Upload folder using huggingface_hub
Browse files- README.md +134 -0
- config.json +33 -0
- pytorch_model.bin +3 -0
- training_results.json +98 -0
README.md
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- image-classification
|
| 5 |
+
- cheese
|
| 6 |
+
- texture
|
| 7 |
+
- computer-vision
|
| 8 |
+
- pytorch
|
| 9 |
+
- transfer-learning
|
| 10 |
+
- automl
|
| 11 |
+
datasets:
|
| 12 |
+
- aslan-ng/cheese-image
|
| 13 |
+
metrics:
|
| 14 |
+
- accuracy
|
| 15 |
+
model-index:
|
| 16 |
+
- name: Cheese Texture Classifier (AutoML)
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: image-classification
|
| 20 |
+
name: Cheese Texture Classification
|
| 21 |
+
dataset:
|
| 22 |
+
type: aslan-ng/cheese-image
|
| 23 |
+
name: Cheese Image Dataset
|
| 24 |
+
metrics:
|
| 25 |
+
- type: accuracy
|
| 26 |
+
value: 80.00
|
| 27 |
+
name: Test Accuracy
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
# Cheese Texture Classifier (AutoML)
|
| 31 |
+
|
| 32 |
+
This model performs 4-class texture classification on cheese images using AutoML-optimized transfer learning.
|
| 33 |
+
|
| 34 |
+
## Model Description
|
| 35 |
+
|
| 36 |
+
- **Architecture**: Transfer Learning with resnet34
|
| 37 |
+
- **Task**: 4-class texture classification (Low, Medium-Low, Medium-High, High texture)
|
| 38 |
+
- **Input**: 224x224 RGB images
|
| 39 |
+
- **Output**: 4-class probability distribution
|
| 40 |
+
|
| 41 |
+
## Training Details
|
| 42 |
+
|
| 43 |
+
- **Dataset**: [aslan-ng/cheese-image](https://huggingface.co/datasets/aslan-ng/cheese-image)
|
| 44 |
+
- **AutoML Method**: Optuna with 20 trials
|
| 45 |
+
- **Transfer Learning**: Pre-trained resnet34 backbone
|
| 46 |
+
- **Early Stopping**: Yes (patience=10)
|
| 47 |
+
- **Max Epochs**: 50
|
| 48 |
+
|
| 49 |
+
## Performance
|
| 50 |
+
|
| 51 |
+
- **Test Accuracy**: 80.00%
|
| 52 |
+
- **Validation Accuracy**: 50.00%
|
| 53 |
+
- **Test Loss**: 1.6345
|
| 54 |
+
|
| 55 |
+
## Best Hyperparameters (AutoML Optimized)
|
| 56 |
+
|
| 57 |
+
```json
|
| 58 |
+
{
|
| 59 |
+
"model_name": "resnet34",
|
| 60 |
+
"dropout_rate": 0.4682019316470914,
|
| 61 |
+
"learning_rate": 0.00027817005315620047,
|
| 62 |
+
"weight_decay": 1.4677013775851028e-05,
|
| 63 |
+
"batch_size": 2
|
| 64 |
+
}
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## Usage
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
import torch
|
| 71 |
+
import torch.nn as nn
|
| 72 |
+
from PIL import Image
|
| 73 |
+
import torchvision.transforms as transforms
|
| 74 |
+
import torchvision.models as models
|
| 75 |
+
|
| 76 |
+
# Load model (define TransferLearningModel class first)
|
| 77 |
+
model = TransferLearningModel(num_classes=4, dropout_rate=0.4682019316470914, model_name='resnet34')
|
| 78 |
+
model.load_state_dict(torch.load('pytorch_model.bin'))
|
| 79 |
+
model.eval()
|
| 80 |
+
|
| 81 |
+
# Preprocess image
|
| 82 |
+
transform = transforms.Compose([
|
| 83 |
+
transforms.Resize((224, 224)),
|
| 84 |
+
