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
47
+ "replace_final_stride_with_dilation": false,
48
+ "pre_norm": false,
49
+ "dim_model": 512,
50
+ "n_heads": 8,
51
+ "dim_feedforward": 3200,
52
+ "feedforward_activation": "relu",
53
+ "n_encoder_layers": 4,
54
+ "n_decoder_layers": 1,
55
+ "use_vae": true,
56
+ "latent_dim": 32,
57
+ "n_vae_encoder_layers": 4,
58
+ "temporal_ensemble_coeff": null,
59
+ "dropout": 0.1,
60
+ "kl_weight": 10.0,
61
+ "optimizer_lr": 1e-05,
62
+ "optimizer_weight_decay": 0.0001,
63
+ "optimizer_lr_backbone": 1e-05
64
+ }
checkpoints/last/pretrained_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d75c3b78c622eb7476d12b688a6bf3996b97779866be6fa1294b933c312e92
3
+ size 206701096
checkpoints/last/pretrained_model/train_config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset": {
3
+ "repo_id": "rjgpinel/chickenToPlate",
4
+ "root": null,
5
+ "episodes": null,
6
+ "image_transforms": {
7
+ "enable": false,
8
+ "max_num_transforms": 3,
9
+ "random_order": false,
10
+ "tfs": {
11
+ "brightness": {
12
+ "weight": 1.0,
13
+ "type": "ColorJitter",
14
+ "kwargs": {
15
+ "brightness": [
16
+ 0.8,
17
+ 1.2
18
+ ]
19
+ }
20
+ },
21
+ "contrast": {
22
+ "weight": 1.0,
23
+ "type": "ColorJitter",
24
+ "kwargs": {
25
+ "contrast": [
26
+ 0.8,
27
+ 1.2
28
+ ]
29
+ }
30
+ },
31
+ "saturation": {
32
+ "weight": 1.0,
33
+ "type": "ColorJitter",
34
+ "kwargs": {
35
+ "saturation": [
36
+ 0.5,
37
+ 1.5
38
+ ]
39
+ }
40
+ },
41
+ "hue": {
42
+ "weight": 1.0,
43
+ "type": "ColorJitter",
44
+ "kwargs": {
45
+ "hue": [
46
+ -0.05,
47
+ 0.05
48
+ ]
49
+ }
50
+ },
51
+ "sharpness": {
52
+ "weight": 1.0,
53
+ "type": "SharpnessJitter",
54
+ "kwargs": {
55
+ "sharpness": [
56
+ 0.5,
57
+ 1.5
58
+ ]
59
+ }
60
+ }
61
+ }
62
+ },
63
+ "revision": null,
64
+ "use_imagenet_stats": true,
65
+ "video_backend": "torchcodec"
66
+ },
67
+ "env": null,
68
+ "policy": {
69
+ "type": "act",
70
+ "n_obs_steps": 1,
71
+ "normalization_mapping": {
72
+ "VISUAL": "MEAN_STD",
73
+ "STATE": "MEAN_STD",
74
+ "ACTION": "MEAN_STD"
75
+ },
76
+ "input_features": {
77
+ "observation.state": {
78
+ "type": "STATE",
79
+ "shape": [
80
+ 6
81
+ ]
82
+ },
83
+ "observation.images.static_right": {
84
+ "type": "VISUAL",
85
+ "shape": [
86
+ 3,
87
+ 480,
88
+ 640
89
+ ]
90
+ },
91
+ "observation.images.static_left": {
92
+ "type": "VISUAL",
93
+ "shape": [
94
+ 3,
95
+ 480,
96
+ 640
97
+ ]
98
+ }
99
+ },
100
+ "output_features": {
101
+ "action": {
102
+ "type": "ACTION",
103
+ "shape": [
104
+ 6
105
+ ]
106
+ }
107
+ },
108
+ "device": "cuda",
109
+ "use_amp": false,
110
+ "chunk_size": 100,
111
+ "n_action_steps": 100,
112
+ "vision_backbone": "resnet18",
113
+ "pretrained_backbone_weights": "ResNet18_Weights.IMAGENET1K_V1",
114
+ "replace_final_stride_with_dilation": false,
115
+ "pre_norm": false,
116
+ "dim_model": 512,
117
+ "n_heads": 8,
118
+ "dim_feedforward": 3200,
119
+ "feedforward_activation": "relu",
120
+ "n_encoder_layers": 4,
121
+ "n_decoder_layers": 1,
122
+ "use_vae": true,
123
+ "latent_dim": 32,
124
+ "n_vae_encoder_layers": 4,
125
+ "temporal_ensemble_coeff": null,
126
+ "dropout": 0.1,
127
+ "kl_weight": 10.0,
128
+ "optimizer_lr": 1e-05,
129
+ "optimizer_weight_decay": 0.0001,
130
+ "optimizer_lr_backbone": 1e-05
131
+ },
132
+ "output_dir": "outputs/train/act_bs8_chickenToPlate",
133
+ "job_name": "act_trial_bs8_chickenToPlate",
134
+ "resume": false,
135
+ "seed": 1000,
136
+ "num_workers": 4,
137
+ "batch_size": 8,
138
+ "steps": 100000,
139
+ "eval_freq": 20000,
140
+ "log_freq": 200,
141
+ "save_checkpoint": true,
142
+ "save_freq": 20000,
143
+ "use_policy_training_preset": true,
144
+ "optimizer": {
145
+ "type": "adamw",
146
+ "lr": 1e-05,
147
+ "weight_decay": 0.0001,
148
+ "grad_clip_norm": 10.0,
149
+ "betas": [
150
+ 0.9,
151
+ 0.999
152
+ ],
153
+ "eps": 1e-08
154
+ },
155
+ "scheduler": null,
156
+ "eval": {
157
+ "n_episodes": 50,
158
+ "batch_size": 50,
159
+ "use_async_envs": false
160
+ },
161
+ "wandb": {
162
+ "enable": true,
163
+ "disable_artifact": false,
164
+ "project": "lerobot",
165
+ "entity": null,
166
+ "notes": null,
167
+ "run_id": null,
168
+ "mode": null
169
+ }
170
+ }
checkpoints/last/training_state/optimizer_param_groups.json ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "lr": 1e-05,
4
+ "betas": [
5
+ 0.9,
6
+ 0.999
7
+ ],
8
+ "eps": 1e-08,
9
+ "weight_decay": 0.0001,
10
+ "amsgrad": false,
11
+ "foreach": null,
12
+ "maximize": false,
13
+ "capturable": false,
14
+ "differentiable": false,
15
+ "fused": null,
16
+ "params": [
17
+ 0,
18
+ 1,
19
+ 2,
20
+ 3,
21
+ 4,
22
+ 5,
23
+ 6,
24
+ 7,
25
+ 8,
26
+ 9,
27
+ 10,
28
+ 11,
29
+ 12,
30
+ 13,
31
+ 14,
32
+ 15,
33
+ 16,
34
+ 17,
35
+ 18,
36
+ 19,
37
+ 20,
38
+ 21,
39
+ 22,
40
+ 23,
41
+ 24,
42
+ 25,
43
+ 26,
44
+ 27,
45
+ 28,
46
+ 29,
47
+ 30,
48
+ 31,
49
+ 32,
50
+ 33,
51
+ 34,
52
+ 35,
53
+ 36,
54
+ 37,
55
+ 38,
56
+ 39,
57
+ 40,
58
+ 41,
59
+ 42,
60
+ 43,
61
+ 44,
62
+ 45,
63
+ 46,
64
+ 47,
65
+ 48,
66
+ 49,
67
+ 50,
68
+ 51,
69
+ 52,
70
+ 53,
71
+ 54,
72
+ 55,
73
+ 56,
74
+ 57,
75
+ 58,
76
+ 59,
77
+ 60,
78
+ 61,
79
+ 62,
80
+ 63,
81
+ 64,
82
+ 65,
83
+ 66,
84
+ 67,
85
+ 68,
86
+ 69,
87
+ 70,
88
+ 71,
89
+ 72,
90
+ 73,
91
+ 74,
92
+ 75,
93
+ 76,
94
+ 77,
95
+ 78,
96
+ 79,
97
+ 80,
98
+ 81,
99
+ 82,
100
+ 83,
101
+ 84,
102
+ 85,
103
+ 86,
104
+ 87,
105
+ 88,
106
+ 89,
107
+ 90,
108
+ 91,
109
+ 92,
110
+ 93,
111
+ 94,
112
+ 95,
113
+ 96,
114
+ 97,
115
+ 98,
116
+ 99,
117
+ 100,
118
+ 101,
119
+ 102,
120
+ 103,
121
+ 104,
122
+ 105,
123
+ 106,
124
+ 107,
125
+ 108,
126
+ 109,
127
+ 110,
128
+ 111,
129
+ 112,
130
+ 113,
131
+ 114,
132
+ 115,
133
+ 116,
134
+ 117,
135
+ 118,
136
+ 119,
137
+ 120,
138
+ 121,
139
+ 122,
140
+ 123,
141
+ 124,
142
+ 125,
143
+ 126,
144
+ 127,
145
+ 128,
146
+ 129,
147
+ 130,
148
+ 131,
149
+ 132
150
+ ]
151
+ },
152
+ {
153
+ "lr": 1e-05,
154
+ "betas": [
155
+ 0.9,
156
+ 0.999
157
+ ],
158
+ "eps": 1e-08,
159
+ "weight_decay": 0.0001,
160
+ "amsgrad": false,
161
+ "foreach": null,
162
+ "maximize": false,
163
+ "capturable": false,
164
+ "differentiable": false,
165
+ "fused": null,
166
+ "params": [
167
+ 133,
168
+ 134,
169
+ 135,
170
+ 136,
171
+ 137,
172
+ 138,
173
+ 139,
174
+ 140,
175
+ 141,
176
+ 142,
177
+ 143,
178
+ 144,
179
+ 145,
180
+ 146,
181
+ 147,
182
+ 148,
183
+ 149,
184
+ 150,
185
+ 151,
186
+ 152
187
+ ]
188
+ }
189
+ ]
checkpoints/last/training_state/optimizer_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:549548de67dacf831f72d637f360e188e1bb5a3efc471d1d27584cab26612585
3
+ size 412817652
checkpoints/last/training_state/rng_state.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7c491cf99c2f6a73880dbf0d97ad29c1788b95c2f2478248be5f3d18de16f55
3
+ size 15708
checkpoints/last/training_state/training_step.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "step": 60000
3
+ }
wandb/debug-internal.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
2
+ {"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
3
+ {"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
4
+ {"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
5
+ {"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
6
+ {"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
7
+ {"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
wandb/debug.log ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
2
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
3
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
4
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
5
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
6
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
7
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
8
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
9
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
10
+ config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
11
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
12
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
13
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
14
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
15
+ 2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
16
+ 2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
17
+ 2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
18
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
19
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
20
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
21
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
22
+ 2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
wandb/latest-run/files/output.log ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logs will be synced with wandb.
2
+ INFO 2025-04-13 07:11:50 ndb_utils.py:96 Track this run --> https://wandb.ai/rgarciap/lerobot/runs/ipo2f6m2
3
+ INFO 2025-04-13 07:11:50 ts/train.py:127 Creating dataset
4
+ Downloading data: 100%|██████████| 69/69 [00:00<00:00, 140420.66files/s]
5
+ Generating train split: 19655 examples [00:00, 273149.72 examples/s]
6
+ INFO 2025-04-13 07:11:51 ts/train.py:138 Creating policy
7
+ INFO 2025-04-13 07:11:52 ts/train.py:144 Creating optimizer and scheduler
8
+ INFO 2025-04-13 07:11:52 ts/train.py:156 Output dir: outputs/train/act_bs8_chickenToPlate
9
+ INFO 2025-04-13 07:11:52 ts/train.py:159 cfg.steps=100000 (100K)
10
+ INFO 2025-04-13 07:11:52 ts/train.py:160 dataset.num_frames=19655 (20K)
11
+ INFO 2025-04-13 07:11:52 ts/train.py:161 dataset.num_episodes=69
12
+ INFO 2025-04-13 07:11:52 ts/train.py:162 num_learnable_params=51597190 (52M)
13
+ INFO 2025-04-13 07:11:52 ts/train.py:163 num_total_params=51597238 (52M)
14
+ INFO 2025-04-13 07:11:52 ts/train.py:202 Start offline training on a fixed dataset
15
+ INFO 2025-04-13 07:12:06 ts/train.py:232 step:200 smpl:2K ep:6 epch:0.08 loss:6.809 grdn:153.932 lr:1.0e-05 updt_s:0.069 data_s:0.003
16
+ INFO 2025-04-13 07:12:19 ts/train.py:232 step:400 smpl:3K ep:11 epch:0.16 loss:3.046 grdn:85.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
17
+ INFO 2025-04-13 07:12:32 ts/train.py:232 step:600 smpl:5K ep:17 epch:0.24 loss:2.598 grdn:75.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
18
+ INFO 2025-04-13 07:12:46 ts/train.py:232 step:800 smpl:6K ep:22 epch:0.33 loss:2.264 grdn:69.358 lr:1.0e-05 updt_s:0.065 data_s:0.000
19
+ INFO 2025-04-13 07:12:59 ts/train.py:232 step:1K smpl:8K ep:28 epch:0.41 loss:2.054 grdn:65.551 lr:1.0e-05 updt_s:0.065 data_s:0.000
20
+ INFO 2025-04-13 07:13:12 ts/train.py:232 step:1K smpl:10K ep:34 epch:0.49 loss:1.853 grdn:62.666 lr:1.0e-05 updt_s:0.065 data_s:0.000
21
+ INFO 2025-04-13 07:13:25 ts/train.py:232 step:1K smpl:11K ep:39 epch:0.57 loss:1.696 grdn:59.657 lr:1.0e-05 updt_s:0.065 data_s:0.000
22
+ INFO 2025-04-13 07:13:38 ts/train.py:232 step:2K smpl:13K ep:45 epch:0.65 loss:1.529 grdn:57.475 lr:1.0e-05 updt_s:0.065 data_s:0.000
23
+ INFO 2025-04-13 07:13:51 ts/train.py:232 step:2K smpl:14K ep:51 epch:0.73 loss:1.401 grdn:54.794 lr:1.0e-05 updt_s:0.065 data_s:0.000
24
+ INFO 2025-04-13 07:14:04 ts/train.py:232 step:2K smpl:16K ep:56 epch:0.81 loss:1.279 grdn:52.447 lr:1.0e-05 updt_s:0.065 data_s:0.000
25
+ INFO 2025-04-13 07:14:17 ts/train.py:232 step:2K smpl:18K ep:62 epch:0.90 loss:1.187 grdn:51.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
26
+ INFO 2025-04-13 07:14:30 ts/train.py:232 step:2K smpl:19K ep:67 epch:0.98 loss:1.083 grdn:48.098 lr:1.0e-05 updt_s:0.064 data_s:0.000
27
+ INFO 2025-04-13 07:14:44 ts/train.py:232 step:3K smpl:21K ep:73 epch:1.06 loss:0.982 grdn:44.752 lr:1.0e-05 updt_s:0.066 data_s:0.003
28
+ INFO 2025-04-13 07:14:57 ts/train.py:232 step:3K smpl:22K ep:79 epch:1.14 loss:0.905 grdn:43.547 lr:1.0e-05 updt_s:0.064 data_s:0.000
29
+ INFO 2025-04-13 07:15:10 ts/train.py:232 step:3K smpl:24K ep:84 epch:1.22 loss:0.826 grdn:41.540 lr:1.0e-05 updt_s:0.064 data_s:0.000
30
+ INFO 2025-04-13 07:15:23 ts/train.py:232 step:3K smpl:26K ep:90 epch:1.30 loss:0.754 grdn:39.048 lr:1.0e-05 updt_s:0.064 data_s:0.000
31
+ INFO 2025-04-13 07:15:36 ts/train.py:232 step:3K smpl:27K ep:95 epch:1.38 loss:0.710 grdn:38.735 lr:1.0e-05 updt_s:0.065 data_s:0.000
32
+ INFO 2025-04-13 07:15:49 ts/train.py:232 step:4K smpl:29K ep:101 epch:1.47 loss:0.659 grdn:36.579 lr:1.0e-05 updt_s:0.065 data_s:0.000
33
+ INFO 2025-04-13 07:16:03 ts/train.py:232 step:4K smpl:30K ep:107 epch:1.55 loss:0.604 grdn:34.616 lr:1.0e-05 updt_s:0.065 data_s:0.000
34
+ INFO 2025-04-13 07:16:16 ts/train.py:232 step:4K smpl:32K ep:112 epch:1.63 loss:0.562 grdn:32.857 lr:1.0e-05 updt_s:0.064 data_s:0.000
35
+ INFO 2025-04-13 07:16:29 ts/train.py:232 step:4K smpl:34K ep:118 epch:1.71 loss:0.533 grdn:32.673 lr:1.0e-05 updt_s:0.064 data_s:0.000
36
+ INFO 2025-04-13 07:16:42 ts/train.py:232 step:4K smpl:35K ep:124 epch:1.79 loss:0.489 grdn:30.663 lr:1.0e-05 updt_s:0.065 data_s:0.000
37
+ INFO 2025-04-13 07:16:55 ts/train.py:232 step:5K smpl:37K ep:129 epch:1.87 loss:0.473 grdn:30.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
38
+ INFO 2025-04-13 07:17:08 ts/train.py:232 step:5K smpl:38K ep:135 epch:1.95 loss:0.444 grdn:29.572 lr:1.0e-05 updt_s:0.064 data_s:0.000
39
+ INFO 2025-04-13 07:17:21 ts/train.py:232 step:5K smpl:40K ep:140 epch:2.04 loss:0.427 grdn:28.334 lr:1.0e-05 updt_s:0.064 data_s:0.003
40
+ INFO 2025-04-13 07:17:34 ts/train.py:232 step:5K smpl:42K ep:146 epch:2.12 loss:0.394 grdn:27.066 lr:1.0e-05 updt_s:0.065 data_s:0.000
41
+ INFO 2025-04-13 07:17:47 ts/train.py:232 step:5K smpl:43K ep:152 epch:2.20 loss:0.384 grdn:26.812 lr:1.0e-05 updt_s:0.064 data_s:0.000
42
+ INFO 2025-04-13 07:18:00 ts/train.py:232 step:6K smpl:45K ep:157 epch:2.28 loss:0.369 grdn:25.750 lr:1.0e-05 updt_s:0.064 data_s:0.000
43
+ INFO 2025-04-13 07:18:13 ts/train.py:232 step:6K smpl:46K ep:163 epch:2.36 loss:0.347 grdn:24.628 lr:1.0e-05 updt_s:0.064 data_s:0.000
44
+ INFO 2025-04-13 07:18:26 ts/train.py:232 step:6K smpl:48K ep:169 epch:2.44 loss:0.345 grdn:25.079 lr:1.0e-05 updt_s:0.064 data_s:0.000
45
+ INFO 2025-04-13 07:18:39 ts/train.py:232 step:6K smpl:50K ep:174 epch:2.52 loss:0.333 grdn:24.552 lr:1.0e-05 updt_s:0.065 data_s:0.000
46
+ INFO 2025-04-13 07:18:53 ts/train.py:232 step:6K smpl:51K ep:180 epch:2.60 loss:0.319 grdn:23.761 lr:1.0e-05 updt_s:0.065 data_s:0.000
47
+ INFO 2025-04-13 07:19:06 ts/train.py:232 step:7K smpl:53K ep:185 epch:2.69 loss:0.313 grdn:23.319 lr:1.0e-05 updt_s:0.065 data_s:0.000
48
+ INFO 2025-04-13 07:19:19 ts/train.py:232 step:7K smpl:54K ep:191 epch:2.77 loss:0.296 grdn:22.959 lr:1.0e-05 updt_s:0.065 data_s:0.000
49
+ INFO 2025-04-13 07:19:32 ts/train.py:232 step:7K smpl:56K ep:197 epch:2.85 loss:0.297 grdn:23.434 lr:1.0e-05 updt_s:0.065 data_s:0.000
50
+ INFO 2025-04-13 07:19:45 ts/train.py:232 step:7K smpl:58K ep:202 epch:2.93 loss:0.290 grdn:22.584 lr:1.0e-05 updt_s:0.065 data_s:0.000
51
+ INFO 2025-04-13 07:19:59 ts/train.py:232 step:7K smpl:59K ep:208 epch:3.01 loss:0.283 grdn:23.340 lr:1.0e-05 updt_s:0.065 data_s:0.003
52
+ INFO 2025-04-13 07:20:12 ts/train.py:232 step:8K smpl:61K ep:213 epch:3.09 loss:0.272 grdn:22.151 lr:1.0e-05 updt_s:0.064 data_s:0.000
53
+ INFO 2025-04-13 07:20:24 ts/train.py:232 step:8K smpl:62K ep:219 epch:3.17 loss:0.267 grdn:22.000 lr:1.0e-05 updt_s:0.064 data_s:0.000
54
+ INFO 2025-04-13 07:20:38 ts/train.py:232 step:8K smpl:64K ep:225 epch:3.26 loss:0.256 grdn:20.574 lr:1.0e-05 updt_s:0.065 data_s:0.000
55
+ INFO 2025-04-13 07:20:50 ts/train.py:232 step:8K smpl:66K ep:230 epch:3.34 loss:0.248 grdn:20.914 lr:1.0e-05 updt_s:0.064 data_s:0.000
56
+ INFO 2025-04-13 07:21:03 ts/train.py:232 step:8K smpl:67K ep:236 epch:3.42 loss:0.251 grdn:21.292 lr:1.0e-05 updt_s:0.064 data_s:0.000
57
+ INFO 2025-04-13 07:21:17 ts/train.py:232 step:9K smpl:69K ep:242 epch:3.50 loss:0.249 grdn:20.863 lr:1.0e-05 updt_s:0.065 data_s:0.000
58
+ INFO 2025-04-13 07:21:30 ts/train.py:232 step:9K smpl:70K ep:247 epch:3.58 loss:0.244 grdn:20.995 lr:1.0e-05 updt_s:0.065 data_s:0.000
59
+ INFO 2025-04-13 07:21:43 ts/train.py:232 step:9K smpl:72K ep:253 epch:3.66 loss:0.241 grdn:20.919 lr:1.0e-05 updt_s:0.065 data_s:0.000
60
+ INFO 2025-04-13 07:21:56 ts/train.py:232 step:9K smpl:74K ep:258 epch:3.74 loss:0.234 grdn:20.073 lr:1.0e-05 updt_s:0.065 data_s:0.000
61
+ INFO 2025-04-13 07:22:09 ts/train.py:232 step:9K smpl:75K ep:264 epch:3.83 loss:0.233 grdn:20.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
62
+ INFO 2025-04-13 07:22:22 ts/train.py:232 step:10K smpl:77K ep:270 epch:3.91 loss:0.229 grdn:19.897 lr:1.0e-05 updt_s:0.065 data_s:0.000
63
+ INFO 2025-04-13 07:22:35 ts/train.py:232 step:10K smpl:78K ep:275 epch:3.99 loss:0.224 grdn:20.040 lr:1.0e-05 updt_s:0.065 data_s:0.000
64
+ INFO 2025-04-13 07:22:49 ts/train.py:232 step:10K smpl:80K ep:281 epch:4.07 loss:0.215 grdn:18.582 lr:1.0e-05 updt_s:0.064 data_s:0.003
65
+ INFO 2025-04-13 07:23:02 ts/train.py:232 step:10K smpl:82K ep:286 epch:4.15 loss:0.215 grdn:19.444 lr:1.0e-05 updt_s:0.065 data_s:0.000
66
+ INFO 2025-04-13 07:23:15 ts/train.py:232 step:10K smpl:83K ep:292 epch:4.23 loss:0.213 grdn:19.041 lr:1.0e-05 updt_s:0.065 data_s:0.000
67
+ INFO 2025-04-13 07:23:28 ts/train.py:232 step:11K smpl:85K ep:298 epch:4.31 loss:0.207 grdn:18.785 lr:1.0e-05 updt_s:0.065 data_s:0.000
68
+ INFO 2025-04-13 07:23:41 ts/train.py:232 step:11K smpl:86K ep:303 epch:4.40 loss:0.205 grdn:18.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
69
+ INFO 2025-04-13 07:23:54 ts/train.py:232 step:11K smpl:88K ep:309 epch:4.48 loss:0.209 grdn:18.879 lr:1.0e-05 updt_s:0.064 data_s:0.000
70
+ INFO 2025-04-13 07:24:07 ts/train.py:232 step:11K smpl:90K ep:315 epch:4.56 loss:0.197 grdn:18.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
71
+ INFO 2025-04-13 07:24:21 ts/train.py:232 step:11K smpl:91K ep:320 epch:4.64 loss:0.201 grdn:18.452 lr:1.0e-05 updt_s:0.065 data_s:0.000
72
+ INFO 2025-04-13 07:24:34 ts/train.py:232 step:12K smpl:93K ep:326 epch:4.72 loss:0.199 grdn:17.926 lr:1.0e-05 updt_s:0.065 data_s:0.000
73
+ INFO 2025-04-13 07:24:47 ts/train.py:232 step:12K smpl:94K ep:331 epch:4.80 loss:0.197 grdn:17.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
74
+ INFO 2025-04-13 07:25:00 ts/train.py:232 step:12K smpl:96K ep:337 epch:4.88 loss:0.192 grdn:17.747 lr:1.0e-05 updt_s:0.064 data_s:0.000
75
+ INFO 2025-04-13 07:25:13 ts/train.py:232 step:12K smpl:98K ep:343 epch:4.97 loss:0.187 grdn:17.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
76
+ INFO 2025-04-13 07:25:27 ts/train.py:232 step:12K smpl:99K ep:348 epch:5.05 loss:0.186 grdn:16.616 lr:1.0e-05 updt_s:0.065 data_s:0.003
77
+ INFO 2025-04-13 07:25:39 ts/train.py:232 step:13K smpl:101K ep:354 epch:5.13 loss:0.183 grdn:16.979 lr:1.0e-05 updt_s:0.064 data_s:0.000
78
+ INFO 2025-04-13 07:25:52 ts/train.py:232 step:13K smpl:102K ep:359 epch:5.21 loss:0.183 grdn:17.301 lr:1.0e-05 updt_s:0.064 data_s:0.000
