--- library_name: peft license: apache-2.0 base_model: JackFram/llama-68m tags: - axolotl - generated_from_trainer model-index: - name: 01a286fd-ea04-43ca-bf49-50711b0ac07d results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: JackFram/llama-68m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 366ab5c9fefc9a04_train_data.json ds_type: json format: custom path: /workspace/input_data/366ab5c9fefc9a04_train_data.json type: field_input: policy field_instruction: redteam_query field_output: jailbreak_query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 early_stopping_threshold: 0.0001 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_card: false hub_model_id: romainnn/01a286fd-ea04-43ca-bf49-50711b0ac07d hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1716 micro_batch_size: 4 mlflow_experiment_name: /tmp/366ab5c9fefc9a04_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d3562167-5bed-4c3b-9afe-0df4f910f794 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d3562167-5bed-4c3b-9afe-0df4f910f794 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 01a286fd-ea04-43ca-bf49-50711b0ac07d This model is a fine-tuned version of [JackFram/llama-68m](https://huggingface.co/JackFram/llama-68m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1662 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.122 | 0.0012 | 1 | 4.1873 | | 0.2462 | 0.1204 | 100 | 0.5273 | | 0.5275 | 0.2407 | 200 | 0.2647 | | 0.1192 | 0.3611 | 300 | 0.2131 | | 0.1716 | 0.4815 | 400 | 0.1956 | | 0.2336 | 0.6019 | 500 | 0.1854 | | 0.4623 | 0.7222 | 600 | 0.1755 | | 0.0811 | 0.8426 | 700 | 0.1679 | | 0.0906 | 0.9630 | 800 | 0.1608 | | 0.1036 | 1.0835 | 900 | 0.1567 | | 0.1643 | 1.2039 | 1000 | 0.1541 | | 0.0599 | 1.3243 | 1100 | 0.1486 | | 0.0901 | 1.4446 | 1200 | 0.1474 | | 0.0786 | 1.5650 | 1300 | 0.1446 | | 0.1248 | 1.6854 | 1400 | 0.1437 | | 0.0554 | 1.8057 | 1500 | 0.1427 | | 0.0934 | 1.9261 | 1600 | 0.1424 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1