transforms.ToTensor(),
|
| 85 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 86 |
+
])
|
| 87 |
+
|
| 88 |
+
# Load and preprocess image
|
| 89 |
+
image = Image.open('cheese_image.jpg').convert('RGB')
|
| 90 |
+
input_tensor = transform(image).unsqueeze(0)
|
| 91 |
+
|
| 92 |
+
# Make prediction
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
output = model(input_tensor)
|
| 95 |
+
probabilities = torch.softmax(output, dim=1)
|
| 96 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
| 97 |
+
|
| 98 |
+
class_names = ["Low Texture", "Medium-Low Texture", "Medium-High Texture", "High Texture"]
|
| 99 |
+
print(f"Predicted class: {class_names[predicted_class]}")
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Class Definitions
|
| 103 |
+
|
| 104 |
+
- **Class 0 (Low Texture)**: Texture values <= 0.425
|
| 105 |
+
- **Class 1 (Medium-Low Texture)**: Texture values 0.425 < x <= 0.600
|
| 106 |
+
- **Class 2 (Medium-High Texture)**: Texture values 0.600 < x <= 0.775
|
| 107 |
+
- **Class 3 (High Texture)**: Texture values > 0.775
|
| 108 |
+
|
| 109 |
+
## AutoML Features
|
| 110 |
+
|
| 111 |
+
- **Hyperparameter Optimization**: Optuna with 20 trials
|
| 112 |
+
- **Architecture Search**: ResNet18 vs ResNet34
|
| 113 |
+
- **Transfer Learning**: Pre-trained ImageNet weights
|
| 114 |
+
- **Early Stopping**: Prevents overfitting
|
| 115 |
+
- **Fixed Budget**: 20 trials, 10-minute timeout
|
| 116 |
+
|
| 117 |
+
## Limitations
|
| 118 |
+
|
| 119 |
+
- Trained on a very small dataset (30 images)
|
| 120 |
+
- Texture classification may not generalize to all cheese types
|
| 121 |
+
- Performance may vary with different lighting conditions or image quality
|
| 122 |
+
|
| 123 |
+
## Citation
|
| 124 |
+
|
| 125 |
+
If you use this model, please cite the original dataset:
|
| 126 |
+
|
| 127 |
+
```bibtex
|
| 128 |
+
@dataset{aslan-ng/cheese-image,
|
| 129 |
+
title={Cheese Image Dataset},
|
| 130 |
+
author={Aslan Noorghasemi},
|
| 131 |
+
year={2024},
|
| 132 |
+
url={https://huggingface.co/datasets/aslan-ng/cheese-image}
|
| 133 |
+
}
|
| 134 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architecture": "TransferLearning_resnet34",
|
| 3 |
+
"num_classes": 4,
|
| 4 |
+
"dropout_rate": 0.4682019316470914,
|
| 5 |
+
"model_name": "resnet34",
|
| 6 |
+
"input_size": [
|
| 7 |
+
3,
|
| 8 |
+
224,
|
| 9 |
+
224
|
| 10 |
+
],
|
| 11 |
+
"class_names": [
|
| 12 |
+
"Low Texture",
|
| 13 |
+
"Medium-Low Texture",
|
| 14 |
+
"Medium-High Texture",
|
| 15 |
+
"High Texture"
|
| 16 |
+
],
|
| 17 |
+
"texture_bins": [
|
| 18 |
+
0.42500000447034836,
|
| 19 |
+
0.6000000238418579,
|
| 20 |
+
0.7750000059604645
|
| 21 |
+
],
|
| 22 |
+
"best_hyperparameters": {
|
| 23 |
+
"model_name": "resnet34",
|
| 24 |
+
"dropout_rate": 0.4682019316470914,
|
| 25 |
+
"learning_rate": 0.00027817005315620047,
|
| 26 |
+
"weight_decay": 1.4677013775851028e-05,
|
| 27 |
+
"batch_size": 2
|
| 28 |
+
},
|
| 29 |
+
"test_accuracy": 80.0,
|
| 30 |
+