79
+ INFO 2025-04-13 07:26:05 ts/train.py:232 step:13K smpl:104K ep:365 epch:5.29 loss:0.181 grdn:16.777 lr:1.0e-05 updt_s:0.064 data_s:0.000
80
+ INFO 2025-04-13 07:26:18 ts/train.py:232 step:13K smpl:106K ep:371 epch:5.37 loss:0.177 grdn:16.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
81
+ INFO 2025-04-13 07:26:32 ts/train.py:232 step:13K smpl:107K ep:376 epch:5.45 loss:0.178 grdn:16.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
82
+ INFO 2025-04-13 07:26:45 ts/train.py:232 step:14K smpl:109K ep:382 epch:5.54 loss:0.173 grdn:15.851 lr:1.0e-05 updt_s:0.064 data_s:0.000
83
+ INFO 2025-04-13 07:26:58 ts/train.py:232 step:14K smpl:110K ep:388 epch:5.62 loss:0.177 grdn:16.146 lr:1.0e-05 updt_s:0.064 data_s:0.000
84
+ INFO 2025-04-13 07:27:11 ts/train.py:232 step:14K smpl:112K ep:393 epch:5.70 loss:0.172 grdn:16.112 lr:1.0e-05 updt_s:0.065 data_s:0.000
85
+ INFO 2025-04-13 07:27:24 ts/train.py:232 step:14K smpl:114K ep:399 epch:5.78 loss:0.166 grdn:15.756 lr:1.0e-05 updt_s:0.064 data_s:0.000
86
+ INFO 2025-04-13 07:27:37 ts/train.py:232 step:14K smpl:115K ep:404 epch:5.86 loss:0.167 grdn:16.241 lr:1.0e-05 updt_s:0.064 data_s:0.000
87
+ INFO 2025-04-13 07:27:50 ts/train.py:232 step:15K smpl:117K ep:410 epch:5.94 loss:0.169 grdn:16.451 lr:1.0e-05 updt_s:0.064 data_s:0.000
88
+ INFO 2025-04-13 07:28:04 ts/train.py:232 step:15K smpl:118K ep:416 epch:6.02 loss:0.164 grdn:15.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
89
+ INFO 2025-04-13 07:28:17 ts/train.py:232 step:15K smpl:120K ep:421 epch:6.11 loss:0.162 grdn:16.060 lr:1.0e-05 updt_s:0.065 data_s:0.000
90
+ INFO 2025-04-13 07:28:30 ts/train.py:232 step:15K smpl:122K ep:427 epch:6.19 loss:0.158 grdn:15.626 lr:1.0e-05 updt_s:0.065 data_s:0.000
91
+ INFO 2025-04-13 07:28:43 ts/train.py:232 step:15K smpl:123K ep:433 epch:6.27 loss:0.156 grdn:15.185 lr:1.0e-05 updt_s:0.065 data_s:0.000
92
+ INFO 2025-04-13 07:28:56 ts/train.py:232 step:16K smpl:125K ep:438 epch:6.35 loss:0.156 grdn:15.646 lr:1.0e-05 updt_s:0.065 data_s:0.000
93
+ INFO 2025-04-13 07:29:09 ts/train.py:232 step:16K smpl:126K ep:444 epch:6.43 loss:0.154 grdn:15.384 lr:1.0e-05 updt_s:0.065 data_s:0.000
94
+ INFO 2025-04-13 07:29:22 ts/train.py:232 step:16K smpl:128K ep:449 epch:6.51 loss:0.156 grdn:15.582 lr:1.0e-05 updt_s:0.065 data_s:0.000
95
+ INFO 2025-04-13 07:29:35 ts/train.py:232 step:16K smpl:130K ep:455 epch:6.59 loss:0.153 grdn:14.992 lr:1.0e-05 updt_s:0.065 data_s:0.000
96
+ INFO 2025-04-13 07:29:48 ts/train.py:232 step:16K smpl:131K ep:461 epch:6.68 loss:0.151 grdn:15.471 lr:1.0e-05 updt_s:0.065 data_s:0.000
97
+ INFO 2025-04-13 07:30:02 ts/train.py:232 step:17K smpl:133K ep:466 epch:6.76 loss:0.152 grdn:14.837 lr:1.0e-05 updt_s:0.065 data_s:0.000
98
+ INFO 2025-04-13 07:30:15 ts/train.py:232 step:17K smpl:134K ep:472 epch:6.84 loss:0.153 grdn:14.808 lr:1.0e-05 updt_s:0.065 data_s:0.000
99
+ INFO 2025-04-13 07:30:28 ts/train.py:232 step:17K smpl:136K ep:477 epch:6.92 loss:0.149 grdn:14.183 lr:1.0e-05 updt_s:0.065 data_s:0.000
100
+ INFO 2025-04-13 07:30:41 ts/train.py:232 step:17K smpl:138K ep:483 epch:7.00 loss:0.153 grdn:15.182 lr:1.0e-05 updt_s:0.065 data_s:0.003
101
+ INFO 2025-04-13 07:30:54 ts/train.py:232 step:17K smpl:139K ep:489 epch:7.08 loss:0.146 grdn:14.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
102
+ INFO 2025-04-13 07:31:08 ts/train.py:232 step:18K smpl:141K ep:494 epch:7.16 loss:0.144 grdn:14.158 lr:1.0e-05 updt_s:0.065 data_s:0.000
103
+ INFO 2025-04-13 07:31:21 ts/train.py:232 step:18K smpl:142K ep:500 epch:7.24 loss:0.145 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
104
+ INFO 2025-04-13 07:31:34 ts/train.py:232 step:18K smpl:144K ep:506 epch:7.33 loss:0.142 grdn:14.397 lr:1.0e-05 updt_s:0.065 data_s:0.000
105
+ INFO 2025-04-13 07:31:47 ts/train.py:232 step:18K smpl:146K ep:511 epch:7.41 loss:0.139 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
106
+ INFO 2025-04-13 07:32:00 ts/train.py:232 step:18K smpl:147K ep:517 epch:7.49 loss:0.139 grdn:13.893 lr:1.0e-05 updt_s:0.065 data_s:0.000
107
+ INFO 2025-04-13 07:32:13 ts/train.py:232 step:19K smpl:149K ep:522 epch:7.57 loss:0.140 grdn:14.046 lr:1.0e-05 updt_s:0.065 data_s:0.000
108
+ INFO 2025-04-13 07:32:26 ts/train.py:232 step:19K smpl:150K ep:528 epch:7.65 loss:0.141 grdn:14.334 lr:1.0e-05 updt_s:0.065 data_s:0.000
109
+ INFO 2025-04-13 07:32:39 ts/train.py:232 step:19K smpl:152K ep:534 epch:7.73 loss:0.135 grdn:13.463 lr:1.0e-05 updt_s:0.064 data_s:0.000
110
+ INFO 2025-04-13 07:32:52 ts/train.py:232 step:19K smpl:154K ep:539 epch:7.81 loss:0.140 grdn:13.593 lr:1.0e-05 updt_s:0.065 data_s:0.000
111
+ INFO 2025-04-13 07:33:05 ts/train.py:232 step:19K smpl:155K ep:545 epch:7.90 loss:0.134 grdn:13.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
112
+ INFO 2025-04-13 07:33:18 ts/train.py:232 step:20K smpl:157K ep:550 epch:7.98 loss:0.136 grdn:13.459 lr:1.0e-05 updt_s:0.064 data_s:0.000
113
+ INFO 2025-04-13 07:33:32 ts/train.py:232 step:20K smpl:158K ep:556 epch:8.06 loss:0.133 grdn:14.081 lr:1.0e-05 updt_s:0.064 data_s:0.003
114
+ INFO 2025-04-13 07:33:45 ts/train.py:232 step:20K smpl:160K ep:562 epch:8.14 loss:0.130 grdn:13.435 lr:1.0e-05 updt_s:0.064 data_s:0.000
115
+ INFO 2025-04-13 07:33:45 ts/train.py:241 Checkpoint policy after step 20000
116
+ INFO 2025-04-13 07:34:00 ts/train.py:232 step:20K smpl:162K ep:567 epch:8.22 loss:0.131 grdn:13.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
117
+ INFO 2025-04-13 07:34:13 ts/train.py:232 step:20K smpl:163K ep:573 epch:8.30 loss:0.131 grdn:13.245 lr:1.0e-05 updt_s:0.065 data_s:0.000
118
+ INFO 2025-04-13 07:34:26 ts/train.py:232 step:21K smpl:165K ep:579 epch:8.38 loss:0.131 grdn:13.519 lr:1.0e-05 updt_s:0.064 data_s:0.000
119
+ INFO 2025-04-13 07:34:39 ts/train.py:232 step:21K smpl:166K ep:584 epch:8.47 loss:0.130 grdn:13.058 lr:1.0e-05 updt_s:0.064 data_s:0.000
120
+ INFO 2025-04-13 07:34:52 ts/train.py:232 step:21K smpl:168K ep:590 epch:8.55 loss:0.126 grdn:13.520 lr:1.0e-05 updt_s:0.064 data_s:0.000
121
+ INFO 2025-04-13 07:35:05 ts/train.py:232 step:21K smpl:170K ep:595 epch:8.63 loss:0.125 grdn:12.425 lr:1.0e-05 updt_s:0.065 data_s:0.000
122
+ INFO 2025-04-13 07:35:19 ts/train.py:232 step:21K smpl:171K ep:601 epch:8.71 loss:0.129 grdn:12.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
123
+ INFO 2025-04-13 07:35:32 ts/train.py:232 step:22K smpl:173K ep:607 epch:8.79 loss:0.124 grdn:12.513 lr:1.0e-05 updt_s:0.065 data_s:0.000
124
+ INFO 2025-04-13 07:35:45 ts/train.py:232 step:22K smpl:174K ep:612 epch:8.87 loss:0.126 grdn:13.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
125
+ INFO 2025-04-13 07:35:58 ts/train.py:232 step:22K smpl:176K ep:618 epch:8.95 loss:0.125 grdn:12.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
126
+ INFO 2025-04-13 07:36:11 ts/train.py:232 step:22K smpl:178K ep:623 epch:9.04 loss:0.125 grdn:12.803 lr:1.0e-05 updt_s:0.065 data_s:0.003
127
+ INFO 2025-04-13 07:36:25 ts/train.py:232 step:22K smpl:179K ep:629 epch:9.12 loss:0.123 grdn:13.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
128
+ INFO 2025-04-13 07:36:38 ts/train.py:232 step:23K smpl:181K ep:635 epch:9.20 loss:0.120 grdn:11.989 lr:1.0e-05 updt_s:0.064 data_s:0.000
129
+ INFO 2025-04-13 07:36:51 ts/train.py:232 step:23K smpl:182K ep:640 epch:9.28 loss:0.122 grdn:12.755 lr:1.0e-05 updt_s:0.065 data_s:0.000
130
+ INFO 2025-04-13 07:37:04 ts/train.py:232 step:23K smpl:184K ep:646 epch:9.36 loss:0.122 grdn:12.659 lr:1.0e-05 updt_s:0.064 data_s:0.000
131
+ INFO 2025-04-13 07:37:17 ts/train.py:232 step:23K smpl:186K ep:652 epch:9.44 loss:0.121 grdn:11.655 lr:1.0e-05 updt_s:0.064 data_s:0.000
132
+ INFO 2025-04-13 07:37:30 ts/train.py:232 step:23K smpl:187K ep:657 epch:9.52 loss:0.118 grdn:12.432 lr:1.0e-05 updt_s:0.064 data_s:0.000
133
+ INFO 2025-04-13 07:37:43 ts/train.py:232 step:24K smpl:189K ep:663 epch:9.61 loss:0.116 grdn:12.006 lr:1.0e-05 updt_s:0.065 data_s:0.000
134
+ INFO 2025-04-13 07:37:56 ts/train.py:232 step:24K smpl:190K ep:668 epch:9.69 loss:0.119 grdn:12.331 lr:1.0e-05 updt_s:0.064 data_s:0.000
135
+ INFO 2025-04-13 07:38:09 ts/train.py:232 step:24K smpl:192K ep:674 epch:9.77 loss:0.117 grdn:11.835 lr:1.0e-05 updt_s:0.064 data_s:0.000
136
+ INFO 2025-04-13 07:38:22 ts/train.py:232 step:24K smpl:194K ep:680 epch:9.85 loss:0.117 grdn:12.136 lr:1.0e-05 updt_s:0.064 data_s:0.000
137
+ INFO 2025-04-13 07:38:35 ts/train.py:232 step:24K smpl:195K ep:685 epch:9.93 loss:0.114 grdn:11.678 lr:1.0e-05 updt_s:0.064 data_s:0.000
138
+ INFO 2025-04-13 07:38:48 ts/train.py:232 step:25K smpl:197K ep:691 epch:10.01 loss:0.115 grdn:12.327 lr:1.0e-05 updt_s:0.064 data_s:0.003
139
+ INFO 2025-04-13 07:39:02 ts/train.py:232 step:25K smpl:198K ep:696 epch:10.09 loss:0.112 grdn:11.804 lr:1.0e-05 updt_s:0.065 data_s:0.000
140
+ INFO 2025-04-13 07:39:15 ts/train.py:232 step:25K smpl:200K ep:702 epch:10.18 loss:0.112 grdn:12.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
141
+ INFO 2025-04-13 07:39:27 ts/train.py:232 step:25K smpl:202K ep:708 epch:10.26 loss:0.113 grdn:12.086 lr:1.0e-05 updt_s:0.064 data_s:0.000
142
+ INFO 2025-04-13 07:39:40 ts/train.py:232 step:25K smpl:203K ep:713 epch:10.34 loss:0.110 grdn:11.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
143
+ INFO 2025-04-13 07:39:53 ts/train.py:232 step:26K smpl:205K ep:719 epch:10.42 loss:0.111 grdn:11.815 lr:1.0e-05 updt_s:0.064 data_s:0.000
144
+ INFO 2025-04-13 07:40:06 ts/train.py:232 step:26K smpl:206K ep:725 epch:10.50 loss:0.112 grdn:12.033 lr:1.0e-05 updt_s:0.064 data_s:0.000
145
+ INFO 2025-04-13 07:40:19 ts/train.py:232 step:26K smpl:208K ep:730 epch:10.58 loss:0.112 grdn:11.434 lr:1.0e-05 updt_s:0.064 data_s:0.000
146
+ INFO 2025-04-13 07:40:32 ts/train.py:232 step:26K smpl:210K ep:736 epch:10.66 loss:0.112 grdn:11.740 lr:1.0e-05 updt_s:0.065 data_s:0.000
147
+ INFO 2025-04-13 07:40:45 ts/train.py:232 step:26K smpl:211K ep:741 epch:10.75 loss:0.109 grdn:10.975 lr:1.0e-05 updt_s:0.064 data_s:0.000
148
+ INFO 2025-04-13 07:40:58 ts/train.py:232 step:27K smpl:213K ep:747 epch:10.83 loss:0.109 grdn:11.531 lr:1.0e-05 updt_s:0.064 data_s:0.000
149
+ INFO 2025-04-13 07:41:11 ts/train.py:232 step:27K smpl:214K ep:753 epch:10.91 loss:0.110 grdn:11.617 lr:1.0e-05 updt_s:0.064 data_s:0.000
150
+ INFO 2025-04-13 07:41:24 ts/train.py:232 step:27K smpl:216K ep:758 epch:10.99 loss:0.110 grdn:11.680 lr:1.0e-05 updt_s:0.064 data_s:0.000
151
+ INFO 2025-04-13 07:41:38 ts/train.py:232 step:27K smpl:218K ep:764 epch:11.07 loss:0.106 grdn:11.377 lr:1.0e-05 updt_s:0.065 data_s:0.003
152
+ INFO 2025-04-13 07:41:51 ts/train.py:232 step:27K smpl:219K ep:770 epch:11.15 loss:0.107 grdn:10.917 lr:1.0e-05 updt_s:0.064 data_s:0.000
153
+ INFO 2025-04-13 07:42:04 ts/train.py:232 step:28K smpl:221K ep:775 epch:11.23 loss:0.105 grdn:11.053 lr:1.0e-05 updt_s:0.064 data_s:0.000
154
+ INFO 2025-04-13 07:42:17 ts/train.py:232 step:28K smpl:222K ep:781 epch:11.32 loss:0.105 grdn:11.564 lr:1.0e-05 updt_s:0.064 data_s:0.000
155
+ INFO 2025-04-13 07:42:30 ts/train.py:232 step:28K smpl:224K ep:786 epch:11.40 loss:0.106 grdn:10.940 lr:1.0e-05 updt_s:0.064 data_s:0.000
156
+ INFO 2025-04-13 07:42:43 ts/train.py:232 step:28K smpl:226K ep:792 epch:11.48 loss:0.105 grdn:11.703 lr:1.0e-05 updt_s:0.065 data_s:0.000
157
+ INFO 2025-04-13 07:42:56 ts/train.py:232 step:28K smpl:227K ep:798 epch:11.56 loss:0.106 grdn:11.474 lr:1.0e-05 updt_s:0.064 data_s:0.000
158
+ INFO 2025-04-13 07:43:09 ts/train.py:232 step:29K smpl:229K ep:803 epch:11.64 loss:0.105 grdn:10.971 lr:1.0e-05 updt_s:0.064 data_s:0.000
159
+ INFO 2025-04-13 07:43:22 ts/train.py:232 step:29K smpl:230K ep:809 epch:11.72 loss:0.104 grdn:11.014 lr:1.0e-05 updt_s:0.064 data_s:0.000
160
+ INFO 2025-04-13 07:43:35 ts/train.py:232 step:29K smpl:232K ep:814 epch:11.80 loss:0.106 grdn:12.269 lr:1.0e-05 updt_s:0.065 data_s:0.000
161
+ INFO 2025-04-13 07:43:48 ts/train.py:232 step:29K smpl:234K ep:820 epch:11.89 loss:0.103 grdn:11.243 lr:1.0e-05 updt_s:0.065 data_s:0.000
162
+ INFO 2025-04-13 07:44:01 ts/train.py:232 step:29K smpl:235K ep:826 epch:11.97 loss:0.104 grdn:10.805 lr:1.0e-05 updt_s:0.065 data_s:0.000
163
+ INFO 2025-04-13 07:44:15 ts/train.py:232 step:30K smpl:237K ep:831 epch:12.05 loss:0.100 grdn:10.175 lr:1.0e-05 updt_s:0.065 data_s:0.003
164
+ INFO 2025-04-13 07:44:28 ts/train.py:232 step:30K smpl:238K ep:837 epch:12.13 loss:0.102 grdn:10.500 lr:1.0e-05 updt_s:0.064 data_s:0.000
165
+ INFO 2025-04-13 07:44:41 ts/train.py:232 step:30K smpl:240K ep:843 epch:12.21 loss:0.100 grdn:10.632 lr:1.0e-05 updt_s:0.064 data_s:0.000
166
+ INFO 2025-04-13 07:44:54 ts/train.py:232 step:30K smpl:242K ep:848 epch:12.29 loss:0.101 grdn:10.989 lr:1.0e-05 updt_s:0.065 data_s:0.000
167
+ INFO 2025-04-13 07:45:07 ts/train.py:232 step:30K smpl:243K ep:854 epch:12.37 loss:0.098 grdn:10.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
168
+ INFO 2025-04-13 07:45:20 ts/train.py:232 step:31K smpl:245K ep:859 epch:12.45 loss:0.101 grdn:10.633 lr:1.0e-05 updt_s:0.064 data_s:0.000
169
+ INFO 2025-04-13 07:45:33 ts/train.py:232 step:31K smpl:246K ep:865 epch:12.54 loss:0.100 grdn:10.785 lr:1.0e-05 updt_s:0.064 data_s:0.000
170
+ INFO 2025-04-13 07:45:46 ts/train.py:232 step:31K smpl:248K ep:871 epch:12.62 loss:0.099 grdn:10.262 lr:1.0e-05 updt_s:0.064 data_s:0.000
171
+ INFO 2025-04-13 07:45:59 ts/train.py:232 step:31K smpl:250K ep:876 epch:12.70 loss:0.100 grdn:10.483 lr:1.0e-05 updt_s:0.064 data_s:0.000
172
+ INFO 2025-04-13 07:46:12 ts/train.py:232 step:31K smpl:251K ep:882 epch:12.78 loss:0.098 grdn:10.116 lr:1.0e-05 updt_s:0.065 data_s:0.000
173
+ INFO 2025-04-13 07:46:25 ts/train.py:232 step:32K smpl:253K ep:887 epch:12.86 loss:0.096 grdn:10.274 lr:1.0e-05 updt_s:0.064 data_s:0.000
174
+ INFO 2025-04-13 07:46:38 ts/train.py:232 step:32K smpl:254K ep:893 epch:12.94 loss:0.099 grdn:10.698 lr:1.0e-05 updt_s:0.064 data_s:0.000
175
+ INFO 2025-04-13 07:46:52 ts/train.py:232 step:32K smpl:256K ep:899 epch:13.02 loss:0.098 grdn:10.042 lr:1.0e-05 updt_s:0.064 data_s:0.003
176
+ INFO 2025-04-13 07:47:05 ts/train.py:232 step:32K smpl:258K ep:904 epch:13.11 loss:0.097 grdn:10.860 lr:1.0e-05 updt_s:0.065 data_s:0.000
177
+ INFO 2025-04-13 07:47:18 ts/train.py:232 step:32K smpl:259K ep:910 epch:13.19 loss:0.097 grdn:10.217 lr:1.0e-05 updt_s:0.065 data_s:0.000
178
+ INFO 2025-04-13 07:47:31 ts/train.py:232 step:33K smpl:261K ep:916 epch:13.27 loss:0.094 grdn:10.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
179
+ INFO 2025-04-13 07:47:44 ts/train.py:232 step:33K smpl:262K ep:921 epch:13.35 loss:0.095 grdn:10.433 lr:1.0e-05 updt_s:0.065 data_s:0.000
180
+ INFO 2025-04-13 07:47:57 ts/train.py:232 step:33K smpl:264K ep:927 epch:13.43 loss:0.096 grdn:10.295 lr:1.0e-05 updt_s:0.065 data_s:0.000
181
+ INFO 2025-04-13 07:48:10 ts/train.py:232 step:33K smpl:266K ep:932 epch:13.51 loss:0.096 grdn:10.294 lr:1.0e-05 updt_s:0.065 data_s:0.000
182
+ INFO 2025-04-13 07:48:24 ts/train.py:232 step:33K smpl:267K ep:938 epch:13.59 loss:0.095 grdn:10.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
183
+ INFO 2025-04-13 07:48:37 ts/train.py:232 step:34K smpl:269K ep:944 epch:13.68 loss:0.093 grdn:9.761 lr:1.0e-05 updt_s:0.064 data_s:0.000
184
+ INFO 2025-04-13 07:48:50 ts/train.py:232 step:34K smpl:270K ep:949 epch:13.76 loss:0.095 grdn:10.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
185
+ INFO 2025-04-13 07:49:03 ts/train.py:232 step:34K smpl:272K ep:955 epch:13.84 loss:0.094 grdn:9.866 lr:1.0e-05 updt_s:0.065 data_s:0.000
186
+ INFO 2025-04-13 07:49:16 ts/train.py:232 step:34K smpl:274K ep:960 epch:13.92 loss:0.093 grdn:9.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
187
+ INFO 2025-04-13 07:49:30 ts/train.py:232 step:34K smpl:275K ep:966 epch:14.00 loss:0.094 grdn:9.887 lr:1.0e-05 updt_s:0.065 data_s:0.003
188
+ INFO 2025-04-13 07:49:43 ts/train.py:232 step:35K smpl:277K ep:972 epch:14.08 loss:0.092 grdn:10.045 lr:1.0e-05 updt_s:0.064 data_s:0.000
189
+ INFO 2025-04-13 07:49:56 ts/train.py:232 step:35K smpl:278K ep:977 epch:14.16 loss:0.092 grdn:9.508 lr:1.0e-05 updt_s:0.064 data_s:0.000
190
+ INFO 2025-04-13 07:50:09 ts/train.py:232 step:35K smpl:280K ep:983 epch:14.25 loss:0.089 grdn:9.537 lr:1.0e-05 updt_s:0.064 data_s:0.000
191
+ INFO 2025-04-13 07:50:21 ts/train.py:232 step:35K smpl:282K ep:989 epch:14.33 loss:0.090 grdn:9.587 lr:1.0e-05 updt_s:0.064 data_s:0.000
192
+ INFO 2025-04-13 07:50:35 ts/train.py:232 step:35K smpl:283K ep:994 epch:14.41 loss:0.091 grdn:9.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
193
+ INFO 2025-04-13 07:50:48 ts/train.py:232 step:36K smpl:285K ep:1000 epch:14.49 loss:0.091 grdn:10.239 lr:1.0e-05 updt_s:0.064 data_s:0.000
194
+ INFO 2025-04-13 07:51:01 ts/train.py:232 step:36K smpl:286K ep:1K epch:14.57 loss:0.091 grdn:9.974 lr:1.0e-05 updt_s:0.065 data_s:0.000
195
+ INFO 2025-04-13 07:51:14 ts/train.py:232 step:36K smpl:288K ep:1K epch:14.65 loss:0.090 grdn:9.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
196
+ INFO 2025-04-13 07:51:27 ts/train.py:232 step:36K smpl:290K ep:1K epch:14.73 loss:0.092 grdn:9.628 lr:1.0e-05 updt_s:0.065 data_s:0.000
197
+ INFO 2025-04-13 07:51:40 ts/train.py:232 step:36K smpl:291K ep:1K epch:14.82 loss:0.093 grdn:10.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
198
+ INFO 2025-04-13 07:51:53 ts/train.py:232 step:37K smpl:293K ep:1K epch:14.90 loss:0.091 grdn:9.530 lr:1.0e-05 updt_s:0.065 data_s:0.000
199
+ INFO 2025-04-13 07:52:06 ts/train.py:232 step:37K smpl:294K ep:1K epch:14.98 loss:0.090 grdn:9.397 lr:1.0e-05 updt_s:0.064 data_s:0.000
200
+ INFO 2025-04-13 07:52:19 ts/train.py:232 step:37K smpl:296K ep:1K epch:15.06 loss:0.087 grdn:9.458 lr:1.0e-05 updt_s:0.064 data_s:0.003
201
+ INFO 2025-04-13 07:52:32 ts/train.py:232 step:37K smpl:298K ep:1K epch:15.14 loss:0.089 grdn:9.436 lr:1.0e-05 updt_s:0.064 data_s:0.000
202
+ INFO 2025-04-13 07:52:45 ts/train.py:232 step:37K smpl:299K ep:1K epch:15.22 loss:0.089 grdn:9.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
203
+ INFO 2025-04-13 07:52:59 ts/train.py:232 step:38K smpl:301K ep:1K epch:15.30 loss:0.090 grdn:9.182 lr:1.0e-05 updt_s:0.065 data_s:0.000
204
+ INFO 2025-04-13 07:53:12 ts/train.py:232 step:38K smpl:302K ep:1K epch:15.39 loss:0.089 grdn:9.066 lr:1.0e-05 updt_s:0.064 data_s:0.000
205
+ INFO 2025-04-13 07:53:25 ts/train.py:232 step:38K smpl:304K ep:1K epch:15.47 loss:0.088 grdn:9.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
206
+ INFO 2025-04-13 07:53:38 ts/train.py:232 step:38K smpl:306K ep:1K epch:15.55 loss:0.087 grdn:9.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
207
+ INFO 2025-04-13 07:53:51 ts/train.py:232 step:38K smpl:307K ep:1K epch:15.63 loss:0.090 grdn:9.841 lr:1.0e-05 updt_s:0.065 data_s:0.000
208
+ INFO 2025-04-13 07:54:04 ts/train.py:232 step:39K smpl:309K ep:1K epch:15.71 loss:0.088 grdn:8.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
209
+ INFO 2025-04-13 07:54:17 ts/train.py:232 step:39K smpl:310K ep:1K epch:15.79 loss:0.086 grdn:9.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
210
+ INFO 2025-04-13 07:54:30 ts/train.py:232 step:39K smpl:312K ep:1K epch:15.87 loss:0.087 grdn:9.112 lr:1.0e-05 updt_s:0.064 data_s:0.000
211
+ INFO 2025-04-13 07:54:43 ts/train.py:232 step:39K smpl:314K ep:1K epch:15.96 loss:0.086 grdn:9.395 lr:1.0e-05 updt_s:0.064 data_s:0.000
212
+ INFO 2025-04-13 07:54:56 ts/train.py:232 step:39K smpl:315K ep:1K epch:16.04 loss:0.087 grdn:9.777 lr:1.0e-05 updt_s:0.065 data_s:0.003
213
+ INFO 2025-04-13 07:55:09 ts/train.py:232 step:40K smpl:317K ep:1K epch:16.12 loss:0.085 grdn:9.514 lr:1.0e-05 updt_s:0.065 data_s:0.000
214
+ INFO 2025-04-13 07:55:22 ts/train.py:232 step:40K smpl:318K ep:1K epch:16.20 loss:0.086 grdn:9.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
215
+ INFO 2025-04-13 07:55:36 ts/train.py:232 step:40K smpl:320K ep:1K epch:16.28 loss:0.085 grdn:8.910 lr:1.0e-05 updt_s:0.065 data_s:0.000
216
+ INFO 2025-04-13 07:55:36 ts/train.py:241 Checkpoint policy after step 40000
217
+ INFO 2025-04-13 07:55:51 ts/train.py:232 step:40K smpl:322K ep:1K epch:16.36 loss:0.086 grdn:9.050 lr:1.0e-05 updt_s:0.064 data_s:0.000
218
+ INFO 2025-04-13 07:56:04 ts/train.py:232 step:40K smpl:323K ep:1K epch:16.44 loss:0.087 grdn:8.999 lr:1.0e-05 updt_s:0.065 data_s:0.000
219
+ INFO 2025-04-13 07:56:17 ts/train.py:232 step:41K smpl:325K ep:1K epch:16.53 loss:0.083 grdn:8.985 lr:1.0e-05 updt_s:0.065 data_s:0.000
220
+ INFO 2025-04-13 07:56:30 ts/train.py:232 step:41K smpl:326K ep:1K epch:16.61 loss:0.085 grdn:9.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
221
+ INFO 2025-04-13 07:56:43 ts/train.py:232 step:41K smpl:328K ep:1K epch:16.69 loss:0.084 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
222
+ INFO 2025-04-13 07:56:56 ts/train.py:232 step:41K smpl:330K ep:1K epch:16.77 loss:0.082 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
223
+ INFO 2025-04-13 07:57:09 ts/train.py:232 step:41K smpl:331K ep:1K epch:16.85 loss:0.085 grdn:9.034 lr:1.0e-05 updt_s:0.065 data_s:0.000
224
+ INFO 2025-04-13 07:57:22 ts/train.py:232 step:42K smpl:333K ep:1K epch:16.93 loss:0.086 grdn:8.891 lr:1.0e-05 updt_s:0.065 data_s:0.000
225
+ INFO 2025-04-13 07:57:36 ts/train.py:232 step:42K smpl:334K ep:1K epch:17.01 loss:0.083 grdn:8.731 lr:1.0e-05 updt_s:0.065 data_s:0.003
226
+ INFO 2025-04-13 07:57:49 ts/train.py:232 step:42K smpl:336K ep:1K epch:17.09 loss:0.083 grdn:8.673 lr:1.0e-05 updt_s:0.065 data_s:0.000
227
+ INFO 2025-04-13 07:58:02 ts/train.py:232 step:42K smpl:338K ep:1K epch:17.18 loss:0.083 grdn:8.493 lr:1.0e-05 updt_s:0.065 data_s:0.000
228
+ INFO 2025-04-13 07:58:15 ts/train.py:232 step:42K smpl:339K ep:1K epch:17.26 loss:0.082 grdn:8.963 lr:1.0e-05 updt_s:0.065 data_s:0.000
229
+ INFO 2025-04-13 07:58:29 ts/train.py:232 step:43K smpl:341K ep:1K epch:17.34 loss:0.083 grdn:9.732 lr:1.0e-05 updt_s:0.065 data_s:0.000
230
+ INFO 2025-04-13 07:58:42 ts/train.py:232 step:43K smpl:342K ep:1K epch:17.42 loss:0.085 grdn:9.295 lr:1.0e-05 updt_s:0.064 data_s:0.000
231
+ INFO 2025-04-13 07:58:55 ts/train.py:232 step:43K smpl:344K ep:1K epch:17.50 loss:0.082 grdn:8.752 lr:1.0e-05 updt_s:0.065 data_s:0.000
232
+ INFO 2025-04-13 07:59:08 ts/train.py:232 step:43K smpl:346K ep:1K epch:17.58 loss:0.080 grdn:8.553 lr:1.0e-05 updt_s:0.065 data_s:0.000
233
+ INFO 2025-04-13 07:59:21 ts/train.py:232 step:43K smpl:347K ep:1K epch:17.66 loss:0.082 grdn:8.904 lr:1.0e-05 updt_s:0.065 data_s:0.000
234
+ INFO 2025-04-13 07:59:34 ts/train.py:232 step:44K smpl:349K ep:1K epch:17.75 loss:0.081 grdn:8.554 lr:1.0e-05 updt_s:0.064 data_s:0.000
235
+ INFO 2025-04-13 07:59:47 ts/train.py:232 step:44K smpl:350K ep:1K epch:17.83 loss:0.081 grdn:8.590 lr:1.0e-05 updt_s:0.065 data_s:0.000
236
+ INFO 2025-04-13 08:00:00 ts/train.py:232 step:44K smpl:352K ep:1K epch:17.91 loss:0.081 grdn:8.783 lr:1.0e-05 updt_s:0.065 data_s:0.000
237
+ INFO 2025-04-13 08:00:13 ts/train.py:232 step:44K smpl:354K ep:1K epch:17.99 loss:0.080 grdn:8.536 lr:1.0e-05 updt_s:0.064 data_s:0.000
238
+ INFO 2025-04-13 08:00:27 ts/train.py:232 step:44K smpl:355K ep:1K epch:18.07 loss:0.081 grdn:8.852 lr:1.0e-05 updt_s:0.064 data_s:0.003
239
+ INFO 2025-04-13 08:00:40 ts/train.py:232 step:45K smpl:357K ep:1K epch:18.15 loss:0.078 grdn:8.251 lr:1.0e-05 updt_s:0.064 data_s:0.000
240
+ INFO 2025-04-13 08:00:53 ts/train.py:232 step:45K smpl:358K ep:1K epch:18.23 loss:0.082 grdn:8.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
241
+ INFO 2025-04-13 08:01:05 ts/train.py:232 step:45K smpl:360K ep:1K epch:18.32 loss:0.080 grdn:8.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
242
+ INFO 2025-04-13 08:01:19 ts/train.py:232 step:45K smpl:362K ep:1K epch:18.40 loss:0.080 grdn:8.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
243
+ INFO 2025-04-13 08:01:31 ts/train.py:232 step:45K smpl:363K ep:1K epch:18.48 loss:0.079 grdn:8.374 lr:1.0e-05 updt_s:0.064 data_s:0.000
244
+ INFO 2025-04-13 08:01:44 ts/train.py:232 step:46K smpl:365K ep:1K epch:18.56 loss:0.078 grdn:8.490 lr:1.0e-05 updt_s:0.064 data_s:0.000
245
+ INFO 2025-04-13 08:01:57 ts/train.py:232 step:46K smpl:366K ep:1K epch:18.64 loss:0.082 grdn:8.518 lr:1.0e-05 updt_s:0.064 data_s:0.000
246
+ INFO 2025-04-13 08:02:10 ts/train.py:232 step:46K smpl:368K ep:1K epch:18.72 loss:0.078 grdn:8.154 lr:1.0e-05 updt_s:0.064 data_s:0.000
247
+ INFO 2025-04-13 08:02:23 ts/train.py:232 step:46K smpl:370K ep:1K epch:18.80 loss:0.079 grdn:8.821 lr:1.0e-05 updt_s:0.064 data_s:0.000
248
+ INFO 2025-04-13 08:02:36 ts/train.py:232 step:46K smpl:371K ep:1K epch:18.89 loss:0.079 grdn:8.709 lr:1.0e-05 updt_s:0.065 data_s:0.000
249
+ INFO 2025-04-13 08:02:49 ts/train.py:232 step:47K smpl:373K ep:1K epch:18.97 loss:0.079 grdn:8.873 lr:1.0e-05 updt_s:0.064 data_s:0.000
250
+ INFO 2025-04-13 08:03:03 ts/train.py:232 step:47K smpl:374K ep:1K epch:19.05 loss:0.080 grdn:8.770 lr:1.0e-05 updt_s:0.064 data_s:0.003
251
+ INFO 2025-04-13 08:03:16 ts/train.py:232 step:47K smpl:376K ep:1K epch:19.13 loss:0.079 grdn:8.501 lr:1.0e-05 updt_s:0.064 data_s:0.000
252
+ INFO 2025-04-13 08:03:29 ts/train.py:232 step:47K smpl:378K ep:1K epch:19.21 loss:0.079 grdn:8.482 lr:1.0e-05 updt_s:0.064 data_s:0.000
253
+ INFO 2025-04-13 08:03:42 ts/train.py:232 step:47K smpl:379K ep:1K epch:19.29 loss:0.077 grdn:8.125 lr:1.0e-05 updt_s:0.064 data_s:0.000
254
+ INFO 2025-04-13 08:03:55 ts/train.py:232 step:48K smpl:381K ep:1K epch:19.37 loss:0.078 grdn:8.142 lr:1.0e-05 updt_s:0.065 data_s:0.000
255
+ INFO 2025-04-13 08:04:08 ts/train.py:232 step:48K smpl:382K ep:1K epch:19.46 loss:0.076 grdn:8.312 lr:1.0e-05 updt_s:0.064 data_s:0.000
256
+ INFO 2025-04-13 08:04:21 ts/train.py:232 step:48K smpl:384K ep:1K epch:19.54 loss:0.078 grdn:8.743 lr:1.0e-05 updt_s:0.064 data_s:0.000
257
+ INFO 2025-04-13 08:04:34 ts/train.py:232 step:48K smpl:386K ep:1K epch:19.62 loss:0.079 grdn:8.650 lr:1.0e-05 updt_s:0.064 data_s:0.000
258
+ INFO 2025-04-13 08:04:47 ts/train.py:232 step:48K smpl:387K ep:1K epch:19.70 loss:0.076 grdn:8.555 lr:1.0e-05 updt_s:0.064 data_s:0.000
259
+ INFO 2025-04-13 08:05:00 ts/train.py:232 step:49K smpl:389K ep:1K epch:19.78 loss:0.076 grdn:8.133 lr:1.0e-05 updt_s:0.065 data_s:0.000
260
+ INFO 2025-04-13 08:05:13 ts/train.py:232 step:49K smpl:390K ep:1K epch:19.86 loss:0.078 grdn:7.931 lr:1.0e-05 updt_s:0.065 data_s:0.000
261
+ INFO 2025-04-13 08:05:26 ts/train.py:232 step:49K smpl:392K ep:1K epch:19.94 loss:0.075 grdn:8.111 lr:1.0e-05 updt_s:0.065 data_s:0.000
262
+ INFO 2025-04-13 08:05:40 ts/train.py:232 step:49K smpl:394K ep:1K epch:20.03 loss:0.077 grdn:8.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
263
+ INFO 2025-04-13 08:05:53 ts/train.py:232 step:49K smpl:395K ep:1K epch:20.11 loss:0.075 grdn:8.283 lr:1.0e-05 updt_s:0.065 data_s:0.000
264
+ INFO 2025-04-13 08:06:06 ts/train.py:232 step:50K smpl:397K ep:1K epch:20.19 loss:0.077 grdn:8.476 lr:1.0e-05 updt_s:0.065 data_s:0.000
265
+ INFO 2025-04-13 08:06:19 ts/train.py:232 step:50K smpl:398K ep:1K epch:20.27 loss:0.076 grdn:8.140 lr:1.0e-05 updt_s:0.064 data_s:0.000
266
+ INFO 2025-04-13 08:06:32 ts/train.py:232 step:50K smpl:400K ep:1K epch:20.35 loss:0.075 grdn:7.948 lr:1.0e-05 updt_s:0.065 data_s:0.000
267
+ INFO 2025-04-13 08:06:45 ts/train.py:232 step:50K smpl:402K ep:1K epch:20.43 loss:0.074 grdn:7.931 lr:1.0e-05 updt_s:0.064 data_s:0.000
268
+ INFO 2025-04-13 08:06:58 ts/train.py:232 step:50K smpl:403K ep:1K epch:20.51 loss:0.075 grdn:7.934 lr:1.0e-05 updt_s:0.064 data_s:0.000
269
+ INFO 2025-04-13 08:07:11 ts/train.py:232 step:51K smpl:405K ep:1K epch:20.60 loss:0.074 grdn:8.062 lr:1.0e-05 updt_s:0.064 data_s:0.000
270
+ INFO 2025-04-13 08:07:25 ts/train.py:232 step:51K smpl:406K ep:1K epch:20.68 loss:0.077 grdn:8.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
271
+ INFO 2025-04-13 08:07:38 ts/train.py:232 step:51K smpl:408K ep:1K epch:20.76 loss:0.075 grdn:8.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
272
+ INFO 2025-04-13 08:07:51 ts/train.py:232 step:51K smpl:410K ep:1K epch:20.84 loss:0.075 grdn:7.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
273
+ INFO 2025-04-13 08:08:04 ts/train.py:232 step:51K smpl:411K ep:1K epch:20.92 loss:0.075 grdn:8.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
274
+ INFO 2025-04-13 08:08:17 ts/train.py:232 step:52K smpl:413K ep:1K epch:21.00 loss:0.073 grdn:7.712 lr:1.0e-05 updt_s:0.064 data_s:0.003
275
+ INFO 2025-04-13 08:08:31 ts/train.py:232 step:52K smpl:414K ep:1K epch:21.08 loss:0.074 grdn:8.426 lr:1.0e-05 updt_s:0.065 data_s:0.000
276
+ INFO 2025-04-13 08:08:44 ts/train.py:232 step:52K smpl:416K ep:1K epch:21.17 loss:0.074 grdn:7.754 lr:1.0e-05 updt_s:0.065 data_s:0.000
277
+ INFO 2025-04-13 08:08:57 ts/train.py:232 step:52K smpl:418K ep:1K epch:21.25 loss:0.075 grdn:7.790 lr:1.0e-05 updt_s:0.065 data_s:0.000
278
+ INFO 2025-04-13 08:09:10 ts/train.py:232 step:52K smpl:419K ep:1K epch:21.33 loss:0.074 grdn:7.899 lr:1.0e-05 updt_s:0.065 data_s:0.000
279
+ INFO 2025-04-13 08:09:23 ts/train.py:232 step:53K smpl:421K ep:1K epch:21.41 loss:0.074 grdn:8.311 lr:1.0e-05 updt_s:0.064 data_s:0.000
280
+ INFO 2025-04-13 08:09:36 ts/train.py:232 step:53K smpl:422K ep:1K epch:21.49 loss:0.076 grdn:8.117 lr:1.0e-05 updt_s:0.065 data_s:0.000
281
+ INFO 2025-04-13 08:09:49 ts/train.py:232 step:53K smpl:424K ep:1K epch:21.57 loss:0.076 grdn:8.266 lr:1.0e-05 updt_s:0.064 data_s:0.000
282
+ INFO 2025-04-13 08:10:02 ts/train.py:232 step:53K smpl:426K ep:1K epch:21.65 loss:0.074 grdn:7.910 lr:1.0e-05 updt_s:0.064 data_s:0.000
283
+ INFO 2025-04-13 08:10:15 ts/train.py:232 step:53K smpl:427K ep:1K epch:21.73 loss:0.071 grdn:7.449 lr:1.0e-05 updt_s:0.064 data_s:0.000
284
+ INFO 2025-04-13 08:10:33 ts/train.py:232 step:54K smpl:429K ep:2K epch:21.82 loss:0.075 grdn:7.902 lr:1.0e-05 updt_s:0.064 data_s:0.027
285
+ INFO 2025-04-13 08:10:46 ts/train.py:232 step:54K smpl:430K ep:2K epch:21.90 loss:0.072 grdn:7.497 lr:1.0e-05 updt_s:0.065 data_s:0.000
286
+ INFO 2025-04-13 08:10:59 ts/train.py:232 step:54K smpl:432K ep:2K epch:21.98 loss:0.072 grdn:7.870 lr:1.0e-05 updt_s:0.065 data_s:0.000
287
+ INFO 2025-04-13 08:11:13 ts/train.py:232 step:54K smpl:434K ep:2K epch:22.06 loss:0.072 grdn:8.095 lr:1.0e-05 updt_s:0.064 data_s:0.003
288
+ INFO 2025-04-13 08:11:26 ts/train.py:232 step:54K smpl:435K ep:2K epch:22.14 loss:0.071 grdn:7.866 lr:1.0e-05 updt_s:0.064 data_s:0.000
289
+ INFO 2025-04-13 08:11:39 ts/train.py:232 step:55K smpl:437K ep:2K epch:22.22 loss:0.071 grdn:7.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
290
+ INFO 2025-04-13 08:11:52 ts/train.py:232 step:55K smpl:438K ep:2K epch:22.30 loss:0.074 grdn:7.789 lr:1.0e-05 updt_s:0.065 data_s:0.000
291
+ INFO 2025-04-13 08:12:05 ts/train.py:232 step:55K smpl:440K ep:2K epch:22.39 loss:0.074 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
292
+ INFO 2025-04-13 08:12:18 ts/train.py:232 step:55K smpl:442K ep:2K epch:22.47 loss:0.073 grdn:7.568 lr:1.0e-05 updt_s:0.064 data_s:0.000
293
+ INFO 2025-04-13 08:12:31 ts/train.py:232 step:55K smpl:443K ep:2K epch:22.55 loss:0.074 grdn:8.172 lr:1.0e-05 updt_s:0.065 data_s:0.000
294
+ INFO 2025-04-13 08:12:44 ts/train.py:232 step:56K smpl:445K ep:2K epch:22.63 loss:0.070 grdn:7.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
295
+ INFO 2025-04-13 08:12:57 ts/train.py:232 step:56K smpl:446K ep:2K epch:22.71 loss:0.074 grdn:7.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
296
+ INFO 2025-04-13 08:13:11 ts/train.py:232 step:56K smpl:448K ep:2K epch:22.79 loss:0.071 grdn:7.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
297
+ INFO 2025-04-13 08:13:24 ts/train.py:232 step:56K smpl:450K ep:2K epch:22.87 loss:0.070 grdn:7.371 lr:1.0e-05 updt_s:0.065 data_s:0.000
298
+ INFO 2025-04-13 08:13:37 ts/train.py:232 step:56K smpl:451K ep:2K epch:22.96 loss:0.074 grdn:8.149 lr:1.0e-05 updt_s:0.064 data_s:0.000
299
+ INFO 2025-04-13 08:13:50 ts/train.py:232 step:57K smpl:453K ep:2K epch:23.04 loss:0.072 grdn:7.781 lr:1.0e-05 updt_s:0.064 data_s:0.003
300
+ INFO 2025-04-13 08:14:03 ts/train.py:232 step:57K smpl:454K ep:2K epch:23.12 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
301
+ INFO 2025-04-13 08:14:17 ts/train.py:232 step:57K smpl:456K ep:2K epch:23.20 loss:0.072 grdn:8.014 lr:1.0e-05 updt_s:0.065 data_s:0.000
302
+ INFO 2025-04-13 08:14:30 ts/train.py:232 step:57K smpl:458K ep:2K epch:23.28 loss:0.069 grdn:7.556 lr:1.0e-05 updt_s:0.065 data_s:0.000
303
+ INFO 2025-04-13 08:14:43 ts/train.py:232 step:57K smpl:459K ep:2K epch:23.36 loss:0.070 grdn:7.363 lr:1.0e-05 updt_s:0.065 data_s:0.000
304
+ INFO 2025-04-13 08:14:56 ts/train.py:232 step:58K smpl:461K ep:2K epch:23.44 loss:0.070 grdn:7.559 lr:1.0e-05 updt_s:0.065 data_s:0.000
305
+ INFO 2025-04-13 08:15:09 ts/train.py:232 step:58K smpl:462K ep:2K epch:23.53 loss:0.069 grdn:7.430 lr:1.0e-05 updt_s:0.065 data_s:0.000
306
+ INFO 2025-04-13 08:15:22 ts/train.py:232 step:58K smpl:464K ep:2K epch:23.61 loss:0.071 grdn:7.719 lr:1.0e-05 updt_s:0.065 data_s:0.000
307
+ INFO 2025-04-13 08:15:35 ts/train.py:232 step:58K smpl:466K ep:2K epch:23.69 loss:0.069 grdn:7.546 lr:1.0e-05 updt_s:0.064 data_s:0.000
308
+ INFO 2025-04-13 08:15:48 ts/train.py:232 step:58K smpl:467K ep:2K epch:23.77 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
309
+ INFO 2025-04-13 08:16:01 ts/train.py:232 step:59K smpl:469K ep:2K epch:23.85 loss:0.069 grdn:7.826 lr:1.0e-05 updt_s:0.065 data_s:0.000
310
+ INFO 2025-04-13 08:16:15 ts/train.py:232 step:59K smpl:470K ep:2K epch:23.93 loss:0.070 grdn:7.962 lr:1.0e-05 updt_s:0.065 data_s:0.000
311
+ INFO 2025-04-13 08:16:28 ts/train.py:232 step:59K smpl:472K ep:2K epch:24.01 loss:0.069 grdn:7.655 lr:1.0e-05 updt_s:0.065 data_s:0.003
312
+ INFO 2025-04-13 08:16:41 ts/train.py:232 step:59K smpl:474K ep:2K epch:24.10 loss:0.071 grdn:7.565 lr:1.0e-05 updt_s:0.064 data_s:0.000
313
+ INFO 2025-04-13 08:16:54 ts/train.py:232 step:59K smpl:475K ep:2K epch:24.18 loss:0.069 grdn:7.356 lr:1.0e-05 updt_s:0.064 data_s:0.000
314
+ INFO 2025-04-13 08:17:07 ts/train.py:232 step:60K smpl:477K ep:2K epch:24.26 loss:0.070 grdn:7.571 lr:1.0e-05 updt_s:0.065 data_s:0.000
315
+ INFO 2025-04-13 08:17:20 ts/train.py:232 step:60K smpl:478K ep:2K epch:24.34 loss:0.070 grdn:7.669 lr:1.0e-05 updt_s:0.064 data_s:0.000
316
+ INFO 2025-04-13 08:17:33 ts/train.py:232 step:60K smpl:480K ep:2K epch:24.42 loss:0.068 grdn:7.210 lr:1.0e-05 updt_s:0.064 data_s:0.000
317
+ INFO 2025-04-13 08:17:33 ts/train.py:241 Checkpoint policy after step 60000
318
+ INFO 2025-04-13 08:17:49 ts/train.py:232 step:60K smpl:482K ep:2K epch:24.50 loss:0.066 grdn:7.068 lr:1.0e-05 updt_s:0.065 data_s:0.000
319
+ INFO 2025-04-13 08:18:02 ts/train.py:232 step:60K smpl:483K ep:2K epch:24.58 loss:0.069 grdn:7.378 lr:1.0e-05 updt_s:0.065 data_s:0.000
320
+ INFO 2025-04-13 08:18:15 ts/train.py:232 step:61K smpl:485K ep:2K epch:24.67 loss:0.066 grdn:7.443 lr:1.0e-05 updt_s:0.064 data_s:0.000
321
+ INFO 2025-04-13 08:18:28 ts/train.py:232 step:61K smpl:486K ep:2K epch:24.75 loss:0.069 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
322
+ INFO 2025-04-13 08:18:41 ts/train.py:232 step:61K smpl:488K ep:2K epch:24.83 loss:0.070 grdn:7.414 lr:1.0e-05 updt_s:0.065 data_s:0.000
323
+ INFO 2025-04-13 08:18:54 ts/train.py:232 step:61K smpl:490K ep:2K epch:24.91 loss:0.068 grdn:7.350 lr:1.0e-05 updt_s:0.065 data_s:0.000
324
+ INFO 2025-04-13 08:19:07 ts/train.py:232 step:61K smpl:491K ep:2K epch:24.99 loss:0.070 grdn:7.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
325
+ INFO 2025-04-13 08:19:21 ts/train.py:232 step:62K smpl:493K ep:2K epch:25.07 loss:0.069 grdn:7.381 lr:1.0e-05 updt_s:0.064 data_s:0.003
326
+ INFO 2025-04-13 08:19:34 ts/train.py:232 step:62K smpl:494K ep:2K epch:25.15 loss:0.068 grdn:7.491 lr:1.0e-05 updt_s:0.065 data_s:0.000
327
+ INFO 2025-04-13 08:19:47 ts/train.py:232 step:62K smpl:496K ep:2K epch:25.24 loss:0.069 grdn:7.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
328
+ INFO 2025-04-13 08:20:00 ts/train.py:232 step:62K smpl:498K ep:2K epch:25.32 loss:0.067 grdn:7.148 lr:1.0e-05 updt_s:0.065 data_s:0.000
329
+ INFO 2025-04-13 08:20:13 ts/train.py:232 step:62K smpl:499K ep:2K epch:25.40 loss:0.066 grdn:7.036 lr:1.0e-05 updt_s:0.065 data_s:0.000
330
+ INFO 2025-04-13 08:20:27 ts/train.py:232 step:63K smpl:501K ep:2K epch:25.48 loss:0.069 grdn:7.520 lr:1.0e-05 updt_s:0.065 data_s:0.000
331
+ INFO 2025-04-13 08:20:40 ts/train.py:232 step:63K smpl:502K ep:2K epch:25.56 loss:0.068 grdn:7.298 lr:1.0e-05 updt_s:0.065 data_s:0.000
332
+ INFO 2025-04-13 08:20:53 ts/train.py:232 step:63K smpl:504K ep:2K epch:25.64 loss:0.065 grdn:7.105 lr:1.0e-05 updt_s:0.065 data_s:0.000
333
+ INFO 2025-04-13 08:21:06 ts/train.py:232 step:63K smpl:506K ep:2K epch:25.72 loss:0.068 grdn:6.887 lr:1.0e-05 updt_s:0.065 data_s:0.000
334
+ INFO 2025-04-13 08:21:19 ts/train.py:232 step:63K smpl:507K ep:2K epch:25.81 loss:0.066 grdn:7.273 lr:1.0e-05 updt_s:0.065 data_s:0.000
335
+ INFO 2025-04-13 08:21:32 ts/train.py:232 step:64K smpl:509K ep:2K epch:25.89 loss:0.065 grdn:6.902 lr:1.0e-05 updt_s:0.065 data_s:0.000
336
+ INFO 2025-04-13 08:21:45 ts/train.py:232 step:64K smpl:510K ep:2K epch:25.97 loss:0.066 grdn:6.634 lr:1.0e-05 updt_s:0.065 data_s:0.000
337
+ INFO 2025-04-13 08:21:59 ts/train.py:232 step:64K smpl:512K ep:2K epch:26.05 loss:0.068 grdn:7.504 lr:1.0e-05 updt_s:0.064 data_s:0.003
338
+ INFO 2025-04-13 08:22:12 ts/train.py:232 step:64K smpl:514K ep:2K epch:26.13 loss:0.067 grdn:7.349 lr:1.0e-05 updt_s:0.065 data_s:0.000
339