"validation_accuracy": 50.0,
|
| 31 |
+
"automl_trials": 20,
|
| 32 |
+
"transfer_learning": true
|
| 33 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aca27010e82c90189abfd95cc6a2d119e094d7eda90f9e9b65d7c1bd4524d30c
|
| 3 |
+
size 85810707
|
training_results.json
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"final_results": {
|
| 3 |
+
"train_losses": [
|
| 4 |
+
1.4447196613658557,
|
| 5 |
+
1.401605719869787,
|
| 6 |
+
1.4588848569176414,
|
| 7 |
+
1.13447397405451,
|
| 8 |
+
1.3122313943776218,
|
| 9 |
+
1.3370132012800737,
|
| 10 |
+
1.1401585746895184,
|
| 11 |
+
1.2844787619330666,
|
| 12 |
+
1.0529416718266227,
|
| 13 |
+
0.8777340379628268,
|
| 14 |
+
1.2054237046025016,
|
| 15 |
+
1.2429353242570704,
|
| 16 |
+
0.8026705953207883,
|
| 17 |
+
0.8380333388393576,
|
| 18 |
+
1.1218866407871246,
|
| 19 |
+
1.189048544927077,
|
| 20 |
+
0.9291147156195207,
|
| 21 |
+
0.8265700577334925
|
| 22 |
+
],
|
| 23 |
+
"val_losses": [
|
| 24 |
+
1.4239388704299927,
|
| 25 |
+
1.577258288860321,
|
| 26 |
+
1.6651681661605835,
|
| 27 |
+
1.69488525390625,
|
| 28 |
+
1.5533403158187866,
|
| 29 |
+
1.7702475786209106,
|
| 30 |
+
1.6792759895324707,
|
| 31 |
+
1.6965703964233398,
|
| 32 |
+
1.922376573085785,
|
| 33 |
+
2.0783464908599854,
|
| 34 |
+
2.049513578414917,
|
| 35 |
+
1.886182188987732,
|
| 36 |
+
2.1077781915664673,
|
| 37 |
+
2.1828709840774536,
|
| 38 |
+
2.3769230246543884,
|
| 39 |
+
2.173452138900757,
|
| 40 |
+
2.080229640007019,
|
| 41 |
+
2.1112526655197144
|
| 42 |
+
],
|
| 43 |
+
"train_accs": [
|
| 44 |
+
23.80952380952381,
|
| 45 |
+
47.61904761904762,
|
| 46 |
+
28.571428571428573,
|
| 47 |
+
42.857142857142854,
|
| 48 |
+
23.80952380952381,
|
| 49 |
+
38.095238095238095,
|
| 50 |
+
47.61904761904762,
|
| 51 |
+
42.857142857142854,
|
| 52 |
+
61.904761904761905,
|
| 53 |
+
61.904761904761905,
|
| 54 |
+
47.61904761904762,
|
| 55 |
+
42.857142857142854,
|
| 56 |
+
66.66666666666667,
|
| 57 |
+
71.42857142857143,
|
| 58 |
+
38.095238095238095,
|
| 59 |
+
47.61904761904762,
|
| 60 |
+
71.42857142857143,
|
| 61 |
+
71.42857142857143
|
| 62 |
+
],
|
| 63 |
+
"val_accs": [
|
| 64 |
+
25.0,
|
| 65 |
+
25.0,
|
| 66 |
+
25.0,
|
| 67 |
+
25.0,
|
| 68 |
+
25.0,
|
| 69 |
+
25.0,
|
| 70 |
+
25.0,
|
| 71 |
+
50.0,
|
| 72 |
+
50.0,
|
| 73 |
+
50.0,
|
| 74 |
+
25.0,
|
| 75 |
+
50.0,
|
| 76 |
+
50.0,
|
| 77 |
+
50.0,
|
| 78 |
+
50.0,
|
| 79 |
+
50.0,
|
| 80 |
+
50.0,
|
| 81 |
+
50.0
|
| 82 |
+
],
|
| 83 |
+
"best_val_acc": 50.0,
|
| 84 |
+
"test_acc": 80.0,
|
| 85 |
+
"test_loss": 1.6345435877641041
|
| 86 |
+
},
|
| 87 |
+
"test_accuracy": 80.0,
|
| 88 |
+
"test_loss": 1.6345435877641041,
|
| 89 |
+
"best_hyperparameters": {
|
| 90 |
+
"model_name": "resnet34",
|
| 91 |
+
"dropout_rate": 0.4682019316470914,
|
| 92 |
+
"learning_rate": 0.00027817005315620047,
|
| 93 |
+
"weight_decay": 1.4677013775851028e-05,
|
| 94 |
+
"batch_size": 2
|
| 95 |
+
},
|
| 96 |
+
"automl_trials": 20,
|
| 97 |
+
"transfer_learning": true
|
| 98 |
+
}
|