+ INFO 2025-04-13 08:22:25 ts/train.py:232 step:64K smpl:515K ep:2K epch:26.21 loss:0.066 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
340
+ INFO 2025-04-13 08:22:38 ts/train.py:232 step:65K smpl:517K ep:2K epch:26.29 loss:0.066 grdn:7.175 lr:1.0e-05 updt_s:0.064 data_s:0.000
341
+ INFO 2025-04-13 08:22:51 ts/train.py:232 step:65K smpl:518K ep:2K epch:26.37 loss:0.067 grdn:7.547 lr:1.0e-05 updt_s:0.065 data_s:0.000
342
+ INFO 2025-04-13 08:23:04 ts/train.py:232 step:65K smpl:520K ep:2K epch:26.46 loss:0.065 grdn:7.369 lr:1.0e-05 updt_s:0.065 data_s:0.000
343
+ INFO 2025-04-13 08:23:17 ts/train.py:232 step:65K smpl:522K ep:2K epch:26.54 loss:0.065 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
344
+ INFO 2025-04-13 08:23:30 ts/train.py:232 step:65K smpl:523K ep:2K epch:26.62 loss:0.066 grdn:7.048 lr:1.0e-05 updt_s:0.065 data_s:0.000
345
+ INFO 2025-04-13 08:23:44 ts/train.py:232 step:66K smpl:525K ep:2K epch:26.70 loss:0.065 grdn:6.854 lr:1.0e-05 updt_s:0.065 data_s:0.000
346
+ INFO 2025-04-13 08:23:57 ts/train.py:232 step:66K smpl:526K ep:2K epch:26.78 loss:0.065 grdn:6.905 lr:1.0e-05 updt_s:0.065 data_s:0.000
347
+ INFO 2025-04-13 08:24:10 ts/train.py:232 step:66K smpl:528K ep:2K epch:26.86 loss:0.064 grdn:6.686 lr:1.0e-05 updt_s:0.065 data_s:0.000
348
+ INFO 2025-04-13 08:24:23 ts/train.py:232 step:66K smpl:530K ep:2K epch:26.94 loss:0.065 grdn:6.974 lr:1.0e-05 updt_s:0.064 data_s:0.000
349
+ INFO 2025-04-13 08:24:36 ts/train.py:232 step:66K smpl:531K ep:2K epch:27.03 loss:0.066 grdn:7.432 lr:1.0e-05 updt_s:0.064 data_s:0.003
350
+ INFO 2025-04-13 08:24:49 ts/train.py:232 step:67K smpl:533K ep:2K epch:27.11 loss:0.064 grdn:6.749 lr:1.0e-05 updt_s:0.064 data_s:0.000
351
+ INFO 2025-04-13 08:25:02 ts/train.py:232 step:67K smpl:534K ep:2K epch:27.19 loss:0.065 grdn:7.442 lr:1.0e-05 updt_s:0.064 data_s:0.000
352
+ INFO 2025-04-13 08:25:16 ts/train.py:232 step:67K smpl:536K ep:2K epch:27.27 loss:0.065 grdn:6.788 lr:1.0e-05 updt_s:0.065 data_s:0.000
353
+ INFO 2025-04-13 08:25:29 ts/train.py:232 step:67K smpl:538K ep:2K epch:27.35 loss:0.066 grdn:7.083 lr:1.0e-05 updt_s:0.065 data_s:0.000
354
+ INFO 2025-04-13 08:25:42 ts/train.py:232 step:67K smpl:539K ep:2K epch:27.43 loss:0.064 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
355
+ INFO 2025-04-13 08:25:55 ts/train.py:232 step:68K smpl:541K ep:2K epch:27.51 loss:0.064 grdn:6.878 lr:1.0e-05 updt_s:0.065 data_s:0.000
356
+ INFO 2025-04-13 08:26:08 ts/train.py:232 step:68K smpl:542K ep:2K epch:27.60 loss:0.064 grdn:6.684 lr:1.0e-05 updt_s:0.065 data_s:0.000
357
+ INFO 2025-04-13 08:26:21 ts/train.py:232 step:68K smpl:544K ep:2K epch:27.68 loss:0.065 grdn:7.029 lr:1.0e-05 updt_s:0.065 data_s:0.000
358
+ INFO 2025-04-13 08:26:34 ts/train.py:232 step:68K smpl:546K ep:2K epch:27.76 loss:0.066 grdn:7.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
359
+ INFO 2025-04-13 08:26:47 ts/train.py:232 step:68K smpl:547K ep:2K epch:27.84 loss:0.065 grdn:6.955 lr:1.0e-05 updt_s:0.065 data_s:0.000
360
+ INFO 2025-04-13 08:27:00 ts/train.py:232 step:69K smpl:549K ep:2K epch:27.92 loss:0.065 grdn:6.922 lr:1.0e-05 updt_s:0.065 data_s:0.000
361
+ INFO 2025-04-13 08:27:14 ts/train.py:232 step:69K smpl:550K ep:2K epch:28.00 loss:0.065 grdn:7.078 lr:1.0e-05 updt_s:0.065 data_s:0.003
362
+ INFO 2025-04-13 08:27:27 ts/train.py:232 step:69K smpl:552K ep:2K epch:28.08 loss:0.064 grdn:6.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
363
+ INFO 2025-04-13 08:27:40 ts/train.py:232 step:69K smpl:554K ep:2K epch:28.17 loss:0.063 grdn:6.870 lr:1.0e-05 updt_s:0.064 data_s:0.000
364
+ INFO 2025-04-13 08:27:53 ts/train.py:232 step:69K smpl:555K ep:2K epch:28.25 loss:0.063 grdn:7.024 lr:1.0e-05 updt_s:0.064 data_s:0.000
365
+ INFO 2025-04-13 08:28:06 ts/train.py:232 step:70K smpl:557K ep:2K epch:28.33 loss:0.064 grdn:6.969 lr:1.0e-05 updt_s:0.065 data_s:0.000
366
+ INFO 2025-04-13 08:28:20 ts/train.py:232 step:70K smpl:558K ep:2K epch:28.41 loss:0.064 grdn:6.757 lr:1.0e-05 updt_s:0.065 data_s:0.000
367
+ INFO 2025-04-13 08:28:33 ts/train.py:232 step:70K smpl:560K ep:2K epch:28.49 loss:0.065 grdn:6.888 lr:1.0e-05 updt_s:0.065 data_s:0.000
368
+ INFO 2025-04-13 08:28:46 ts/train.py:232 step:70K smpl:562K ep:2K epch:28.57 loss:0.066 grdn:6.895 lr:1.0e-05 updt_s:0.064 data_s:0.000
369
+ INFO 2025-04-13 08:28:59 ts/train.py:232 step:70K smpl:563K ep:2K epch:28.65 loss:0.064 grdn:6.967 lr:1.0e-05 updt_s:0.064 data_s:0.000
370
+ INFO 2025-04-13 08:29:12 ts/train.py:232 step:71K smpl:565K ep:2K epch:28.74 loss:0.064 grdn:7.085 lr:1.0e-05 updt_s:0.065 data_s:0.000
371
+ INFO 2025-04-13 08:29:25 ts/train.py:232 step:71K smpl:566K ep:2K epch:28.82 loss:0.064 grdn:6.958 lr:1.0e-05 updt_s:0.064 data_s:0.000
372
+ INFO 2025-04-13 08:29:38 ts/train.py:232 step:71K smpl:568K ep:2K epch:28.90 loss:0.063 grdn:6.867 lr:1.0e-05 updt_s:0.064 data_s:0.000
373
+ INFO 2025-04-13 08:29:51 ts/train.py:232 step:71K smpl:570K ep:2K epch:28.98 loss:0.064 grdn:7.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
374
+ INFO 2025-04-13 08:30:04 ts/train.py:232 step:71K smpl:571K ep:2K epch:29.06 loss:0.063 grdn:6.572 lr:1.0e-05 updt_s:0.065 data_s:0.003
375
+ INFO 2025-04-13 08:30:17 ts/train.py:232 step:72K smpl:573K ep:2K epch:29.14 loss:0.061 grdn:6.608 lr:1.0e-05 updt_s:0.064 data_s:0.000
376
+ INFO 2025-04-13 08:30:30 ts/train.py:232 step:72K smpl:574K ep:2K epch:29.22 loss:0.063 grdn:6.892 lr:1.0e-05 updt_s:0.064 data_s:0.000
377
+ INFO 2025-04-13 08:30:44 ts/train.py:232 step:72K smpl:576K ep:2K epch:29.31 loss:0.063 grdn:6.639 lr:1.0e-05 updt_s:0.065 data_s:0.000
378
+ INFO 2025-04-13 08:30:57 ts/train.py:232 step:72K smpl:578K ep:2K epch:29.39 loss:0.064 grdn:6.885 lr:1.0e-05 updt_s:0.065 data_s:0.000
379
+ INFO 2025-04-13 08:31:10 ts/train.py:232 step:72K smpl:579K ep:2K epch:29.47 loss:0.062 grdn:6.901 lr:1.0e-05 updt_s:0.065 data_s:0.000
380
+ INFO 2025-04-13 08:31:23 ts/train.py:232 step:73K smpl:581K ep:2K epch:29.55 loss:0.064 grdn:7.140 lr:1.0e-05 updt_s:0.065 data_s:0.000
381
+ INFO 2025-04-13 08:31:36 ts/train.py:232 step:73K smpl:582K ep:2K epch:29.63 loss:0.062 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
382
+ INFO 2025-04-13 08:31:49 ts/train.py:232 step:73K smpl:584K ep:2K epch:29.71 loss:0.064 grdn:6.793 lr:1.0e-05 updt_s:0.064 data_s:0.000
383
+ INFO 2025-04-13 08:32:02 ts/train.py:232 step:73K smpl:586K ep:2K epch:29.79 loss:0.065 grdn:6.861 lr:1.0e-05 updt_s:0.065 data_s:0.000
384
+ INFO 2025-04-13 08:32:15 ts/train.py:232 step:73K smpl:587K ep:2K epch:29.88 loss:0.061 grdn:6.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
wandb/latest-run/files/requirements.txt ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ setuptools==75.8.0
2
+ wheel==0.45.1
3
+ pip==25.0
4
+ wcwidth==0.2.13
5
+ triton==3.2.0
6
+ pytz==2025.2
7
+ PyOpenGL==3.1.9
8
+ nvidia-cusparselt-cu12==0.6.2
9
+ mpmath==1.3.0
10
+ glfw==2.8.0
11
+ Farama-Notifications==0.0.4
12
+ asciitree==0.3.3
13
+ antlr4-python3-runtime==4.9.3
14
+ zipp==3.21.0
15
+ xxhash==3.5.0
16
+ wrapt==1.17.2
17
+ urllib3==2.4.0
18
+ tzdata==2025.2
19
+ typing_extensions==4.13.2
20
+ tqdm==4.67.1
21
+ TorchCodec==0.2.1
22
+ toml==0.10.2
23
+ termcolor==3.0.1
24
+ sympy==1.13.1
25
+ soupsieve==2.6
26
+ smmap==5.0.2
27
+ six==1.17.0
28
+ setproctitle==1.3.5
29
+ safetensors==0.5.3
30
+ regex==2024.11.6
31
+ pyzmq==26.4.0
32
+ PyYAML==6.0.2
33
+ PySocks==1.7.1
34
+ pyparsing==3.2.3
35
+ pygame==2.6.1
36
+ pycparser==2.22
37
+ pyarrow==19.0.1
38
+ psutil==7.0.0
39
+ protobuf==5.29.4
40
+ propcache==0.3.1
41
+ prompt_toolkit==3.0.50
42
+ platformdirs==4.3.7
43
+ pillow==11.1.0
44
+ pfzy==0.3.4
45
+ packaging==24.2
46
+ orderly-set==5.4.0
47
+ nvidia-nvtx-cu12==12.4.127
48
+ nvidia-nvjitlink-cu12==12.4.127
49
+ nvidia-nccl-cu12==2.21.5
50
+ nvidia-curand-cu12==10.3.5.147
51
+ nvidia-cufft-cu12==11.2.1.3
52
+ nvidia-cuda-runtime-cu12==12.4.127
53
+ nvidia-cuda-nvrtc-cu12==12.4.127
54
+ nvidia-cuda-cupti-cu12==12.4.127
55
+ nvidia-cublas-cu12==12.4.5.8
56
+ networkx==3.4.2
57
+ mypy-extensions==1.0.0
58
+ mergedeep==1.3.4
59
+ MarkupSafe==3.0.2
60
+ lxml==5.3.2
61
+ llvmlite==0.44.0
62
+ itsdangerous==2.2.0
63
+ imageio-ffmpeg==0.6.0
64
+ idna==3.10
65
+ hf_transfer==0.1.9
66
+ fsspec==2024.12.0
67
+ frozenlist==1.5.0
68
+ filelock==3.18.0
69
+ fasteners==0.19
70
+ evdev==1.9.1
71
+ einops==0.8.1
72
+ dill==0.3.8
73
+ cmake==4.0.0
74
+ cloudpickle==3.1.1
75
+ click==8.1.8
76
+ charset-normalizer==3.4.1
77
+ certifi==2025.1.31
78
+ blinker==1.9.0
79
+ av==14.3.0
80
+ attrs==25.3.0
81
+ async-timeout==5.0.1
82
+ annotated-types==0.7.0
83
+ aiohappyeyeballs==2.6.1
84
+ absl-py==2.2.2
85
+ Werkzeug==3.1.3
86
+ typing-inspection==0.4.0
87
+ typing-inspect==0.9.0
88
+ tifffile==2025.3.30
89
+ shapely==2.1.0
90
+ sentry-sdk==2.25.1
91
+ scipy==1.15.2
92
+ rerun-sdk==0.22.1
93
+ requests==2.32.3
94
+ pyyaml-include==1.4.1
95
+ python-xlib==0.33
96
+ python-dateutil==2.9.0.post0
97
+ pydantic_core==2.33.1
98
+ opencv-python-headless==4.11.0.86
99
+ opencv-python==4.11.0.86
100
+ omegaconf==2.3.0
101
+ nvidia-cusparse-cu12==12.3.1.170
102
+ nvidia-cudnn-cu12==9.1.0.70
103
+ numcodecs==0.13.1
104
+ multiprocess==0.70.16
105
+ multidict==6.4.3
106
+ mujoco==2.3.7
107
+ lazy_loader==0.4
108
+ labmaze==1.0.6
109
+ jsonlines==4.0.0
110
+ Jinja2==3.1.6
111
+ inquirerpy==0.3.4
112
+ importlib_metadata==8.6.1
113
+ imageio==2.37.0
114
+ h5py==3.13.0
115
+ gymnasium==0.29.1
116
+ gitdb==4.0.12
117
+ docker-pycreds==0.4.0
118
+ dm-tree==0.1.9
119
+ deepdiff==8.4.2
120
+ cffi==1.17.1
121
+ beautifulsoup4==4.13.3
122
+ aiosignal==1.3.2
123
+ zarr==2.18.3
124
+ yarl==1.19.0
125
+ scikit-image==0.25.2
126
+ pynput==1.8.1
127
+ pymunk==6.11.1
128
+ pydantic==2.11.3
129
+ pandas==2.2.3
130
+ nvidia-cusolver-cu12==11.6.1.9
131
+ huggingface-hub==0.30.2
132
+ GitPython==3.1.44
133
+ Flask==3.1.0
134
+ draccus==0.10.0
135
+ dm-env==1.6
136
+ wandb==0.19.9
137
+ torch==2.6.0
138
+ gym-pusht==0.1.5
139
+ gdown==5.2.0
140
+ dm-control==1.0.14
141
+ diffusers==0.33.1
142
+ aiohttp==3.11.16
143
+ torchvision==0.21.0
144
+ gym-aloha==0.1.1
145
+ datasets==3.5.0
146
+ pyserial==3.5
147
+ feetech-servo-sdk==1.0.0
148
+ python-json-logger==3.3.0
149
+ Pygments==2.19.1
150
+ tokenizers==0.21.1
151
+ transformers==4.51.2
152
+ pycountry==24.6.1
153
+ lerobot==0.1.0
154
+ tomli==2.2.1
155
+ pluggy==1.5.0
156
+ iniconfig==2.1.0
157
+ exceptiongroup==1.2.2
158
+ pytest==8.3.5
159
+ sentencepiece==0.2.0
160
+ py-cpuinfo==9.0.0
161
+ nanobind==2.6.1
162
+ fastrlock==0.8.3
163
+ blake3==1.0.4
164
+ websockets==15.0.1
165
+ uvloop==0.21.0
166
+ sniffio==1.3.1
167
+ shellingham==1.5.4
168
+ rpds-py==0.24.0
169
+ python-multipart==0.0.20
170
+ python-dotenv==1.1.0
171
+ prometheus_client==0.21.1
172
+ partial-json-parser==0.2.1.1.post5
173
+ numpy==2.2.4
174
+ numpy==2.1.3
175
+ referencing==0.36.2
176
+ numba==0.61.0
177
+ ninja==1.11.1.4
178
+ nest-asyncio==1.6.0
179
+ msgspec==0.19.0
180
+ msgpack==1.1.0
181
+ mdurl==0.1.2
182
+ llguidance==0.7.14
183
+ lark==1.2.2
184
+ jiter==0.9.0
185
+ interegular==0.3.3
186
+ httptools==0.6.4
187
+ hf-xet==1.0.3
188
+ h11==0.14.0
189
+ gguf==0.10.0
190
+ dnspython==2.7.0
191
+ distro==1.9.0
192
+ diskcache==5.6.3
193
+ cupy-cuda12x==13.4.1
194
+ cachetools==5.5.2
195
+ astor==0.8.1
196
+ anyio==4.9.0
197
+ airportsdata==20250224
198
+ watchfiles==1.0.5
199
+ uvicorn==0.34.0
200
+ tiktoken==0.9.0
201
+ starlette==0.46.1
202
+ markdown-it-py==3.0.0
203
+ jsonschema-specifications==2024.10.1
204
+ httpcore==1.0.8
205
+ email_validator==2.2.0
206
+ depyf==0.18.0
207
+ rich==14.0.0
208
+ prometheus-fastapi-instrumentator==7.1.0
209
+ lm-format-enforcer==0.10.11
210
+ jsonschema==4.23.0
211
+ httpx==0.28.1
212
+ fastapi==0.115.12
213
+ xformers==0.0.29.post2
214
+ typer==0.15.2
215
+ torchaudio==2.6.0
216
+ rich-toolkit==0.14.1
217
+ ray==2.43.0
218
+ outlines_core==0.1.26
219
+ openai==1.73.0
220
+ mistral_common==1.5.4
221
+ xgrammar==0.1.17
222
+ outlines==0.1.11
223
+ fastapi-cli==0.0.7
224
+ compressed-tensors==0.9.2
225
+ vllm==0.8.3
226
+ autocommand==2.2.2
227
+ backports.tarfile==1.2.0
228
+ importlib_metadata==8.0.0
229
+ inflect==7.3.1
230
+ jaraco.collections==5.1.0
231
+ jaraco.context==5.3.0
232
+ jaraco.functools==4.0.1
233
+ jaraco.text==3.12.1
234
+ more-itertools==10.3.0
235
+ packaging==24.2
236
+ platformdirs==4.2.2
237
+ tomli==2.0.1
238
+ typeguard==4.3.0
239
+ typing_extensions==4.12.2
240
+ wheel==0.43.0
241
+ zipp==3.19.2
wandb/latest-run/files/wandb-metadata.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.14.0-427.26.1.el9_4.x86_64-x86_64-with-glibc2.34",
3
+ "python": "CPython 3.10.13",
4
+ "startedAt": "2025-04-13T05:11:49.829796Z",
5
+ "args": [
6
+ "--dataset.repo_id=rjgpinel/chickenToPlate",
7
+ "--policy.type=act",
8
+ "--output_dir=outputs/train/act_bs8_chickenToPlate",
9
+ "--job_name=act_trial_bs8_chickenToPlate",
10
+ "--policy.device=cuda",
11
+ "--wandb.enable=true"
12
+ ],
13
+ "program": "/home/rgarciap/Code/lerobot/lerobot/scripts/train.py",
14
+ "codePath": "lerobot/scripts/train.py",
15
+ "git": {
16
+ "remote": "[email protected]:rjgpinel/lerobot.git",
17
+ "commit": "d292028da73ca5e4abb134d13d4a8ff18c08e1a2"
18
+ },
19
+ "root": "outputs/train/act_bs8_chickenToPlate",
20
+ "host": "gpu012",
21
+ "executable": "/home/rgarciap/miniconda3/envs/lerobot/bin/python",
22
+ "codePathLocal": "lerobot/scripts/train.py",
23
+ "cpu_count": 32,
24
+ "cpu_count_logical": 64,
25
+ "gpu": "NVIDIA A100-SXM4-80GB",
26
+ "gpu_count": 1,
27
+ "disk": {
28
+ "/": {
29
+ "total": "135085682688",
30
+ "used": "3655208960"
31
+ }
32
+ },
33
+ "memory": {
34
+ "total": "270171365376"
35
+ },
36
+ "cpu": {
37
+ "count": 32,
38
+ "countLogical": 64
39
+ },
40
+ "gpu_nvidia": [
41
+ {
42
+ "name": "NVIDIA A100-SXM4-80GB",
43
+ "memoryTotal": "85899345920",
44
+ "cudaCores": 6912,
45
+ "architecture": "Ampere"
46
+ }
47
+ ],
48
+ "slurm": {
49
+ "cluster_name": "cleps",
50
+ "conf": "/var/spool/slurm/d/conf-cache/slurm.conf",
51
+ "cpu_bind": "quiet,mask_cpu:0x000000000000FF00",
52
+ "cpu_bind_list": "0x000000000000FF00",
53
+ "cpu_bind_type": "mask_cpu:",
54
+ "cpu_bind_verbose": "quiet",
55
+ "cpus_on_node": "16",
56
+ "cpus_per_task": "8",
57
+ "distribution": "cyclic",
58
+ "gpus_on_node": "1",
59
+ "gtids": "0",
60
+ "hint": "nomultithread",
61
+ "job_account": "willow",
62
+ "job_cpus_per_node": "8",
63
+ "job_end_time": "1744557103",
64
+ "job_gid": "21076",
65
+ "job_gpus": "1",
66
+ "job_id": "3984516",
67
+ "job_name": "act_training",
68
+ "job_nodelist": "gpu012",
69
+ "job_num_nodes": "1",
70
+ "job_partition": "willow",
71
+ "job_qos": "normal",
72
+ "job_start_time": "1744521103",
73
+ "job_uid": "662847",
74
+ "job_user": "rgarciap",
75
+ "jobid": "3984516",
76
+ "launch_node_ipaddr": "10.224.2.12",
77
+ "localid": "0",
78
+ "mem_per_node": "40960",
79
+ "mpi_type": "pmix_v4",
80
+ "nnodes": "1",
81
+ "nodeid": "0",
82
+ "nodelist": "gpu012",
83
+ "nprocs": "1",
84
+ "ntasks": "1",
85
+ "pmix_mapping_serv": "(vector,(0,1,1))",
86
+ "pmixp_abort_agent_port": "60160",
87
+ "prio_process": "0",
88
+ "procid": "0",
89
+ "script_context": "prolog_task",
90
+ "srun_comm_host": "10.224.2.12",
91
+ "srun_comm_port": "60161",
92
+ "step_gpus": "1",
93
+ "step_id": "0",
94
+ "step_launcher_port": "60161",
95
+ "step_nodelist": "gpu012",
96
+ "step_num_nodes": "1",
97
+ "step_num_tasks": "1",
98
+ "step_tasks_per_node": "1",
99
+ "stepid": "0",
100
+ "submit_dir": "/home/rgarciap/Code/lerobot/cleps_scripts/chickenToPlate",
101
+ "submit_host": "cleps",
102
+ "task_pid": "2476203",
103
+ "tasks_per_node": "1",
104
+ "threads_per_core": "1",
105
+ "topology_addr": "gpu012",
106
+ "topology_addr_pattern": "node",
107
+ "tres_per_task": "cpu:8",
108
+ "umask": "0022"
109
+ },
110
+ "cudaVersion": "12.5"
111
+ }
wandb/latest-run/logs/debug-core.log ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"time":"2025-04-13T07:11:49.620604148+02:00","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpl6h5gsi9/port-2476203.txt","pid":2476203,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false}
2
+ {"time":"2025-04-13T07:11:49.621232919+02:00","level":"INFO","msg":"Will exit if parent process dies.","ppid":2476203}
3
+ {"time":"2025-04-13T07:11:49.621227018+02:00","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":37289,"Zone":""}}
4
+ {"time":"2025-04-13T07:11:49.812573582+02:00","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:37562"}
5
+ {"time":"2025-04-13T07:11:49.83071304+02:00","level":"INFO","msg":"handleInformInit: received","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
6
+ {"time":"2025-04-13T07:11:50.06605336+02:00","level":"INFO","msg":"handleInformInit: stream started","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
wandb/latest-run/logs/debug-internal.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
2
+ {"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
3
+ {"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
4
+ {"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
5
+ {"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
6
+ {"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
7
+ {"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
wandb/latest-run/logs/debug.log ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
2
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
3
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
4
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
5
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
6
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
7
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
8
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
9
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
10
+ config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
11
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
12
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
13
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
14
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
15
+ 2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
16
+ 2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
17
+ 2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
18
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
19
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
20
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
21
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
22
+ 2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
wandb/latest-run/run-ipo2f6m2.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06a24d89b4143f7da66fa535ab30ff7be24844b530553c2069d7bca24edffec2
3
+ size 688128
wandb/run-20250413_071149-ipo2f6m2/files/output.log ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Logs will be synced with wandb.
2
+ INFO 2025-04-13 07:11:50 ndb_utils.py:96 Track this run --> https://wandb.ai/rgarciap/lerobot/runs/ipo2f6m2
3
+ INFO 2025-04-13 07:11:50 ts/train.py:127 Creating dataset
4
+ Downloading data: 100%|██████████| 69/69 [00:00<00:00, 140420.66files/s]
5
+ Generating train split: 19655 examples [00:00, 273149.72 examples/s]
6
+ INFO 2025-04-13 07:11:51 ts/train.py:138 Creating policy
7
+ INFO 2025-04-13 07:11:52 ts/train.py:144 Creating optimizer and scheduler
8
+ INFO 2025-04-13 07:11:52 ts/train.py:156 Output dir: outputs/train/act_bs8_chickenToPlate
9
+ INFO 2025-04-13 07:11:52 ts/train.py:159 cfg.steps=100000 (100K)
10
+ INFO 2025-04-13 07:11:52 ts/train.py:160 dataset.num_frames=19655 (20K)
11
+ INFO 2025-04-13 07:11:52 ts/train.py:161 dataset.num_episodes=69
12
+ INFO 2025-04-13 07:11:52 ts/train.py:162 num_learnable_params=51597190 (52M)
13
+ INFO 2025-04-13 07:11:52 ts/train.py:163 num_total_params=51597238 (52M)
14
+ INFO 2025-04-13 07:11:52 ts/train.py:202 Start offline training on a fixed dataset
15
+ INFO 2025-04-13 07:12:06 ts/train.py:232 step:200 smpl:2K ep:6 epch:0.08 loss:6.809 grdn:153.932 lr:1.0e-05 updt_s:0.069 data_s:0.003
16
+ INFO 2025-04-13 07:12:19 ts/train.py:232 step:400 smpl:3K ep:11 epch:0.16 loss:3.046 grdn:85.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
17
+ INFO 2025-04-13 07:12:32 ts/train.py:232 step:600 smpl:5K ep:17 epch:0.24 loss:2.598 grdn:75.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
18
+ INFO 2025-04-13 07:12:46 ts/train.py:232 step:800 smpl:6K ep:22 epch:0.33 loss:2.264 grdn:69.358 lr:1.0e-05 updt_s:0.065 data_s:0.000
19
+ INFO 2025-04-13 07:12:59 ts/train.py:232 step:1K smpl:8K ep:28 epch:0.41 loss:2.054 grdn:65.551 lr:1.0e-05 updt_s:0.065 data_s:0.000
20
+ INFO 2025-04-13 07:13:12 ts/train.py:232 step:1K smpl:10K ep:34 epch:0.49 loss:1.853 grdn:62.666 lr:1.0e-05 updt_s:0.065 data_s:0.000
21
+ INFO 2025-04-13 07:13:25 ts/train.py:232 step:1K smpl:11K ep:39 epch:0.57 loss:1.696 grdn:59.657 lr:1.0e-05 updt_s:0.065 data_s:0.000
22
+ INFO 2025-04-13 07:13:38 ts/train.py:232 step:2K smpl:13K ep:45 epch:0.65 loss:1.529 grdn:57.475 lr:1.0e-05 updt_s:0.065 data_s:0.000
23
+ INFO 2025-04-13 07:13:51 ts/train.py:232 step:2K smpl:14K ep:51 epch:0.73 loss:1.401 grdn:54.794 lr:1.0e-05 updt_s:0.065 data_s:0.000
24
+ INFO 2025-04-13 07:14:04 ts/train.py:232 step:2K smpl:16K ep:56 epch:0.81 loss:1.279 grdn:52.447 lr:1.0e-05 updt_s:0.065 data_s:0.000
25
+ INFO 2025-04-13 07:14:17 ts/train.py:232 step:2K smpl:18K ep:62 epch:0.90 loss:1.187 grdn:51.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
26
+ INFO 2025-04-13 07:14:30 ts/train.py:232 step:2K smpl:19K ep:67 epch:0.98 loss:1.083 grdn:48.098 lr:1.0e-05 updt_s:0.064 data_s:0.000
27
+ INFO 2025-04-13 07:14:44 ts/train.py:232 step:3K smpl:21K ep:73 epch:1.06 loss:0.982 grdn:44.752 lr:1.0e-05 updt_s:0.066 data_s:0.003
28
+ INFO 2025-04-13 07:14:57 ts/train.py:232 step:3K smpl:22K ep:79 epch:1.14 loss:0.905 grdn:43.547 lr:1.0e-05 updt_s:0.064 data_s:0.000
29
+ INFO 2025-04-13 07:15:10 ts/train.py:232 step:3K smpl:24K ep:84 epch:1.22 loss:0.826 grdn:41.540 lr:1.0e-05 updt_s:0.064 data_s:0.000
30
+ INFO 2025-04-13 07:15:23 ts/train.py:232 step:3K smpl:26K ep:90 epch:1.30 loss:0.754 grdn:39.048 lr:1.0e-05 updt_s:0.064 data_s:0.000
31
+ INFO 2025-04-13 07:15:36 ts/train.py:232 step:3K smpl:27K ep:95 epch:1.38 loss:0.710 grdn:38.735 lr:1.0e-05 updt_s:0.065 data_s:0.000
32
+ INFO 2025-04-13 07:15:49 ts/train.py:232 step:4K smpl:29K ep:101 epch:1.47 loss:0.659 grdn:36.579 lr:1.0e-05 updt_s:0.065 data_s:0.000
33
+ INFO 2025-04-13 07:16:03 ts/train.py:232 step:4K smpl:30K ep:107 epch:1.55 loss:0.604 grdn:34.616 lr:1.0e-05 updt_s:0.065 data_s:0.000
34
+ INFO 2025-04-13 07:16:16 ts/train.py:232 step:4K smpl:32K ep:112 epch:1.63 loss:0.562 grdn:32.857 lr:1.0e-05 updt_s:0.064 data_s:0.000
35
+ INFO 2025-04-13 07:16:29 ts/train.py:232 step:4K smpl:34K ep:118 epch:1.71 loss:0.533 grdn:32.673 lr:1.0e-05 updt_s:0.064 data_s:0.000
36
+ INFO 2025-04-13 07:16:42 ts/train.py:232 step:4K smpl:35K ep:124 epch:1.79 loss:0.489 grdn:30.663 lr:1.0e-05 updt_s:0.065 data_s:0.000
37
+ INFO 2025-04-13 07:16:55 ts/train.py:232 step:5K smpl:37K ep:129 epch:1.87 loss:0.473 grdn:30.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
38
+ INFO 2025-04-13 07:17:08 ts/train.py:232 step:5K smpl:38K ep:135 epch:1.95 loss:0.444 grdn:29.572 lr:1.0e-05 updt_s:0.064 data_s:0.000
39
+ INFO 2025-04-13 07:17:21 ts/train.py:232 step:5K smpl:40K ep:140 epch:2.04 loss:0.427 grdn:28.334 lr:1.0e-05 updt_s:0.064 data_s:0.003
40
+ INFO 2025-04-13 07:17:34 ts/train.py:232 step:5K smpl:42K ep:146 epch:2.12 loss:0.394 grdn:27.066 lr:1.0e-05 updt_s:0.065 data_s:0.000
41
+ INFO 2025-04-13 07:17:47 ts/train.py:232 step:5K smpl:43K ep:152 epch:2.20 loss:0.384 grdn:26.812 lr:1.0e-05 updt_s:0.064 data_s:0.000
42
+ INFO 2025-04-13 07:18:00 ts/train.py:232 step:6K smpl:45K ep:157 epch:2.28 loss:0.369 grdn:25.750 lr:1.0e-05 updt_s:0.064 data_s:0.000
43
+ INFO 2025-04-13 07:18:13 ts/train.py:232 step:6K smpl:46K ep:163 epch:2.36 loss:0.347 grdn:24.628 lr:1.0e-05 updt_s:0.064 data_s:0.000
44
+ INFO 2025-04-13 07:18:26 ts/train.py:232 step:6K smpl:48K ep:169 epch:2.44 loss:0.345 grdn:25.079 lr:1.0e-05 updt_s:0.064 data_s:0.000
45
+ INFO 2025-04-13 07:18:39 ts/train.py:232 step:6K smpl:50K ep:174 epch:2.52 loss:0.333 grdn:24.552 lr:1.0e-05 updt_s:0.065 data_s:0.000
46
+ INFO 2025-04-13 07:18:53 ts/train.py:232 step:6K smpl:51K ep:180 epch:2.60 loss:0.319 grdn:23.761 lr:1.0e-05 updt_s:0.065 data_s:0.000
47
+ INFO 2025-04-13 07:19:06 ts/train.py:232 step:7K smpl:53K ep:185 epch:2.69 loss:0.313 grdn:23.319 lr:1.0e-05 updt_s:0.065 data_s:0.000
48
+ INFO 2025-04-13 07:19:19 ts/train.py:232 step:7K smpl:54K ep:191 epch:2.77 loss:0.296 grdn:22.959 lr:1.0e-05 updt_s:0.065 data_s:0.000
49
+ INFO 2025-04-13 07:19:32 ts/train.py:232 step:7K smpl:56K ep:197 epch:2.85 loss:0.297 grdn:23.434 lr:1.0e-05 updt_s:0.065 data_s:0.000
50
+ INFO 2025-04-13 07:19:45 ts/train.py:232 step:7K smpl:58K ep:202 epch:2.93 loss:0.290 grdn:22.584 lr:1.0e-05 updt_s:0.065 data_s:0.000
51
+ INFO 2025-04-13 07:19:59 ts/train.py:232 step:7K smpl:59K ep:208 epch:3.01 loss:0.283 grdn:23.340 lr:1.0e-05 updt_s:0.065 data_s:0.003
52
+ INFO 2025-04-13 07:20:12 ts/train.py:232 step:8K smpl:61K ep:213 epch:3.09 loss:0.272 grdn:22.151 lr:1.0e-05 updt_s:0.064 data_s:0.000
53
+ INFO 2025-04-13 07:20:24 ts/train.py:232 step:8K smpl:62K ep:219 epch:3.17 loss:0.267 grdn:22.000 lr:1.0e-05 updt_s:0.064 data_s:0.000
54
+ INFO 2025-04-13 07:20:38 ts/train.py:232 step:8K smpl:64K ep:225 epch:3.26 loss:0.256 grdn:20.574 lr:1.0e-05 updt_s:0.065 data_s:0.000
55
+ INFO 2025-04-13 07:20:50 ts/train.py:232 step:8K smpl:66K ep:230 epch:3.34 loss:0.248 grdn:20.914 lr:1.0e-05 updt_s:0.064 data_s:0.000
56
+ INFO 2025-04-13 07:21:03 ts/train.py:232 step:8K smpl:67K ep:236 epch:3.42 loss:0.251 grdn:21.292 lr:1.0e-05 updt_s:0.064 data_s:0.000
57
+ INFO 2025-04-13 07:21:17 ts/train.py:232 step:9K smpl:69K ep:242 epch:3.50 loss:0.249 grdn:20.863 lr:1.0e-05 updt_s:0.065 data_s:0.000
58
+ INFO 2025-04-13 07:21:30 ts/train.py:232 step:9K smpl:70K ep:247 epch:3.58 loss:0.244 grdn:20.995 lr:1.0e-05 updt_s:0.065 data_s:0.000
59
+ INFO 2025-04-13 07:21:43 ts/train.py:232 step:9K smpl:72K ep:253 epch:3.66 loss:0.241 grdn:20.919 lr:1.0e-05 updt_s:0.065 data_s:0.000
60
+ INFO 2025-04-13 07:21:56 ts/train.py:232 step:9K smpl:74K ep:258 epch:3.74 loss:0.234 grdn:20.073 lr:1.0e-05 updt_s:0.065 data_s:0.000
61
+ INFO 2025-04-13 07:22:09 ts/train.py:232 step:9K smpl:75K ep:264 epch:3.83 loss:0.233 grdn:20.000 lr:1.0e-05 updt_s:0.065 data_s:0.000
62
+ INFO 2025-04-13 07:22:22 ts/train.py:232 step:10K smpl:77K ep:270 epch:3.91 loss:0.229 grdn:19.897 lr:1.0e-05 updt_s:0.065 data_s:0.000
63
+ INFO 2025-04-13 07:22:35 ts/train.py:232 step:10K smpl:78K ep:275 epch:3.99 loss:0.224 grdn:20.040 lr:1.0e-05 updt_s:0.065 data_s:0.000
64
+ INFO 2025-04-13 07:22:49 ts/train.py:232 step:10K smpl:80K ep:281 epch:4.07 loss:0.215 grdn:18.582 lr:1.0e-05 updt_s:0.064 data_s:0.003
65
+ INFO 2025-04-13 07:23:02 ts/train.py:232 step:10K smpl:82K ep:286 epch:4.15 loss:0.215 grdn:19.444 lr:1.0e-05 updt_s:0.065 data_s:0.000
66
+ INFO 2025-04-13 07:23:15 ts/train.py:232 step:10K smpl:83K ep:292 epch:4.23 loss:0.213 grdn:19.041 lr:1.0e-05 updt_s:0.065 data_s:0.000
67
+ INFO 2025-04-13 07:23:28 ts/train.py:232 step:11K smpl:85K ep:298 epch:4.31 loss:0.207 grdn:18.785 lr:1.0e-05 updt_s:0.065 data_s:0.000
68
+ INFO 2025-04-13 07:23:41 ts/train.py:232 step:11K smpl:86K ep:303 epch:4.40 loss:0.205 grdn:18.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
69
+ INFO 2025-04-13 07:23:54 ts/train.py:232 step:11K smpl:88K ep:309 epch:4.48 loss:0.209 grdn:18.879 lr:1.0e-05 updt_s:0.064 data_s:0.000
70
+ INFO 2025-04-13 07:24:07 ts/train.py:232 step:11K smpl:90K ep:315 epch:4.56 loss:0.197 grdn:18.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
71
+ INFO 2025-04-13 07:24:21 ts/train.py:232 step:11K smpl:91K ep:320 epch:4.64 loss:0.201 grdn:18.452 lr:1.0e-05 updt_s:0.065 data_s:0.000
72
+ INFO 2025-04-13 07:24:34 ts/train.py:232 step:12K smpl:93K ep:326 epch:4.72 loss:0.199 grdn:17.926 lr:1.0e-05 updt_s:0.065 data_s:0.000
73
+ INFO 2025-04-13 07:24:47 ts/train.py:232 step:12K smpl:94K ep:331 epch:4.80 loss:0.197 grdn:17.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
74
+ INFO 2025-04-13 07:25:00 ts/train.py:232 step:12K smpl:96K ep:337 epch:4.88 loss:0.192 grdn:17.747 lr:1.0e-05 updt_s:0.064 data_s:0.000
75
+ INFO 2025-04-13 07:25:13 ts/train.py:232 step:12K smpl:98K ep:343 epch:4.97 loss:0.187 grdn:17.439 lr:1.0e-05 updt_s:0.064 data_s:0.000
76
+ INFO 2025-04-13 07:25:27 ts/train.py:232 step:12K smpl:99K ep:348 epch:5.05 loss:0.186 grdn:16.616 lr:1.0e-05 updt_s:0.065 data_s:0.003
77
+ INFO 2025-04-13 07:25:39 ts/train.py:232 step:13K smpl:101K ep:354 epch:5.13 loss:0.183 grdn:16.979 lr:1.0e-05 updt_s:0.064 data_s:0.000
78
+ INFO 2025-04-13 07:25:52 ts/train.py:232 step:13K smpl:102K ep:359 epch:5.21 loss:0.183 grdn:17.301 lr:1.0e-05 updt_s:0.064 data_s:0.000
79
+ INFO 2025-04-13 07:26:05 ts/train.py:232 step:13K smpl:104K ep:365 epch:5.29 loss:0.181 grdn:16.777 lr:1.0e-05 updt_s:0.064 data_s:0.000
80
+ INFO 2025-04-13 07:26:18 ts/train.py:232 step:13K smpl:106K ep:371 epch:5.37 loss:0.177 grdn:16.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
81
+ INFO 2025-04-13 07:26:32 ts/train.py:232 step:13K smpl:107K ep:376 epch:5.45 loss:0.178 grdn:16.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
82
+ INFO 2025-04-13 07:26:45 ts/train.py:232 step:14K smpl:109K ep:382 epch:5.54 loss:0.173 grdn:15.851 lr:1.0e-05 updt_s:0.064 data_s:0.000
83
+ INFO 2025-04-13 07:26:58 ts/train.py:232 step:14K smpl:110K ep:388 epch:5.62 loss:0.177 grdn:16.146 lr:1.0e-05 updt_s:0.064 data_s:0.000
84
+ INFO 2025-04-13 07:27:11 ts/train.py:232 step:14K smpl:112K ep:393 epch:5.70 loss:0.172 grdn:16.112 lr:1.0e-05 updt_s:0.065 data_s:0.000
85
+ INFO 2025-04-13 07:27:24 ts/train.py:232 step:14K smpl:114K ep:399 epch:5.78 loss:0.166 grdn:15.756 lr:1.0e-05 updt_s:0.064 data_s:0.000
86
+ INFO 2025-04-13 07:27:37 ts/train.py:232 step:14K smpl:115K ep:404 epch:5.86 loss:0.167 grdn:16.241 lr:1.0e-05 updt_s:0.064 data_s:0.000
87
+ INFO 2025-04-13 07:27:50 ts/train.py:232 step:15K smpl:117K ep:410 epch:5.94 loss:0.169 grdn:16.451 lr:1.0e-05 updt_s:0.064 data_s:0.000
88
+ INFO 2025-04-13 07:28:04 ts/train.py:232 step:15K smpl:118K ep:416 epch:6.02 loss:0.164 grdn:15.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
89
+ INFO 2025-04-13 07:28:17 ts/train.py:232 step:15K smpl:120K ep:421 epch:6.11 loss:0.162 grdn:16.060 lr:1.0e-05 updt_s:0.065 data_s:0.000
90
+ INFO 2025-04-13 07:28:30 ts/train.py:232 step:15K smpl:122K ep:427 epch:6.19 loss:0.158 grdn:15.626 lr:1.0e-05 updt_s:0.065 data_s:0.000
91
+ INFO 2025-04-13 07:28:43 ts/train.py:232 step:15K smpl:123K ep:433 epch:6.27 loss:0.156 grdn:15.185 lr:1.0e-05 updt_s:0.065 data_s:0.000
92
+ INFO 2025-04-13 07:28:56 ts/train.py:232 step:16K smpl:125K ep:438 epch:6.35 loss:0.156 grdn:15.646 lr:1.0e-05 updt_s:0.065 data_s:0.000
93
+ INFO 2025-04-13 07:29:09 ts/train.py:232 step:16K smpl:126K ep:444 epch:6.43 loss:0.154 grdn:15.384 lr:1.0e-05 updt_s:0.065 data_s:0.000
94
+ INFO 2025-04-13 07:29:22 ts/train.py:232 step:16K smpl:128K ep:449 epch:6.51 loss:0.156 grdn:15.582 lr:1.0e-05 updt_s:0.065 data_s:0.000
95
+ INFO 2025-04-13 07:29:35 ts/train.py:232 step:16K smpl:130K ep:455 epch:6.59 loss:0.153 grdn:14.992 lr:1.0e-05 updt_s:0.065 data_s:0.000
96
+ INFO 2025-04-13 07:29:48 ts/train.py:232 step:16K smpl:131K ep:461 epch:6.68 loss:0.151 grdn:15.471 lr:1.0e-05 updt_s:0.065 data_s:0.000
97
+ INFO 2025-04-13 07:30:02 ts/train.py:232 step:17K smpl:133K ep:466 epch:6.76 loss:0.152 grdn:14.837 lr:1.0e-05 updt_s:0.065 data_s:0.000
98
+ INFO 2025-04-13 07:30:15 ts/train.py:232 step:17K smpl:134K ep:472 epch:6.84 loss:0.153 grdn:14.808 lr:1.0e-05 updt_s:0.065 data_s:0.000
99
+ INFO 2025-04-13 07:30:28 ts/train.py:232 step:17K smpl:136K ep:477 epch:6.92 loss:0.149 grdn:14.183 lr:1.0e-05 updt_s:0.065 data_s:0.000
100
+ INFO 2025-04-13 07:30:41 ts/train.py:232 step:17K smpl:138K ep:483 epch:7.00 loss:0.153 grdn:15.182 lr:1.0e-05 updt_s:0.065 data_s:0.003
101
+ INFO 2025-04-13 07:30:54 ts/train.py:232 step:17K smpl:139K ep:489 epch:7.08 loss:0.146 grdn:14.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
102
+ INFO 2025-04-13 07:31:08 ts/train.py:232 step:18K smpl:141K ep:494 epch:7.16 loss:0.144 grdn:14.158 lr:1.0e-05 updt_s:0.065 data_s:0.000
103
+ INFO 2025-04-13 07:31:21 ts/train.py:232 step:18K smpl:142K ep:500 epch:7.24 loss:0.145 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
104
+ INFO 2025-04-13 07:31:34 ts/train.py:232 step:18K smpl:144K ep:506 epch:7.33 loss:0.142 grdn:14.397 lr:1.0e-05 updt_s:0.065 data_s:0.000
105
+ INFO 2025-04-13 07:31:47 ts/train.py:232 step:18K smpl:146K ep:511 epch:7.41 loss:0.139 grdn:13.964 lr:1.0e-05 updt_s:0.065 data_s:0.000
106
+ INFO 2025-04-13 07:32:00 ts/train.py:232 step:18K smpl:147K ep:517 epch:7.49 loss:0.139 grdn:13.893 lr:1.0e-05 updt_s:0.065 data_s:0.000
107
+ INFO 2025-04-13 07:32:13 ts/train.py:232 step:19K smpl:149K ep:522 epch:7.57 loss:0.140 grdn:14.046 lr:1.0e-05 updt_s:0.065 data_s:0.000
108
+ INFO 2025-04-13 07:32:26 ts/train.py:232 step:19K smpl:150K ep:528 epch:7.65 loss:0.141 grdn:14.334 lr:1.0e-05 updt_s:0.065 data_s:0.000
109
+ INFO 2025-04-13 07:32:39 ts/train.py:232 step:19K smpl:152K ep:534 epch:7.73 loss:0.135 grdn:13.463 lr:1.0e-05 updt_s:0.064 data_s:0.000
110
+ INFO 2025-04-13 07:32:52 ts/train.py:232 step:19K smpl:154K ep:539 epch:7.81 loss:0.140 grdn:13.593 lr:1.0e-05 updt_s:0.065 data_s:0.000
111
+ INFO 2025-04-13 07:33:05 ts/train.py:232 step:19K smpl:155K ep:545 epch:7.90 loss:0.134 grdn:13.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
112
+ INFO 2025-04-13 07:33:18 ts/train.py:232 step:20K smpl:157K ep:550 epch:7.98 loss:0.136 grdn:13.459 lr:1.0e-05 updt_s:0.064 data_s:0.000
113
+ INFO 2025-04-13 07:33:32 ts/train.py:232 step:20K smpl:158K ep:556 epch:8.06 loss:0.133 grdn:14.081 lr:1.0e-05 updt_s:0.064 data_s:0.003
114
+ INFO 2025-04-13 07:33:45 ts/train.py:232 step:20K smpl:160K ep:562 epch:8.14 loss:0.130 grdn:13.435 lr:1.0e-05 updt_s:0.064 data_s:0.000
115
+ INFO 2025-04-13 07:33:45 ts/train.py:241 Checkpoint policy after step 20000
116
+ INFO 2025-04-13 07:34:00 ts/train.py:232 step:20K smpl:162K ep:567 epch:8.22 loss:0.131 grdn:13.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
117
+ INFO 2025-04-13 07:34:13 ts/train.py:232 step:20K smpl:163K ep:573 epch:8.30 loss:0.131 grdn:13.245 lr:1.0e-05 updt_s:0.065 data_s:0.000
118
+ INFO 2025-04-13 07:34:26 ts/train.py:232 step:21K smpl:165K ep:579 epch:8.38 loss:0.131 grdn:13.519 lr:1.0e-05 updt_s:0.064 data_s:0.000
119
+ INFO 2025-04-13 07:34:39 ts/train.py:232 step:21K smpl:166K ep:584 epch:8.47 loss:0.130 grdn:13.058 lr:1.0e-05 updt_s:0.064 data_s:0.000
120
+ INFO 2025-04-13 07:34:52 ts/train.py:232 step:21K smpl:168K ep:590 epch:8.55 loss:0.126 grdn:13.520 lr:1.0e-05 updt_s:0.064 data_s:0.000
121
+ INFO 2025-04-13 07:35:05 ts/train.py:232 step:21K smpl:170K ep:595 epch:8.63 loss:0.125 grdn:12.425 lr:1.0e-05 updt_s:0.065 data_s:0.000
122
+ INFO 2025-04-13 07:35:19 ts/train.py:232 step:21K smpl:171K ep:601 epch:8.71 loss:0.129 grdn:12.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
123
+ INFO 2025-04-13 07:35:32 ts/train.py:232 step:22K smpl:173K ep:607 epch:8.79 loss:0.124 grdn:12.513 lr:1.0e-05 updt_s:0.065 data_s:0.000
124
+ INFO 2025-04-13 07:35:45 ts/train.py:232 step:22K smpl:174K ep:612 epch:8.87 loss:0.126 grdn:13.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
125
+ INFO 2025-04-13 07:35:58 ts/train.py:232 step:22K smpl:176K ep:618 epch:8.95 loss:0.125 grdn:12.950 lr:1.0e-05 updt_s:0.065 data_s:0.000
126
+ INFO 2025-04-13 07:36:11 ts/train.py:232 step:22K smpl:178K ep:623 epch:9.04 loss:0.125 grdn:12.803 lr:1.0e-05 updt_s:0.065 data_s:0.003
127
+ INFO 2025-04-13 07:36:25 ts/train.py:232 step:22K smpl:179K ep:629 epch:9.12 loss:0.123 grdn:13.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
128
+ INFO 2025-04-13 07:36:38 ts/train.py:232 step:23K smpl:181K ep:635 epch:9.20 loss:0.120 grdn:11.989 lr:1.0e-05 updt_s:0.064 data_s:0.000
129
+ INFO 2025-04-13 07:36:51 ts/train.py:232 step:23K smpl:182K ep:640 epch:9.28 loss:0.122 grdn:12.755 lr:1.0e-05 updt_s:0.065 data_s:0.000
130
+ INFO 2025-04-13 07:37:04 ts/train.py:232 step:23K smpl:184K ep:646 epch:9.36 loss:0.122 grdn:12.659 lr:1.0e-05 updt_s:0.064 data_s:0.000
131
+ INFO 2025-04-13 07:37:17 ts/train.py:232 step:23K smpl:186K ep:652 epch:9.44 loss:0.121 grdn:11.655 lr:1.0e-05 updt_s:0.064 data_s:0.000
132
+ INFO 2025-04-13 07:37:30 ts/train.py:232 step:23K smpl:187K ep:657 epch:9.52 loss:0.118 grdn:12.432 lr:1.0e-05 updt_s:0.064 data_s:0.000
133
+ INFO 2025-04-13 07:37:43 ts/train.py:232 step:24K smpl:189K ep:663 epch:9.61 loss:0.116 grdn:12.006 lr:1.0e-05 updt_s:0.065 data_s:0.000
134
+ INFO 2025-04-13 07:37:56 ts/train.py:232 step:24K smpl:190K ep:668 epch:9.69 loss:0.119 grdn:12.331 lr:1.0e-05 updt_s:0.064 data_s:0.000
135
+ INFO 2025-04-13 07:38:09 ts/train.py:232 step:24K smpl:192K ep:674 epch:9.77 loss:0.117 grdn:11.835 lr:1.0e-05 updt_s:0.064 data_s:0.000
136
+ INFO 2025-04-13 07:38:22 ts/train.py:232 step:24K smpl:194K ep:680 epch:9.85 loss:0.117 grdn:12.136 lr:1.0e-05 updt_s:0.064 data_s:0.000
137
+ INFO 2025-04-13 07:38:35 ts/train.py:232 step:24K smpl:195K ep:685 epch:9.93 loss:0.114 grdn:11.678 lr:1.0e-05 updt_s:0.064 data_s:0.000
138
+ INFO 2025-04-13 07:38:48 ts/train.py:232 step:25K smpl:197K ep:691 epch:10.01 loss:0.115 grdn:12.327 lr:1.0e-05 updt_s:0.064 data_s:0.003
139
+ INFO 2025-04-13 07:39:02 ts/train.py:232 step:25K smpl:198K ep:696 epch:10.09 loss:0.112 grdn:11.804 lr:1.0e-05 updt_s:0.065 data_s:0.000
140
+ INFO 2025-04-13 07:39:15 ts/train.py:232 step:25K smpl:200K ep:702 epch:10.18 loss:0.112 grdn:12.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
141
+ INFO 2025-04-13 07:39:27 ts/train.py:232 step:25K smpl:202K ep:708 epch:10.26 loss:0.113 grdn:12.086 lr:1.0e-05 updt_s:0.064 data_s:0.000
142
+ INFO 2025-04-13 07:39:40 ts/train.py:232 step:25K smpl:203K ep:713 epch:10.34 loss:0.110 grdn:11.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
143
+ INFO 2025-04-13 07:39:53 ts/train.py:232 step:26K smpl:205K ep:719 epch:10.42 loss:0.111 grdn:11.815 lr:1.0e-05 updt_s:0.064 data_s:0.000
144
+ INFO 2025-04-13 07:40:06 ts/train.py:232 step:26K smpl:206K ep:725 epch:10.50 loss:0.112 grdn:12.033 lr:1.0e-05 updt_s:0.064 data_s:0.000
145
+ INFO 2025-04-13 07:40:19 ts/train.py:232 step:26K smpl:208K ep:730 epch:10.58 loss:0.112 grdn:11.434 lr:1.0e-05 updt_s:0.064 data_s:0.000
146
+ INFO 2025-04-13 07:40:32 ts/train.py:232 step:26K smpl:210K ep:736 epch:10.66 loss:0.112 grdn:11.740 lr:1.0e-05 updt_s:0.065 data_s:0.000
147
+ INFO 2025-04-13 07:40:45 ts/train.py:232 step:26K smpl:211K ep:741 epch:10.75 loss:0.109 grdn:10.975 lr:1.0e-05 updt_s:0.064 data_s:0.000
148
+ INFO 2025-04-13 07:40:58 ts/train.py:232 step:27K smpl:213K ep:747 epch:10.83 loss:0.109 grdn:11.531 lr:1.0e-05 updt_s:0.064 data_s:0.000
149
+ INFO 2025-04-13 07:41:11 ts/train.py:232 step:27K smpl:214K ep:753 epch:10.91 loss:0.110 grdn:11.617 lr:1.0e-05 updt_s:0.064 data_s:0.000
150
+ INFO 2025-04-13 07:41:24 ts/train.py:232 step:27K smpl:216K ep:758 epch:10.99 loss:0.110 grdn:11.680 lr:1.0e-05 updt_s:0.064 data_s:0.000
151
+ INFO 2025-04-13 07:41:38 ts/train.py:232 step:27K smpl:218K ep:764 epch:11.07 loss:0.106 grdn:11.377 lr:1.0e-05 updt_s:0.065 data_s:0.003
152
+ INFO 2025-04-13 07:41:51 ts/train.py:232 step:27K smpl:219K ep:770 epch:11.15 loss:0.107 grdn:10.917 lr:1.0e-05 updt_s:0.064 data_s:0.000
153
+ INFO 2025-04-13 07:42:04 ts/train.py:232 step:28K smpl:221K ep:775 epch:11.23 loss:0.105 grdn:11.053 lr:1.0e-05 updt_s:0.064 data_s:0.000
154
+ INFO 2025-04-13 07:42:17 ts/train.py:232 step:28K smpl:222K ep:781 epch:11.32 loss:0.105 grdn:11.564 lr:1.0e-05 updt_s:0.064 data_s:0.000
155
+ INFO 2025-04-13 07:42:30 ts/train.py:232 step:28K smpl:224K ep:786 epch:11.40 loss:0.106 grdn:10.940 lr:1.0e-05 updt_s:0.064 data_s:0.000
156
+ INFO 2025-04-13 07:42:43 ts/train.py:232 step:28K smpl:226K ep:792 epch:11.48 loss:0.105 grdn:11.703 lr:1.0e-05 updt_s:0.065 data_s:0.000
157
+ INFO 2025-04-13 07:42:56 ts/train.py:232 step:28K smpl:227K ep:798 epch:11.56 loss:0.106 grdn:11.474 lr:1.0e-05 updt_s:0.064 data_s:0.000
158
+ INFO 2025-04-13 07:43:09 ts/train.py:232 step:29K smpl:229K ep:803 epch:11.64 loss:0.105 grdn:10.971 lr:1.0e-05 updt_s:0.064 data_s:0.000
159
+ INFO 2025-04-13 07:43:22 ts/train.py:232 step:29K smpl:230K ep:809 epch:11.72 loss:0.104 grdn:11.014 lr:1.0e-05 updt_s:0.064 data_s:0.000
160
+ INFO 2025-04-13 07:43:35 ts/train.py:232 step:29K smpl:232K ep:814 epch:11.80 loss:0.106 grdn:12.269 lr:1.0e-05 updt_s:0.065 data_s:0.000
161
+ INFO 2025-04-13 07:43:48 ts/train.py:232 step:29K smpl:234K ep:820 epch:11.89 loss:0.103 grdn:11.243 lr:1.0e-05 updt_s:0.065 data_s:0.000
162
+ INFO 2025-04-13 07:44:01 ts/train.py:232 step:29K smpl:235K ep:826 epch:11.97 loss:0.104 grdn:10.805 lr:1.0e-05 updt_s:0.065 data_s:0.000
163
+ INFO 2025-04-13 07:44:15 ts/train.py:232 step:30K smpl:237K ep:831 epch:12.05 loss:0.100 grdn:10.175 lr:1.0e-05 updt_s:0.065 data_s:0.003
164
+ INFO 2025-04-13 07:44:28 ts/train.py:232 step:30K smpl:238K ep:837 epch:12.13 loss:0.102 grdn:10.500 lr:1.0e-05 updt_s:0.064 data_s:0.000
165
+ INFO 2025-04-13 07:44:41 ts/train.py:232 step:30K smpl:240K ep:843 epch:12.21 loss:0.100 grdn:10.632 lr:1.0e-05 updt_s:0.064 data_s:0.000
166
+ INFO 2025-04-13 07:44:54 ts/train.py:232 step:30K smpl:242K ep:848 epch:12.29 loss:0.101 grdn:10.989 lr:1.0e-05 updt_s:0.065 data_s:0.000
167
+ INFO 2025-04-13 07:45:07 ts/train.py:232 step:30K smpl:243K ep:854 epch:12.37 loss:0.098 grdn:10.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
168
+ INFO 2025-04-13 07:45:20 ts/train.py:232 step:31K smpl:245K ep:859 epch:12.45 loss:0.101 grdn:10.633 lr:1.0e-05 updt_s:0.064 data_s:0.000
169
+ INFO 2025-04-13 07:45:33 ts/train.py:232 step:31K smpl:246K ep:865 epch:12.54 loss:0.100 grdn:10.785 lr:1.0e-05 updt_s:0.064 data_s:0.000
170
+ INFO 2025-04-13 07:45:46 ts/train.py:232 step:31K smpl:248K ep:871 epch:12.62 loss:0.099 grdn:10.262 lr:1.0e-05 updt_s:0.064 data_s:0.000
171
+ INFO 2025-04-13 07:45:59 ts/train.py:232 step:31K smpl:250K ep:876 epch:12.70 loss:0.100 grdn:10.483 lr:1.0e-05 updt_s:0.064 data_s:0.000
172
+ INFO 2025-04-13 07:46:12 ts/train.py:232 step:31K smpl:251K ep:882 epch:12.78 loss:0.098 grdn:10.116 lr:1.0e-05 updt_s:0.065 data_s:0.000
173
+ INFO 2025-04-13 07:46:25 ts/train.py:232 step:32K smpl:253K ep:887 epch:12.86 loss:0.096 grdn:10.274 lr:1.0e-05 updt_s:0.064 data_s:0.000
174
+ INFO 2025-04-13 07:46:38 ts/train.py:232 step:32K smpl:254K ep:893 epch:12.94 loss:0.099 grdn:10.698 lr:1.0e-05 updt_s:0.064 data_s:0.000
175
+ INFO 2025-04-13 07:46:52 ts/train.py:232 step:32K smpl:256K ep:899 epch:13.02 loss:0.098 grdn:10.042 lr:1.0e-05 updt_s:0.064 data_s:0.003
176
+ INFO 2025-04-13 07:47:05 ts/train.py:232 step:32K smpl:258K ep:904 epch:13.11 loss:0.097 grdn:10.860 lr:1.0e-05 updt_s:0.065 data_s:0.000
177
+ INFO 2025-04-13 07:47:18 ts/train.py:232 step:32K smpl:259K ep:910 epch:13.19 loss:0.097 grdn:10.217 lr:1.0e-05 updt_s:0.065 data_s:0.000
178
+ INFO 2025-04-13 07:47:31 ts/train.py:232 step:33K smpl:261K ep:916 epch:13.27 loss:0.094 grdn:10.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
179
+ INFO 2025-04-13 07:47:44 ts/train.py:232 step:33K smpl:262K ep:921 epch:13.35 loss:0.095 grdn:10.433 lr:1.0e-05 updt_s:0.065 data_s:0.000
180
+ INFO 2025-04-13 07:47:57 ts/train.py:232 step:33K smpl:264K ep:927 epch:13.43 loss:0.096 grdn:10.295 lr:1.0e-05 updt_s:0.065 data_s:0.000
181
+ INFO 2025-04-13 07:48:10 ts/train.py:232 step:33K smpl:266K ep:932 epch:13.51 loss:0.096 grdn:10.294 lr:1.0e-05 updt_s:0.065 data_s:0.000
182
+ INFO 2025-04-13 07:48:24 ts/train.py:232 step:33K smpl:267K ep:938 epch:13.59 loss:0.095 grdn:10.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
183
+ INFO 2025-04-13 07:48:37 ts/train.py:232 step:34K smpl:269K ep:944 epch:13.68 loss:0.093 grdn:9.761 lr:1.0e-05 updt_s:0.064 data_s:0.000
184
+ INFO 2025-04-13 07:48:50 ts/train.py:232 step:34K smpl:270K ep:949 epch:13.76 loss:0.095 grdn:10.081 lr:1.0e-05 updt_s:0.065 data_s:0.000
185
+ INFO 2025-04-13 07:49:03 ts/train.py:232 step:34K smpl:272K ep:955 epch:13.84 loss:0.094 grdn:9.866 lr:1.0e-05 updt_s:0.065 data_s:0.000
186
+ INFO 2025-04-13 07:49:16 ts/train.py:232 step:34K smpl:274K ep:960 epch:13.92 loss:0.093 grdn:9.502 lr:1.0e-05 updt_s:0.065 data_s:0.000
187
+ INFO 2025-04-13 07:49:30 ts/train.py:232 step:34K smpl:275K ep:966 epch:14.00 loss:0.094 grdn:9.887 lr:1.0e-05 updt_s:0.065 data_s:0.003
188
+ INFO 2025-04-13 07:49:43 ts/train.py:232 step:35K smpl:277K ep:972 epch:14.08 loss:0.092 grdn:10.045 lr:1.0e-05 updt_s:0.064 data_s:0.000
189
+ INFO 2025-04-13 07:49:56 ts/train.py:232 step:35K smpl:278K ep:977 epch:14.16 loss:0.092 grdn:9.508 lr:1.0e-05 updt_s:0.064 data_s:0.000
190
+ INFO 2025-04-13 07:50:09 ts/train.py:232 step:35K smpl:280K ep:983 epch:14.25 loss:0.089 grdn:9.537 lr:1.0e-05 updt_s:0.064 data_s:0.000
191
+ INFO 2025-04-13 07:50:21 ts/train.py:232 step:35K smpl:282K ep:989 epch:14.33 loss:0.090 grdn:9.587 lr:1.0e-05 updt_s:0.064 data_s:0.000
192
+ INFO 2025-04-13 07:50:35 ts/train.py:232 step:35K smpl:283K ep:994 epch:14.41 loss:0.091 grdn:9.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
193
+ INFO 2025-04-13 07:50:48 ts/train.py:232 step:36K smpl:285K ep:1000 epch:14.49 loss:0.091 grdn:10.239 lr:1.0e-05 updt_s:0.064 data_s:0.000
194
+ INFO 2025-04-13 07:51:01 ts/train.py:232 step:36K smpl:286K ep:1K epch:14.57 loss:0.091 grdn:9.974 lr:1.0e-05 updt_s:0.065 data_s:0.000
195
+ INFO 2025-04-13 07:51:14 ts/train.py:232 step:36K smpl:288K ep:1K epch:14.65 loss:0.090 grdn:9.382 lr:1.0e-05 updt_s:0.065 data_s:0.000
196
+ INFO 2025-04-13 07:51:27 ts/train.py:232 step:36K smpl:290K ep:1K epch:14.73 loss:0.092 grdn:9.628 lr:1.0e-05 updt_s:0.065 data_s:0.000
197
+ INFO 2025-04-13 07:51:40 ts/train.py:232 step:36K smpl:291K ep:1K epch:14.82 loss:0.093 grdn:10.009 lr:1.0e-05 updt_s:0.064 data_s:0.000
198
+ INFO 2025-04-13 07:51:53 ts/train.py:232 step:37K smpl:293K ep:1K epch:14.90 loss:0.091 grdn:9.530 lr:1.0e-05 updt_s:0.065 data_s:0.000
199
+ INFO 2025-04-13 07:52:06 ts/train.py:232 step:37K smpl:294K ep:1K epch:14.98 loss:0.090 grdn:9.397 lr:1.0e-05 updt_s:0.064 data_s:0.000
200
+ INFO 2025-04-13 07:52:19 ts/train.py:232 step:37K smpl:296K ep:1K epch:15.06 loss:0.087 grdn:9.458 lr:1.0e-05 updt_s:0.064 data_s:0.003
201
+ INFO 2025-04-13 07:52:32 ts/train.py:232 step:37K smpl:298K ep:1K epch:15.14 loss:0.089 grdn:9.436 lr:1.0e-05 updt_s:0.064 data_s:0.000
202
+ INFO 2025-04-13 07:52:45 ts/train.py:232 step:37K smpl:299K ep:1K epch:15.22 loss:0.089 grdn:9.042 lr:1.0e-05 updt_s:0.064 data_s:0.000
203
+ INFO 2025-04-13 07:52:59 ts/train.py:232 step:38K smpl:301K ep:1K epch:15.30 loss:0.090 grdn:9.182 lr:1.0e-05 updt_s:0.065 data_s:0.000
204
+ INFO 2025-04-13 07:53:12 ts/train.py:232 step:38K smpl:302K ep:1K epch:15.39 loss:0.089 grdn:9.066 lr:1.0e-05 updt_s:0.064 data_s:0.000
205
+ INFO 2025-04-13 07:53:25 ts/train.py:232 step:38K smpl:304K ep:1K epch:15.47 loss:0.088 grdn:9.786 lr:1.0e-05 updt_s:0.064 data_s:0.000
206
+ INFO 2025-04-13 07:53:38 ts/train.py:232 step:38K smpl:306K ep:1K epch:15.55 loss:0.087 grdn:9.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
207
+ INFO 2025-04-13 07:53:51 ts/train.py:232 step:38K smpl:307K ep:1K epch:15.63 loss:0.090 grdn:9.841 lr:1.0e-05 updt_s:0.065 data_s:0.000
208
+ INFO 2025-04-13 07:54:04 ts/train.py:232 step:39K smpl:309K ep:1K epch:15.71 loss:0.088 grdn:8.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
209
+ INFO 2025-04-13 07:54:17 ts/train.py:232 step:39K smpl:310K ep:1K epch:15.79 loss:0.086 grdn:9.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
210
+ INFO 2025-04-13 07:54:30 ts/train.py:232 step:39K smpl:312K ep:1K epch:15.87 loss:0.087 grdn:9.112 lr:1.0e-05 updt_s:0.064 data_s:0.000
211
+ INFO 2025-04-13 07:54:43 ts/train.py:232 step:39K smpl:314K ep:1K epch:15.96 loss:0.086 grdn:9.395 lr:1.0e-05 updt_s:0.064 data_s:0.000
212
+ INFO 2025-04-13 07:54:56 ts/train.py:232 step:39K smpl:315K ep:1K epch:16.04 loss:0.087 grdn:9.777 lr:1.0e-05 updt_s:0.065 data_s:0.003
213
+ INFO 2025-04-13 07:55:09 ts/train.py:232 step:40K smpl:317K ep:1K epch:16.12 loss:0.085 grdn:9.514 lr:1.0e-05 updt_s:0.065 data_s:0.000
214
+ INFO 2025-04-13 07:55:22 ts/train.py:232 step:40K smpl:318K ep:1K epch:16.20 loss:0.086 grdn:9.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
215
+ INFO 2025-04-13 07:55:36 ts/train.py:232 step:40K smpl:320K ep:1K epch:16.28 loss:0.085 grdn:8.910 lr:1.0e-05 updt_s:0.065 data_s:0.000
216
+ INFO 2025-04-13 07:55:36 ts/train.py:241 Checkpoint policy after step 40000
217
+ INFO 2025-04-13 07:55:51 ts/train.py:232 step:40K smpl:322K ep:1K epch:16.36 loss:0.086 grdn:9.050 lr:1.0e-05 updt_s:0.064 data_s:0.000
218
+ INFO 2025-04-13 07:56:04 ts/train.py:232 step:40K smpl:323K ep:1K epch:16.44 loss:0.087 grdn:8.999 lr:1.0e-05 updt_s:0.065 data_s:0.000
219
+ INFO 2025-04-13 07:56:17 ts/train.py:232 step:41K smpl:325K ep:1K epch:16.53 loss:0.083 grdn:8.985 lr:1.0e-05 updt_s:0.065 data_s:0.000
220
+ INFO 2025-04-13 07:56:30 ts/train.py:232 step:41K smpl:326K ep:1K epch:16.61 loss:0.085 grdn:9.062 lr:1.0e-05 updt_s:0.065 data_s:0.000
221
+ INFO 2025-04-13 07:56:43 ts/train.py:232 step:41K smpl:328K ep:1K epch:16.69 loss:0.084 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
222
+ INFO 2025-04-13 07:56:56 ts/train.py:232 step:41K smpl:330K ep:1K epch:16.77 loss:0.082 grdn:9.079 lr:1.0e-05 updt_s:0.065 data_s:0.000
223
+ INFO 2025-04-13 07:57:09 ts/train.py:232 step:41K smpl:331K ep:1K epch:16.85 loss:0.085 grdn:9.034 lr:1.0e-05 updt_s:0.065 data_s:0.000
224
+ INFO 2025-04-13 07:57:22 ts/train.py:232 step:42K smpl:333K ep:1K epch:16.93 loss:0.086 grdn:8.891 lr:1.0e-05 updt_s:0.065 data_s:0.000
225
+ INFO 2025-04-13 07:57:36 ts/train.py:232 step:42K smpl:334K ep:1K epch:17.01 loss:0.083 grdn:8.731 lr:1.0e-05 updt_s:0.065 data_s:0.003
226
+ INFO 2025-04-13 07:57:49 ts/train.py:232 step:42K smpl:336K ep:1K epch:17.09 loss:0.083 grdn:8.673 lr:1.0e-05 updt_s:0.065 data_s:0.000
227
+ INFO 2025-04-13 07:58:02 ts/train.py:232 step:42K smpl:338K ep:1K epch:17.18 loss:0.083 grdn:8.493 lr:1.0e-05 updt_s:0.065 data_s:0.000
228
+ INFO 2025-04-13 07:58:15 ts/train.py:232 step:42K smpl:339K ep:1K epch:17.26 loss:0.082 grdn:8.963 lr:1.0e-05 updt_s:0.065 data_s:0.000
229
+ INFO 2025-04-13 07:58:29 ts/train.py:232 step:43K smpl:341K ep:1K epch:17.34 loss:0.083 grdn:9.732 lr:1.0e-05 updt_s:0.065 data_s:0.000
230
+ INFO 2025-04-13 07:58:42 ts/train.py:232 step:43K smpl:342K ep:1K epch:17.42 loss:0.085 grdn:9.295 lr:1.0e-05 updt_s:0.064 data_s:0.000
231
+ INFO 2025-04-13 07:58:55 ts/train.py:232 step:43K smpl:344K ep:1K epch:17.50 loss:0.082 grdn:8.752 lr:1.0e-05 updt_s:0.065 data_s:0.000
232
+ INFO 2025-04-13 07:59:08 ts/train.py:232 step:43K smpl:346K ep:1K epch:17.58 loss:0.080 grdn:8.553 lr:1.0e-05 updt_s:0.065 data_s:0.000
233
+ INFO 2025-04-13 07:59:21 ts/train.py:232 step:43K smpl:347K ep:1K epch:17.66 loss:0.082 grdn:8.904 lr:1.0e-05 updt_s:0.065 data_s:0.000
234
+ INFO 2025-04-13 07:59:34 ts/train.py:232 step:44K smpl:349K ep:1K epch:17.75 loss:0.081 grdn:8.554 lr:1.0e-05 updt_s:0.064 data_s:0.000
235
+ INFO 2025-04-13 07:59:47 ts/train.py:232 step:44K smpl:350K ep:1K epch:17.83 loss:0.081 grdn:8.590 lr:1.0e-05 updt_s:0.065 data_s:0.000
236
+ INFO 2025-04-13 08:00:00 ts/train.py:232 step:44K smpl:352K ep:1K epch:17.91 loss:0.081 grdn:8.783 lr:1.0e-05 updt_s:0.065 data_s:0.000
237
+ INFO 2025-04-13 08:00:13 ts/train.py:232 step:44K smpl:354K ep:1K epch:17.99 loss:0.080 grdn:8.536 lr:1.0e-05 updt_s:0.064 data_s:0.000
238
+ INFO 2025-04-13 08:00:27 ts/train.py:232 step:44K smpl:355K ep:1K epch:18.07 loss:0.081 grdn:8.852 lr:1.0e-05 updt_s:0.064 data_s:0.003
239
+ INFO 2025-04-13 08:00:40 ts/train.py:232 step:45K smpl:357K ep:1K epch:18.15 loss:0.078 grdn:8.251 lr:1.0e-05 updt_s:0.064 data_s:0.000
240
+ INFO 2025-04-13 08:00:53 ts/train.py:232 step:45K smpl:358K ep:1K epch:18.23 loss:0.082 grdn:8.864 lr:1.0e-05 updt_s:0.064 data_s:0.000
241
+ INFO 2025-04-13 08:01:05 ts/train.py:232 step:45K smpl:360K ep:1K epch:18.32 loss:0.080 grdn:8.318 lr:1.0e-05 updt_s:0.064 data_s:0.000
242
+ INFO 2025-04-13 08:01:19 ts/train.py:232 step:45K smpl:362K ep:1K epch:18.40 loss:0.080 grdn:8.474 lr:1.0e-05 updt_s:0.065 data_s:0.000
243
+ INFO 2025-04-13 08:01:31 ts/train.py:232 step:45K smpl:363K ep:1K epch:18.48 loss:0.079 grdn:8.374 lr:1.0e-05 updt_s:0.064 data_s:0.000
244
+ INFO 2025-04-13 08:01:44 ts/train.py:232 step:46K smpl:365K ep:1K epch:18.56 loss:0.078 grdn:8.490 lr:1.0e-05 updt_s:0.064 data_s:0.000
245
+ INFO 2025-04-13 08:01:57 ts/train.py:232 step:46K smpl:366K ep:1K epch:18.64 loss:0.082 grdn:8.518 lr:1.0e-05 updt_s:0.064 data_s:0.000
246
+ INFO 2025-04-13 08:02:10 ts/train.py:232 step:46K smpl:368K ep:1K epch:18.72 loss:0.078 grdn:8.154 lr:1.0e-05 updt_s:0.064 data_s:0.000
247
+ INFO 2025-04-13 08:02:23 ts/train.py:232 step:46K smpl:370K ep:1K epch:18.80 loss:0.079 grdn:8.821 lr:1.0e-05 updt_s:0.064 data_s:0.000
248
+ INFO 2025-04-13 08:02:36 ts/train.py:232 step:46K smpl:371K ep:1K epch:18.89 loss:0.079 grdn:8.709 lr:1.0e-05 updt_s:0.065 data_s:0.000
249
+ INFO 2025-04-13 08:02:49 ts/train.py:232 step:47K smpl:373K ep:1K epch:18.97 loss:0.079 grdn:8.873 lr:1.0e-05 updt_s:0.064 data_s:0.000
250
+ INFO 2025-04-13 08:03:03 ts/train.py:232 step:47K smpl:374K ep:1K epch:19.05 loss:0.080 grdn:8.770 lr:1.0e-05 updt_s:0.064 data_s:0.003
251
+ INFO 2025-04-13 08:03:16 ts/train.py:232 step:47K smpl:376K ep:1K epch:19.13 loss:0.079 grdn:8.501 lr:1.0e-05 updt_s:0.064 data_s:0.000
252
+ INFO 2025-04-13 08:03:29 ts/train.py:232 step:47K smpl:378K ep:1K epch:19.21 loss:0.079 grdn:8.482 lr:1.0e-05 updt_s:0.064 data_s:0.000
253
+ INFO 2025-04-13 08:03:42 ts/train.py:232 step:47K smpl:379K ep:1K epch:19.29 loss:0.077 grdn:8.125 lr:1.0e-05 updt_s:0.064 data_s:0.000
254
+ INFO 2025-04-13 08:03:55 ts/train.py:232 step:48K smpl:381K ep:1K epch:19.37 loss:0.078 grdn:8.142 lr:1.0e-05 updt_s:0.065 data_s:0.000
255
+ INFO 2025-04-13 08:04:08 ts/train.py:232 step:48K smpl:382K ep:1K epch:19.46 loss:0.076 grdn:8.312 lr:1.0e-05 updt_s:0.064 data_s:0.000
256
+ INFO 2025-04-13 08:04:21 ts/train.py:232 step:48K smpl:384K ep:1K epch:19.54 loss:0.078 grdn:8.743 lr:1.0e-05 updt_s:0.064 data_s:0.000
257
+ INFO 2025-04-13 08:04:34 ts/train.py:232 step:48K smpl:386K ep:1K epch:19.62 loss:0.079 grdn:8.650 lr:1.0e-05 updt_s:0.064 data_s:0.000
258
+ INFO 2025-04-13 08:04:47 ts/train.py:232 step:48K smpl:387K ep:1K epch:19.70 loss:0.076 grdn:8.555 lr:1.0e-05 updt_s:0.064 data_s:0.000
259
+ INFO 2025-04-13 08:05:00 ts/train.py:232 step:49K smpl:389K ep:1K epch:19.78 loss:0.076 grdn:8.133 lr:1.0e-05 updt_s:0.065 data_s:0.000
260
+ INFO 2025-04-13 08:05:13 ts/train.py:232 step:49K smpl:390K ep:1K epch:19.86 loss:0.078 grdn:7.931 lr:1.0e-05 updt_s:0.065 data_s:0.000
261
+ INFO 2025-04-13 08:05:26 ts/train.py:232 step:49K smpl:392K ep:1K epch:19.94 loss:0.075 grdn:8.111 lr:1.0e-05 updt_s:0.065 data_s:0.000
262
+ INFO 2025-04-13 08:05:40 ts/train.py:232 step:49K smpl:394K ep:1K epch:20.03 loss:0.077 grdn:8.154 lr:1.0e-05 updt_s:0.065 data_s:0.003
263
+ INFO 2025-04-13 08:05:53 ts/train.py:232 step:49K smpl:395K ep:1K epch:20.11 loss:0.075 grdn:8.283 lr:1.0e-05 updt_s:0.065 data_s:0.000
264
+ INFO 2025-04-13 08:06:06 ts/train.py:232 step:50K smpl:397K ep:1K epch:20.19 loss:0.077 grdn:8.476 lr:1.0e-05 updt_s:0.065 data_s:0.000
265
+ INFO 2025-04-13 08:06:19 ts/train.py:232 step:50K smpl:398K ep:1K epch:20.27 loss:0.076 grdn:8.140 lr:1.0e-05 updt_s:0.064 data_s:0.000
266
+ INFO 2025-04-13 08:06:32 ts/train.py:232 step:50K smpl:400K ep:1K epch:20.35 loss:0.075 grdn:7.948 lr:1.0e-05 updt_s:0.065 data_s:0.000
267
+ INFO 2025-04-13 08:06:45 ts/train.py:232 step:50K smpl:402K ep:1K epch:20.43 loss:0.074 grdn:7.931 lr:1.0e-05 updt_s:0.064 data_s:0.000
268
+ INFO 2025-04-13 08:06:58 ts/train.py:232 step:50K smpl:403K ep:1K epch:20.51 loss:0.075 grdn:7.934 lr:1.0e-05 updt_s:0.064 data_s:0.000
269
+ INFO 2025-04-13 08:07:11 ts/train.py:232 step:51K smpl:405K ep:1K epch:20.60 loss:0.074 grdn:8.062 lr:1.0e-05 updt_s:0.064 data_s:0.000
270
+ INFO 2025-04-13 08:07:25 ts/train.py:232 step:51K smpl:406K ep:1K epch:20.68 loss:0.077 grdn:8.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
271
+ INFO 2025-04-13 08:07:38 ts/train.py:232 step:51K smpl:408K ep:1K epch:20.76 loss:0.075 grdn:8.168 lr:1.0e-05 updt_s:0.065 data_s:0.000
272
+ INFO 2025-04-13 08:07:51 ts/train.py:232 step:51K smpl:410K ep:1K epch:20.84 loss:0.075 grdn:7.921 lr:1.0e-05 updt_s:0.065 data_s:0.000
273
+ INFO 2025-04-13 08:08:04 ts/train.py:232 step:51K smpl:411K ep:1K epch:20.92 loss:0.075 grdn:8.012 lr:1.0e-05 updt_s:0.065 data_s:0.000
274
+ INFO 2025-04-13 08:08:17 ts/train.py:232 step:52K smpl:413K ep:1K epch:21.00 loss:0.073 grdn:7.712 lr:1.0e-05 updt_s:0.064 data_s:0.003
275
+ INFO 2025-04-13 08:08:31 ts/train.py:232 step:52K smpl:414K ep:1K epch:21.08 loss:0.074 grdn:8.426 lr:1.0e-05 updt_s:0.065 data_s:0.000
276
+ INFO 2025-04-13 08:08:44 ts/train.py:232 step:52K smpl:416K ep:1K epch:21.17 loss:0.074 grdn:7.754 lr:1.0e-05 updt_s:0.065 data_s:0.000
277
+ INFO 2025-04-13 08:08:57 ts/train.py:232 step:52K smpl:418K ep:1K epch:21.25 loss:0.075 grdn:7.790 lr:1.0e-05 updt_s:0.065 data_s:0.000
278
+ INFO 2025-04-13 08:09:10 ts/train.py:232 step:52K smpl:419K ep:1K epch:21.33 loss:0.074 grdn:7.899 lr:1.0e-05 updt_s:0.065 data_s:0.000
279
+ INFO 2025-04-13 08:09:23 ts/train.py:232 step:53K smpl:421K ep:1K epch:21.41 loss:0.074 grdn:8.311 lr:1.0e-05 updt_s:0.064 data_s:0.000
280
+ INFO 2025-04-13 08:09:36 ts/train.py:232 step:53K smpl:422K ep:1K epch:21.49 loss:0.076 grdn:8.117 lr:1.0e-05 updt_s:0.065 data_s:0.000
281
+ INFO 2025-04-13 08:09:49 ts/train.py:232 step:53K smpl:424K ep:1K epch:21.57 loss:0.076 grdn:8.266 lr:1.0e-05 updt_s:0.064 data_s:0.000
282
+ INFO 2025-04-13 08:10:02 ts/train.py:232 step:53K smpl:426K ep:1K epch:21.65 loss:0.074 grdn:7.910 lr:1.0e-05 updt_s:0.064 data_s:0.000
283
+ INFO 2025-04-13 08:10:15 ts/train.py:232 step:53K smpl:427K ep:1K epch:21.73 loss:0.071 grdn:7.449 lr:1.0e-05 updt_s:0.064 data_s:0.000
284
+ INFO 2025-04-13 08:10:33 ts/train.py:232 step:54K smpl:429K ep:2K epch:21.82 loss:0.075 grdn:7.902 lr:1.0e-05 updt_s:0.064 data_s:0.027
285
+ INFO 2025-04-13 08:10:46 ts/train.py:232 step:54K smpl:430K ep:2K epch:21.90 loss:0.072 grdn:7.497 lr:1.0e-05 updt_s:0.065 data_s:0.000
286
+ INFO 2025-04-13 08:10:59 ts/train.py:232 step:54K smpl:432K ep:2K epch:21.98 loss:0.072 grdn:7.870 lr:1.0e-05 updt_s:0.065 data_s:0.000
287
+ INFO 2025-04-13 08:11:13 ts/train.py:232 step:54K smpl:434K ep:2K epch:22.06 loss:0.072 grdn:8.095 lr:1.0e-05 updt_s:0.064 data_s:0.003
288
+ INFO 2025-04-13 08:11:26 ts/train.py:232 step:54K smpl:435K ep:2K epch:22.14 loss:0.071 grdn:7.866 lr:1.0e-05 updt_s:0.064 data_s:0.000
289
+ INFO 2025-04-13 08:11:39 ts/train.py:232 step:55K smpl:437K ep:2K epch:22.22 loss:0.071 grdn:7.662 lr:1.0e-05 updt_s:0.064 data_s:0.000
290
+ INFO 2025-04-13 08:11:52 ts/train.py:232 step:55K smpl:438K ep:2K epch:22.30 loss:0.074 grdn:7.789 lr:1.0e-05 updt_s:0.065 data_s:0.000
291
+ INFO 2025-04-13 08:12:05 ts/train.py:232 step:55K smpl:440K ep:2K epch:22.39 loss:0.074 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
292
+ INFO 2025-04-13 08:12:18 ts/train.py:232 step:55K smpl:442K ep:2K epch:22.47 loss:0.073 grdn:7.568 lr:1.0e-05 updt_s:0.064 data_s:0.000
293
+ INFO 2025-04-13 08:12:31 ts/train.py:232 step:55K smpl:443K ep:2K epch:22.55 loss:0.074 grdn:8.172 lr:1.0e-05 updt_s:0.065 data_s:0.000
294
+ INFO 2025-04-13 08:12:44 ts/train.py:232 step:56K smpl:445K ep:2K epch:22.63 loss:0.070 grdn:7.676 lr:1.0e-05 updt_s:0.064 data_s:0.000
295
+ INFO 2025-04-13 08:12:57 ts/train.py:232 step:56K smpl:446K ep:2K epch:22.71 loss:0.074 grdn:7.829 lr:1.0e-05 updt_s:0.064 data_s:0.000
296
+ INFO 2025-04-13 08:13:11 ts/train.py:232 step:56K smpl:448K ep:2K epch:22.79 loss:0.071 grdn:7.441 lr:1.0e-05 updt_s:0.065 data_s:0.000
297
+ INFO 2025-04-13 08:13:24 ts/train.py:232 step:56K smpl:450K ep:2K epch:22.87 loss:0.070 grdn:7.371 lr:1.0e-05 updt_s:0.065 data_s:0.000
298
+ INFO 2025-04-13 08:13:37 ts/train.py:232 step:56K smpl:451K ep:2K epch:22.96 loss:0.074 grdn:8.149 lr:1.0e-05 updt_s:0.064 data_s:0.000
299
+ INFO 2025-04-13 08:13:50 ts/train.py:232 step:57K smpl:453K ep:2K epch:23.04 loss:0.072 grdn:7.781 lr:1.0e-05 updt_s:0.064 data_s:0.003
300
+ INFO 2025-04-13 08:14:03 ts/train.py:232 step:57K smpl:454K ep:2K epch:23.12 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
301
+ INFO 2025-04-13 08:14:17 ts/train.py:232 step:57K smpl:456K ep:2K epch:23.20 loss:0.072 grdn:8.014 lr:1.0e-05 updt_s:0.065 data_s:0.000
302
+ INFO 2025-04-13 08:14:30 ts/train.py:232 step:57K smpl:458K ep:2K epch:23.28 loss:0.069 grdn:7.556 lr:1.0e-05 updt_s:0.065 data_s:0.000
303
+ INFO 2025-04-13 08:14:43 ts/train.py:232 step:57K smpl:459K ep:2K epch:23.36 loss:0.070 grdn:7.363 lr:1.0e-05 updt_s:0.065 data_s:0.000
304
+ INFO 2025-04-13 08:14:56 ts/train.py:232 step:58K smpl:461K ep:2K epch:23.44 loss:0.070 grdn:7.559 lr:1.0e-05 updt_s:0.065 data_s:0.000
305
+ INFO 2025-04-13 08:15:09 ts/train.py:232 step:58K smpl:462K ep:2K epch:23.53 loss:0.069 grdn:7.430 lr:1.0e-05 updt_s:0.065 data_s:0.000
306
+ INFO 2025-04-13 08:15:22 ts/train.py:232 step:58K smpl:464K ep:2K epch:23.61 loss:0.071 grdn:7.719 lr:1.0e-05 updt_s:0.065 data_s:0.000
307
+ INFO 2025-04-13 08:15:35 ts/train.py:232 step:58K smpl:466K ep:2K epch:23.69 loss:0.069 grdn:7.546 lr:1.0e-05 updt_s:0.064 data_s:0.000
308
+ INFO 2025-04-13 08:15:48 ts/train.py:232 step:58K smpl:467K ep:2K epch:23.77 loss:0.070 grdn:7.389 lr:1.0e-05 updt_s:0.065 data_s:0.000
309
+ INFO 2025-04-13 08:16:01 ts/train.py:232 step:59K smpl:469K ep:2K epch:23.85 loss:0.069 grdn:7.826 lr:1.0e-05 updt_s:0.065 data_s:0.000
310
+ INFO 2025-04-13 08:16:15 ts/train.py:232 step:59K smpl:470K ep:2K epch:23.93 loss:0.070 grdn:7.962 lr:1.0e-05 updt_s:0.065 data_s:0.000
311
+ INFO 2025-04-13 08:16:28 ts/train.py:232 step:59K smpl:472K ep:2K epch:24.01 loss:0.069 grdn:7.655 lr:1.0e-05 updt_s:0.065 data_s:0.003
312
+ INFO 2025-04-13 08:16:41 ts/train.py:232 step:59K smpl:474K ep:2K epch:24.10 loss:0.071 grdn:7.565 lr:1.0e-05 updt_s:0.064 data_s:0.000
313
+ INFO 2025-04-13 08:16:54 ts/train.py:232 step:59K smpl:475K ep:2K epch:24.18 loss:0.069 grdn:7.356 lr:1.0e-05 updt_s:0.064 data_s:0.000
314
+ INFO 2025-04-13 08:17:07 ts/train.py:232 step:60K smpl:477K ep:2K epch:24.26 loss:0.070 grdn:7.571 lr:1.0e-05 updt_s:0.065 data_s:0.000
315
+ INFO 2025-04-13 08:17:20 ts/train.py:232 step:60K smpl:478K ep:2K epch:24.34 loss:0.070 grdn:7.669 lr:1.0e-05 updt_s:0.064 data_s:0.000
316
+ INFO 2025-04-13 08:17:33 ts/train.py:232 step:60K smpl:480K ep:2K epch:24.42 loss:0.068 grdn:7.210 lr:1.0e-05 updt_s:0.064 data_s:0.000
317
+ INFO 2025-04-13 08:17:33 ts/train.py:241 Checkpoint policy after step 60000
318
+ INFO 2025-04-13 08:17:49 ts/train.py:232 step:60K smpl:482K ep:2K epch:24.50 loss:0.066 grdn:7.068 lr:1.0e-05 updt_s:0.065 data_s:0.000
319
+ INFO 2025-04-13 08:18:02 ts/train.py:232 step:60K smpl:483K ep:2K epch:24.58 loss:0.069 grdn:7.378 lr:1.0e-05 updt_s:0.065 data_s:0.000
320
+ INFO 2025-04-13 08:18:15 ts/train.py:232 step:61K smpl:485K ep:2K epch:24.67 loss:0.066 grdn:7.443 lr:1.0e-05 updt_s:0.064 data_s:0.000
321
+ INFO 2025-04-13 08:18:28 ts/train.py:232 step:61K smpl:486K ep:2K epch:24.75 loss:0.069 grdn:7.685 lr:1.0e-05 updt_s:0.065 data_s:0.000
322
+ INFO 2025-04-13 08:18:41 ts/train.py:232 step:61K smpl:488K ep:2K epch:24.83 loss:0.070 grdn:7.414 lr:1.0e-05 updt_s:0.065 data_s:0.000
323
+ INFO 2025-04-13 08:18:54 ts/train.py:232 step:61K smpl:490K ep:2K epch:24.91 loss:0.068 grdn:7.350 lr:1.0e-05 updt_s:0.065 data_s:0.000
324
+ INFO 2025-04-13 08:19:07 ts/train.py:232 step:61K smpl:491K ep:2K epch:24.99 loss:0.070 grdn:7.975 lr:1.0e-05 updt_s:0.065 data_s:0.000
325
+ INFO 2025-04-13 08:19:21 ts/train.py:232 step:62K smpl:493K ep:2K epch:25.07 loss:0.069 grdn:7.381 lr:1.0e-05 updt_s:0.064 data_s:0.003
326
+ INFO 2025-04-13 08:19:34 ts/train.py:232 step:62K smpl:494K ep:2K epch:25.15 loss:0.068 grdn:7.491 lr:1.0e-05 updt_s:0.065 data_s:0.000
327
+ INFO 2025-04-13 08:19:47 ts/train.py:232 step:62K smpl:496K ep:2K epch:25.24 loss:0.069 grdn:7.499 lr:1.0e-05 updt_s:0.065 data_s:0.000
328
+ INFO 2025-04-13 08:20:00 ts/train.py:232 step:62K smpl:498K ep:2K epch:25.32 loss:0.067 grdn:7.148 lr:1.0e-05 updt_s:0.065 data_s:0.000
329
+ INFO 2025-04-13 08:20:13 ts/train.py:232 step:62K smpl:499K ep:2K epch:25.40 loss:0.066 grdn:7.036 lr:1.0e-05 updt_s:0.065 data_s:0.000
330
+ INFO 2025-04-13 08:20:27 ts/train.py:232 step:63K smpl:501K ep:2K epch:25.48 loss:0.069 grdn:7.520 lr:1.0e-05 updt_s:0.065 data_s:0.000
331
+ INFO 2025-04-13 08:20:40 ts/train.py:232 step:63K smpl:502K ep:2K epch:25.56 loss:0.068 grdn:7.298 lr:1.0e-05 updt_s:0.065 data_s:0.000
332
+ INFO 2025-04-13 08:20:53 ts/train.py:232 step:63K smpl:504K ep:2K epch:25.64 loss:0.065 grdn:7.105 lr:1.0e-05 updt_s:0.065 data_s:0.000
333
+ INFO 2025-04-13 08:21:06 ts/train.py:232 step:63K smpl:506K ep:2K epch:25.72 loss:0.068 grdn:6.887 lr:1.0e-05 updt_s:0.065 data_s:0.000
334
+ INFO 2025-04-13 08:21:19 ts/train.py:232 step:63K smpl:507K ep:2K epch:25.81 loss:0.066 grdn:7.273 lr:1.0e-05 updt_s:0.065 data_s:0.000
335
+ INFO 2025-04-13 08:21:32 ts/train.py:232 step:64K smpl:509K ep:2K epch:25.89 loss:0.065 grdn:6.902 lr:1.0e-05 updt_s:0.065 data_s:0.000
336
+ INFO 2025-04-13 08:21:45 ts/train.py:232 step:64K smpl:510K ep:2K epch:25.97 loss:0.066 grdn:6.634 lr:1.0e-05 updt_s:0.065 data_s:0.000
337
+ INFO 2025-04-13 08:21:59 ts/train.py:232 step:64K smpl:512K ep:2K epch:26.05 loss:0.068 grdn:7.504 lr:1.0e-05 updt_s:0.064 data_s:0.003
338
+ INFO 2025-04-13 08:22:12 ts/train.py:232 step:64K smpl:514K ep:2K epch:26.13 loss:0.067 grdn:7.349 lr:1.0e-05 updt_s:0.065 data_s:0.000
339
+ INFO 2025-04-13 08:22:25 ts/train.py:232 step:64K smpl:515K ep:2K epch:26.21 loss:0.066 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
340
+ INFO 2025-04-13 08:22:38 ts/train.py:232 step:65K smpl:517K ep:2K epch:26.29 loss:0.066 grdn:7.175 lr:1.0e-05 updt_s:0.064 data_s:0.000
341
+ INFO 2025-04-13 08:22:51 ts/train.py:232 step:65K smpl:518K ep:2K epch:26.37 loss:0.067 grdn:7.547 lr:1.0e-05 updt_s:0.065 data_s:0.000
342
+ INFO 2025-04-13 08:23:04 ts/train.py:232 step:65K smpl:520K ep:2K epch:26.46 loss:0.065 grdn:7.369 lr:1.0e-05 updt_s:0.065 data_s:0.000
343
+ INFO 2025-04-13 08:23:17 ts/train.py:232 step:65K smpl:522K ep:2K epch:26.54 loss:0.065 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
344
+ INFO 2025-04-13 08:23:30 ts/train.py:232 step:65K smpl:523K ep:2K epch:26.62 loss:0.066 grdn:7.048 lr:1.0e-05 updt_s:0.065 data_s:0.000
345
+ INFO 2025-04-13 08:23:44 ts/train.py:232 step:66K smpl:525K ep:2K epch:26.70 loss:0.065 grdn:6.854 lr:1.0e-05 updt_s:0.065 data_s:0.000
346
+ INFO 2025-04-13 08:23:57 ts/train.py:232 step:66K smpl:526K ep:2K epch:26.78 loss:0.065 grdn:6.905 lr:1.0e-05 updt_s:0.065 data_s:0.000
347
+ INFO 2025-04-13 08:24:10 ts/train.py:232 step:66K smpl:528K ep:2K epch:26.86 loss:0.064 grdn:6.686 lr:1.0e-05 updt_s:0.065 data_s:0.000
348
+ INFO 2025-04-13 08:24:23 ts/train.py:232 step:66K smpl:530K ep:2K epch:26.94 loss:0.065 grdn:6.974 lr:1.0e-05 updt_s:0.064 data_s:0.000
349
+ INFO 2025-04-13 08:24:36 ts/train.py:232 step:66K smpl:531K ep:2K epch:27.03 loss:0.066 grdn:7.432 lr:1.0e-05 updt_s:0.064 data_s:0.003
350
+ INFO 2025-04-13 08:24:49 ts/train.py:232 step:67K smpl:533K ep:2K epch:27.11 loss:0.064 grdn:6.749 lr:1.0e-05 updt_s:0.064 data_s:0.000
351
+ INFO 2025-04-13 08:25:02 ts/train.py:232 step:67K smpl:534K ep:2K epch:27.19 loss:0.065 grdn:7.442 lr:1.0e-05 updt_s:0.064 data_s:0.000
352
+ INFO 2025-04-13 08:25:16 ts/train.py:232 step:67K smpl:536K ep:2K epch:27.27 loss:0.065 grdn:6.788 lr:1.0e-05 updt_s:0.065 data_s:0.000
353
+ INFO 2025-04-13 08:25:29 ts/train.py:232 step:67K smpl:538K ep:2K epch:27.35 loss:0.066 grdn:7.083 lr:1.0e-05 updt_s:0.065 data_s:0.000
354
+ INFO 2025-04-13 08:25:42 ts/train.py:232 step:67K smpl:539K ep:2K epch:27.43 loss:0.064 grdn:6.862 lr:1.0e-05 updt_s:0.065 data_s:0.000
355
+ INFO 2025-04-13 08:25:55 ts/train.py:232 step:68K smpl:541K ep:2K epch:27.51 loss:0.064 grdn:6.878 lr:1.0e-05 updt_s:0.065 data_s:0.000
356
+ INFO 2025-04-13 08:26:08 ts/train.py:232 step:68K smpl:542K ep:2K epch:27.60 loss:0.064 grdn:6.684 lr:1.0e-05 updt_s:0.065 data_s:0.000
357
+ INFO 2025-04-13 08:26:21 ts/train.py:232 step:68K smpl:544K ep:2K epch:27.68 loss:0.065 grdn:7.029 lr:1.0e-05 updt_s:0.065 data_s:0.000
358
+ INFO 2025-04-13 08:26:34 ts/train.py:232 step:68K smpl:546K ep:2K epch:27.76 loss:0.066 grdn:7.225 lr:1.0e-05 updt_s:0.065 data_s:0.000
359
+ INFO 2025-04-13 08:26:47 ts/train.py:232 step:68K smpl:547K ep:2K epch:27.84 loss:0.065 grdn:6.955 lr:1.0e-05 updt_s:0.065 data_s:0.000
360
+ INFO 2025-04-13 08:27:00 ts/train.py:232 step:69K smpl:549K ep:2K epch:27.92 loss:0.065 grdn:6.922 lr:1.0e-05 updt_s:0.065 data_s:0.000
361
+ INFO 2025-04-13 08:27:14 ts/train.py:232 step:69K smpl:550K ep:2K epch:28.00 loss:0.065 grdn:7.078 lr:1.0e-05 updt_s:0.065 data_s:0.003
362
+ INFO 2025-04-13 08:27:27 ts/train.py:232 step:69K smpl:552K ep:2K epch:28.08 loss:0.064 grdn:6.913 lr:1.0e-05 updt_s:0.065 data_s:0.000
363
+ INFO 2025-04-13 08:27:40 ts/train.py:232 step:69K smpl:554K ep:2K epch:28.17 loss:0.063 grdn:6.870 lr:1.0e-05 updt_s:0.064 data_s:0.000
364
+ INFO 2025-04-13 08:27:53 ts/train.py:232 step:69K smpl:555K ep:2K epch:28.25 loss:0.063 grdn:7.024 lr:1.0e-05 updt_s:0.064 data_s:0.000
365
+ INFO 2025-04-13 08:28:06 ts/train.py:232 step:70K smpl:557K ep:2K epch:28.33 loss:0.064 grdn:6.969 lr:1.0e-05 updt_s:0.065 data_s:0.000
366
+ INFO 2025-04-13 08:28:20 ts/train.py:232 step:70K smpl:558K ep:2K epch:28.41 loss:0.064 grdn:6.757 lr:1.0e-05 updt_s:0.065 data_s:0.000
367
+ INFO 2025-04-13 08:28:33 ts/train.py:232 step:70K smpl:560K ep:2K epch:28.49 loss:0.065 grdn:6.888 lr:1.0e-05 updt_s:0.065 data_s:0.000
368
+ INFO 2025-04-13 08:28:46 ts/train.py:232 step:70K smpl:562K ep:2K epch:28.57 loss:0.066 grdn:6.895 lr:1.0e-05 updt_s:0.064 data_s:0.000
369
+ INFO 2025-04-13 08:28:59 ts/train.py:232 step:70K smpl:563K ep:2K epch:28.65 loss:0.064 grdn:6.967 lr:1.0e-05 updt_s:0.064 data_s:0.000
370
+ INFO 2025-04-13 08:29:12 ts/train.py:232 step:71K smpl:565K ep:2K epch:28.74 loss:0.064 grdn:7.085 lr:1.0e-05 updt_s:0.065 data_s:0.000
371
+ INFO 2025-04-13 08:29:25 ts/train.py:232 step:71K smpl:566K ep:2K epch:28.82 loss:0.064 grdn:6.958 lr:1.0e-05 updt_s:0.064 data_s:0.000
372
+ INFO 2025-04-13 08:29:38 ts/train.py:232 step:71K smpl:568K ep:2K epch:28.90 loss:0.063 grdn:6.867 lr:1.0e-05 updt_s:0.064 data_s:0.000
373
+ INFO 2025-04-13 08:29:51 ts/train.py:232 step:71K smpl:570K ep:2K epch:28.98 loss:0.064 grdn:7.465 lr:1.0e-05 updt_s:0.065 data_s:0.000
374
+ INFO 2025-04-13 08:30:04 ts/train.py:232 step:71K smpl:571K ep:2K epch:29.06 loss:0.063 grdn:6.572 lr:1.0e-05 updt_s:0.065 data_s:0.003
375
+ INFO 2025-04-13 08:30:17 ts/train.py:232 step:72K smpl:573K ep:2K epch:29.14 loss:0.061 grdn:6.608 lr:1.0e-05 updt_s:0.064 data_s:0.000
376
+ INFO 2025-04-13 08:30:30 ts/train.py:232 step:72K smpl:574K ep:2K epch:29.22 loss:0.063 grdn:6.892 lr:1.0e-05 updt_s:0.064 data_s:0.000
377
+ INFO 2025-04-13 08:30:44 ts/train.py:232 step:72K smpl:576K ep:2K epch:29.31 loss:0.063 grdn:6.639 lr:1.0e-05 updt_s:0.065 data_s:0.000
378
+ INFO 2025-04-13 08:30:57 ts/train.py:232 step:72K smpl:578K ep:2K epch:29.39 loss:0.064 grdn:6.885 lr:1.0e-05 updt_s:0.065 data_s:0.000
379
+ INFO 2025-04-13 08:31:10 ts/train.py:232 step:72K smpl:579K ep:2K epch:29.47 loss:0.062 grdn:6.901 lr:1.0e-05 updt_s:0.065 data_s:0.000
380
+ INFO 2025-04-13 08:31:23 ts/train.py:232 step:73K smpl:581K ep:2K epch:29.55 loss:0.064 grdn:7.140 lr:1.0e-05 updt_s:0.065 data_s:0.000
381
+ INFO 2025-04-13 08:31:36 ts/train.py:232 step:73K smpl:582K ep:2K epch:29.63 loss:0.062 grdn:7.128 lr:1.0e-05 updt_s:0.064 data_s:0.000
382
+ INFO 2025-04-13 08:31:49 ts/train.py:232 step:73K smpl:584K ep:2K epch:29.71 loss:0.064 grdn:6.793 lr:1.0e-05 updt_s:0.064 data_s:0.000
383
+ INFO 2025-04-13 08:32:02 ts/train.py:232 step:73K smpl:586K ep:2K epch:29.79 loss:0.065 grdn:6.861 lr:1.0e-05 updt_s:0.065 data_s:0.000
384
+ INFO 2025-04-13 08:32:15 ts/train.py:232 step:73K smpl:587K ep:2K epch:29.88 loss:0.061 grdn:6.259 lr:1.0e-05 updt_s:0.065 data_s:0.000
wandb/run-20250413_071149-ipo2f6m2/files/requirements.txt ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ setuptools==75.8.0
2
+ wheel==0.45.1
3
+ pip==25.0
4
+ wcwidth==0.2.13
5
+ triton==3.2.0
6
+ pytz==2025.2
7
+ PyOpenGL==3.1.9
8
+ nvidia-cusparselt-cu12==0.6.2
9
+ mpmath==1.3.0
10
+ glfw==2.8.0
11
+ Farama-Notifications==0.0.4
12
+ asciitree==0.3.3
13
+ antlr4-python3-runtime==4.9.3
14
+ zipp==3.21.0
15
+ xxhash==3.5.0
16
+ wrapt==1.17.2
17
+ urllib3==2.4.0
18
+ tzdata==2025.2
19
+ typing_extensions==4.13.2
20
+ tqdm==4.67.1
21
+ TorchCodec==0.2.1
22
+ toml==0.10.2
23
+ termcolor==3.0.1
24
+ sympy==1.13.1
25
+ soupsieve==2.6
26
+ smmap==5.0.2
27
+ six==1.17.0
28
+ setproctitle==1.3.5
29
+ safetensors==0.5.3
30
+ regex==2024.11.6
31
+ pyzmq==26.4.0
32
+ PyYAML==6.0.2
33
+ PySocks==1.7.1
34
+ pyparsing==3.2.3
35
+ pygame==2.6.1
36
+ pycparser==2.22
37
+ pyarrow==19.0.1
38
+ psutil==7.0.0
39
+ protobuf==5.29.4
40
+ propcache==0.3.1
41
+ prompt_toolkit==3.0.50
42
+ platformdirs==4.3.7
43
+ pillow==11.1.0
44
+ pfzy==0.3.4
45
+ packaging==24.2
46
+ orderly-set==5.4.0
47
+ nvidia-nvtx-cu12==12.4.127
48
+ nvidia-nvjitlink-cu12==12.4.127
49
+ nvidia-nccl-cu12==2.21.5
50
+ nvidia-curand-cu12==10.3.5.147
51
+ nvidia-cufft-cu12==11.2.1.3
52
+ nvidia-cuda-runtime-cu12==12.4.127
53
+ nvidia-cuda-nvrtc-cu12==12.4.127
54
+ nvidia-cuda-cupti-cu12==12.4.127
55
+ nvidia-cublas-cu12==12.4.5.8
56
+ networkx==3.4.2
57
+ mypy-extensions==1.0.0
58
+ mergedeep==1.3.4
59
+ MarkupSafe==3.0.2
60
+ lxml==5.3.2
61
+ llvmlite==0.44.0
62
+ itsdangerous==2.2.0
63
+ imageio-ffmpeg==0.6.0
64
+ idna==3.10
65
+ hf_transfer==0.1.9
66
+ fsspec==2024.12.0
67
+ frozenlist==1.5.0
68
+ filelock==3.18.0
69
+ fasteners==0.19
70
+ evdev==1.9.1
71
+ einops==0.8.1
72
+ dill==0.3.8
73
+ cmake==4.0.0
74
+ cloudpickle==3.1.1
75
+ click==8.1.8
76
+ charset-normalizer==3.4.1
77
+ certifi==2025.1.31
78
+ blinker==1.9.0
79
+ av==14.3.0
80
+ attrs==25.3.0
81
+ async-timeout==5.0.1
82
+ annotated-types==0.7.0
83
+ aiohappyeyeballs==2.6.1
84
+ absl-py==2.2.2
85
+ Werkzeug==3.1.3
86
+ typing-inspection==0.4.0
87
+ typing-inspect==0.9.0
88
+ tifffile==2025.3.30
89
+ shapely==2.1.0
90
+ sentry-sdk==2.25.1
91
+ scipy==1.15.2
92
+ rerun-sdk==0.22.1
93
+ requests==2.32.3
94
+ pyyaml-include==1.4.1
95
+ python-xlib==0.33
96
+ python-dateutil==2.9.0.post0
97
+ pydantic_core==2.33.1
98
+ opencv-python-headless==4.11.0.86
99
+ opencv-python==4.11.0.86
100
+ omegaconf==2.3.0
101
+ nvidia-cusparse-cu12==12.3.1.170
102
+ nvidia-cudnn-cu12==9.1.0.70
103
+ numcodecs==0.13.1
104
+ multiprocess==0.70.16
105
+ multidict==6.4.3
106
+ mujoco==2.3.7
107
+ lazy_loader==0.4
108
+ labmaze==1.0.6
109
+ jsonlines==4.0.0
110
+ Jinja2==3.1.6
111
+ inquirerpy==0.3.4
112
+ importlib_metadata==8.6.1
113
+ imageio==2.37.0
114
+ h5py==3.13.0
115
+ gymnasium==0.29.1
116
+ gitdb==4.0.12
117
+ docker-pycreds==0.4.0
118
+ dm-tree==0.1.9
119
+ deepdiff==8.4.2
120
+ cffi==1.17.1
121
+ beautifulsoup4==4.13.3
122
+ aiosignal==1.3.2
123
+ zarr==2.18.3
124
+ yarl==1.19.0
125
+ scikit-image==0.25.2
126
+ pynput==1.8.1
127
+ pymunk==6.11.1
128
+ pydantic==2.11.3
129
+ pandas==2.2.3
130
+ nvidia-cusolver-cu12==11.6.1.9
131
+ huggingface-hub==0.30.2
132
+ GitPython==3.1.44
133
+ Flask==3.1.0
134
+ draccus==0.10.0
135
+ dm-env==1.6
136
+ wandb==0.19.9
137
+ torch==2.6.0
138
+ gym-pusht==0.1.5
139
+ gdown==5.2.0
140
+ dm-control==1.0.14
141
+ diffusers==0.33.1
142
+ aiohttp==3.11.16
143
+ torchvision==0.21.0
144
+ gym-aloha==0.1.1
145
+ datasets==3.5.0
146
+ pyserial==3.5
147
+ feetech-servo-sdk==1.0.0
148
+ python-json-logger==3.3.0
149
+ Pygments==2.19.1
150
+ tokenizers==0.21.1
151
+ transformers==4.51.2
152
+ pycountry==24.6.1
153
+ lerobot==0.1.0
154
+ tomli==2.2.1
155
+ pluggy==1.5.0
156
+ iniconfig==2.1.0
157
+ exceptiongroup==1.2.2
158
+ pytest==8.3.5
159
+ sentencepiece==0.2.0
160
+ py-cpuinfo==9.0.0
161
+ nanobind==2.6.1
162
+ fastrlock==0.8.3
163
+ blake3==1.0.4
164
+ websockets==15.0.1
165
+ uvloop==0.21.0
166
+ sniffio==1.3.1
167
+ shellingham==1.5.4
168
+ rpds-py==0.24.0
169
+ python-multipart==0.0.20
170
+ python-dotenv==1.1.0
171
+ prometheus_client==0.21.1
172
+ partial-json-parser==0.2.1.1.post5
173
+ numpy==2.2.4
174
+ numpy==2.1.3
175
+ referencing==0.36.2
176
+ numba==0.61.0
177
+ ninja==1.11.1.4
178
+ nest-asyncio==1.6.0
179
+ msgspec==0.19.0
180
+ msgpack==1.1.0
181
+ mdurl==0.1.2
182
+ llguidance==0.7.14
183
+ lark==1.2.2
184
+ jiter==0.9.0
185
+ interegular==0.3.3
186
+ httptools==0.6.4
187
+ hf-xet==1.0.3
188
+ h11==0.14.0
189
+ gguf==0.10.0
190
+ dnspython==2.7.0
191
+ distro==1.9.0
192
+ diskcache==5.6.3
193
+ cupy-cuda12x==13.4.1
194
+ cachetools==5.5.2
195
+ astor==0.8.1
196
+ anyio==4.9.0
197
+ airportsdata==20250224
198
+ watchfiles==1.0.5
199
+ uvicorn==0.34.0
200
+ tiktoken==0.9.0
201
+ starlette==0.46.1
202
+ markdown-it-py==3.0.0
203
+ jsonschema-specifications==2024.10.1
204
+ httpcore==1.0.8
205
+ email_validator==2.2.0
206
+ depyf==0.18.0
207
+ rich==14.0.0
208
+ prometheus-fastapi-instrumentator==7.1.0
209
+ lm-format-enforcer==0.10.11
210
+ jsonschema==4.23.0
211
+ httpx==0.28.1
212
+ fastapi==0.115.12
213
+ xformers==0.0.29.post2
214
+ typer==0.15.2
215
+ torchaudio==2.6.0
216
+ rich-toolkit==0.14.1
217
+ ray==2.43.0
218
+ outlines_core==0.1.26
219
+ openai==1.73.0
220
+ mistral_common==1.5.4
221
+ xgrammar==0.1.17
222
+ outlines==0.1.11
223
+ fastapi-cli==0.0.7
224
+ compressed-tensors==0.9.2
225
+ vllm==0.8.3
226
+ autocommand==2.2.2
227
+ backports.tarfile==1.2.0
228
+ importlib_metadata==8.0.0
229
+ inflect==7.3.1
230
+ jaraco.collections==5.1.0
231
+ jaraco.context==5.3.0
232
+ jaraco.functools==4.0.1
233
+ jaraco.text==3.12.1
234
+ more-itertools==10.3.0
235
+ packaging==24.2
236
+ platformdirs==4.2.2
237
+ tomli==2.0.1
238
+ typeguard==4.3.0
239
+ typing_extensions==4.12.2
240
+ wheel==0.43.0
241
+ zipp==3.19.2
wandb/run-20250413_071149-ipo2f6m2/files/wandb-metadata.json ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "os": "Linux-5.14.0-427.26.1.el9_4.x86_64-x86_64-with-glibc2.34",
3
+ "python": "CPython 3.10.13",
4
+ "startedAt": "2025-04-13T05:11:49.829796Z",
5
+ "args": [
6
+ "--dataset.repo_id=rjgpinel/chickenToPlate",
7
+ "--policy.type=act",
8
+ "--output_dir=outputs/train/act_bs8_chickenToPlate",
9
+ "--job_name=act_trial_bs8_chickenToPlate",
10
+ "--policy.device=cuda",
11
+ "--wandb.enable=true"
12
+ ],
13
+ "program": "/home/rgarciap/Code/lerobot/lerobot/scripts/train.py",
14
+ "codePath": "lerobot/scripts/train.py",
15
+ "git": {
16
+ "remote": "[email protected]:rjgpinel/lerobot.git",
17
+ "commit": "d292028da73ca5e4abb134d13d4a8ff18c08e1a2"
18
+ },
19
+ "root": "outputs/train/act_bs8_chickenToPlate",
20
+ "host": "gpu012",
21
+ "executable": "/home/rgarciap/miniconda3/envs/lerobot/bin/python",
22
+ "codePathLocal": "lerobot/scripts/train.py",
23
+ "cpu_count": 32,
24
+ "cpu_count_logical": 64,
25
+ "gpu": "NVIDIA A100-SXM4-80GB",
26
+ "gpu_count": 1,
27
+ "disk": {
28
+ "/": {
29
+ "total": "135085682688",
30
+ "used": "3655208960"
31
+ }
32
+ },
33
+ "memory": {
34
+ "total": "270171365376"
35
+ },
36
+ "cpu": {
37
+ "count": 32,
38
+ "countLogical": 64
39
+ },
40
+ "gpu_nvidia": [
41
+ {
42
+ "name": "NVIDIA A100-SXM4-80GB",
43
+ "memoryTotal": "85899345920",
44
+ "cudaCores": 6912,
45
+ "architecture": "Ampere"
46
+ }
47
+ ],
48
+ "slurm": {
49
+ "cluster_name": "cleps",
50
+ "conf": "/var/spool/slurm/d/conf-cache/slurm.conf",
51
+ "cpu_bind": "quiet,mask_cpu:0x000000000000FF00",
52
+ "cpu_bind_list": "0x000000000000FF00",
53
+ "cpu_bind_type": "mask_cpu:",
54
+ "cpu_bind_verbose": "quiet",
55
+ "cpus_on_node": "16",
56
+ "cpus_per_task": "8",
57
+ "distribution": "cyclic",
58
+ "gpus_on_node": "1",
59
+ "gtids": "0",
60
+ "hint": "nomultithread",
61
+ "job_account": "willow",
62
+ "job_cpus_per_node": "8",
63
+ "job_end_time": "1744557103",
64
+ "job_gid": "21076",
65
+ "job_gpus": "1",
66
+ "job_id": "3984516",
67
+ "job_name": "act_training",
68
+ "job_nodelist": "gpu012",
69
+ "job_num_nodes": "1",
70
+ "job_partition": "willow",
71
+ "job_qos": "normal",
72
+ "job_start_time": "1744521103",
73
+ "job_uid": "662847",
74
+ "job_user": "rgarciap",
75
+ "jobid": "3984516",
76
+ "launch_node_ipaddr": "10.224.2.12",
77
+ "localid": "0",
78
+ "mem_per_node": "40960",
79
+ "mpi_type": "pmix_v4",
80
+ "nnodes": "1",
81
+ "nodeid": "0",
82
+ "nodelist": "gpu012",
83
+ "nprocs": "1",
84
+ "ntasks": "1",
85
+ "pmix_mapping_serv": "(vector,(0,1,1))",
86
+ "pmixp_abort_agent_port": "60160",
87
+ "prio_process": "0",
88
+ "procid": "0",
89
+ "script_context": "prolog_task",
90
+ "srun_comm_host": "10.224.2.12",
91
+ "srun_comm_port": "60161",
92
+ "step_gpus": "1",
93
+ "step_id": "0",
94
+ "step_launcher_port": "60161",
95
+ "step_nodelist": "gpu012",
96
+ "step_num_nodes": "1",
97
+ "step_num_tasks": "1",
98
+ "step_tasks_per_node": "1",
99
+ "stepid": "0",
100
+ "submit_dir": "/home/rgarciap/Code/lerobot/cleps_scripts/chickenToPlate",
101
+ "submit_host": "cleps",
102
+ "task_pid": "2476203",
103
+ "tasks_per_node": "1",
104
+ "threads_per_core": "1",
105
+ "topology_addr": "gpu012",
106
+ "topology_addr_pattern": "node",
107
+ "tres_per_task": "cpu:8",
108
+ "umask": "0022"
109
+ },
110
+ "cudaVersion": "12.5"
111
+ }
wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"time":"2025-04-13T07:11:49.620604148+02:00","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpl6h5gsi9/port-2476203.txt","pid":2476203,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false}
2
+ {"time":"2025-04-13T07:11:49.621232919+02:00","level":"INFO","msg":"Will exit if parent process dies.","ppid":2476203}
3
+ {"time":"2025-04-13T07:11:49.621227018+02:00","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":37289,"Zone":""}}
4
+ {"time":"2025-04-13T07:11:49.812573582+02:00","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:37562"}
5
+ {"time":"2025-04-13T07:11:49.83071304+02:00","level":"INFO","msg":"handleInformInit: received","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
6
+ {"time":"2025-04-13T07:11:50.06605336+02:00","level":"INFO","msg":"handleInformInit: stream started","streamId":"ipo2f6m2","id":"127.0.0.1:37562"}
wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"time":"2025-04-13T07:11:49.831630389+02:00","level":"INFO","msg":"stream: starting","core version":"0.19.9","symlink path":"outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-core.log"}
2
+ {"time":"2025-04-13T07:11:50.065991715+02:00","level":"INFO","msg":"created new stream","id":"ipo2f6m2"}
3
+ {"time":"2025-04-13T07:11:50.066038292+02:00","level":"INFO","msg":"stream: started","id":"ipo2f6m2"}
4
+ {"time":"2025-04-13T07:11:50.066047799+02:00","level":"INFO","msg":"writer: Do: started","stream_id":"ipo2f6m2"}
5
+ {"time":"2025-04-13T07:11:50.066054812+02:00","level":"INFO","msg":"sender: started","stream_id":"ipo2f6m2"}
6
+ {"time":"2025-04-13T07:11:50.066074269+02:00","level":"INFO","msg":"handler: started","stream_id":"ipo2f6m2"}
7
+ {"time":"2025-04-13T07:11:50.28637769+02:00","level":"INFO","msg":"Starting system monitor"}
wandb/run-20250413_071149-ipo2f6m2/logs/debug.log ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Current SDK version is 0.19.9
2
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Configure stats pid to 2476203
3
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/.config/wandb/settings
4
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from /home/rgarciap/Code/lerobot/wandb/settings
5
+ 2025-04-13 07:11:49,823 INFO MainThread:2476203 [wandb_setup.py:_flush():67] Loading settings from environment variables
6
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():662] Logging user logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug.log
7
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:setup_run_log_directory():663] Logging internal logs to outputs/train/act_bs8_chickenToPlate/wandb/run-20250413_071149-ipo2f6m2/logs/debug-internal.log
8
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():781] calling init triggers
9
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():786] wandb.init called with sweep_config: {}
10
+ config: {'dataset': {'repo_id': 'rjgpinel/chickenToPlate', 'root': None, 'episodes': None, 'image_transforms': {'enable': False, 'max_num_transforms': 3, 'random_order': False, 'tfs': {'brightness': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'brightness': [0.8, 1.2]}}, 'contrast': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'contrast': [0.8, 1.2]}}, 'saturation': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'saturation': [0.5, 1.5]}}, 'hue': {'weight': 1.0, 'type': 'ColorJitter', 'kwargs': {'hue': [-0.05, 0.05]}}, 'sharpness': {'weight': 1.0, 'type': 'SharpnessJitter', 'kwargs': {'sharpness': [0.5, 1.5]}}}}, 'revision': None, 'use_imagenet_stats': True, 'video_backend': 'torchcodec'}, 'env': None, 'policy': {'type': 'act', 'n_obs_steps': 1, 'normalization_mapping': {'VISUAL': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'STATE': <NormalizationMode.MEAN_STD: 'MEAN_STD'>, 'ACTION': <NormalizationMode.MEAN_STD: 'MEAN_STD'>}, 'input_features': {}, 'output_features': {}, 'device': 'cuda', 'use_amp': False, 'chunk_size': 100, 'n_action_steps': 100, 'vision_backbone': 'resnet18', 'pretrained_backbone_weights': 'ResNet18_Weights.IMAGENET1K_V1', 'replace_final_stride_with_dilation': False, 'pre_norm': False, 'dim_model': 512, 'n_heads': 8, 'dim_feedforward': 3200, 'feedforward_activation': 'relu', 'n_encoder_layers': 4, 'n_decoder_layers': 1, 'use_vae': True, 'latent_dim': 32, 'n_vae_encoder_layers': 4, 'temporal_ensemble_coeff': None, 'dropout': 0.1, 'kl_weight': 10.0, 'optimizer_lr': 1e-05, 'optimizer_weight_decay': 0.0001, 'optimizer_lr_backbone': 1e-05}, 'output_dir': 'outputs/train/act_bs8_chickenToPlate', 'job_name': 'act_trial_bs8_chickenToPlate', 'resume': False, 'seed': 1000, 'num_workers': 4, 'batch_size': 8, 'steps': 100000, 'eval_freq': 20000, 'log_freq': 200, 'save_checkpoint': True, 'save_freq': 20000, 'use_policy_training_preset': True, 'optimizer': {'type': 'adamw', 'lr': 1e-05, 'weight_decay': 0.0001, 'grad_clip_norm': 10.0, 'betas': [0.9, 0.999], 'eps': 1e-08}, 'scheduler': None, 'eval': {'n_episodes': 50, 'batch_size': 50, 'use_async_envs': False}, 'wandb': {'enable': True, 'disable_artifact': False, 'project': 'lerobot', 'entity': None, 'notes': None, 'run_id': None, 'mode': None}, '_wandb': {}}
11
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():809] starting backend
12
+ 2025-04-13 07:11:49,824 INFO MainThread:2476203 [wandb_init.py:init():813] sending inform_init request
13
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [backend.py:_multiprocessing_setup():101] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
14
+ 2025-04-13 07:11:49,829 INFO MainThread:2476203 [wandb_init.py:init():823] backend started and connected
15
+ 2025-04-13 07:11:49,830 INFO MainThread:2476203 [wandb_init.py:init():915] updated telemetry
16
+ 2025-04-13 07:11:49,838 INFO MainThread:2476203 [wandb_init.py:init():939] communicating run to backend with 90.0 second timeout
17
+ 2025-04-13 07:11:50,282 INFO MainThread:2476203 [wandb_init.py:init():1014] starting run threads in backend
18
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_console_start():2454] atexit reg
19
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2306] redirect: wrap_raw
20
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2371] Wrapping output streams.
21
+ 2025-04-13 07:11:50,477 INFO MainThread:2476203 [wandb_run.py:_redirect():2394] Redirects installed.
22
+ 2025-04-13 07:11:50,479 INFO MainThread:2476203 [wandb_init.py:init():1056] run started, returning control to user process
wandb/run-20250413_071149-ipo2f6m2/run-ipo2f6m2.wandb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06a24d89b4143f7da66fa535ab30ff7be24844b530553c2069d7bca24edffec2
3
+ size 688128