ronalhung commited on
Commit
24815a3
·
verified ·
1 Parent(s): 62c4356

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - absa
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ widget:
9
+ - text: '- they use fresh mozzarella instead of the:The pizza is delicious - they
10
+ use fresh mozzarella instead of the cheap, frozen, shredded cheese common to most
11
+ pizzaria''s.'
12
+ - text: 'refinement: Food, though somewhat:An oasis of refinement: Food, though
13
+ somewhat uneven, often reaches the pinnacles of new American fine cuisine - chef''s
14
+ passion (and kitchen''s precise execution) is most evident in the fish dishes
15
+ and soups.'
16
+ - text: We had the lobster sandwich and it was:We had the lobster sandwich and it
17
+ was FANTASTIC.
18
+ - text: The fish is fresh but:The fish is fresh but the variety of fish is nothing
19
+ out of ordinary.
20
+ - text: with classic upscale Italian decor.:Nice restaurant overall, with classic
21
+ upscale Italian decor.
22
+ metrics:
23
+ - accuracy
24
+ pipeline_tag: text-classification
25
+ library_name: setfit
26
+ inference: false
27
+ base_model: sentence-transformers/all-MiniLM-L6-v2
28
+ model-index:
29
+ - name: SetFit Polarity Model with sentence-transformers/all-MiniLM-L6-v2
30
+ results:
31
+ - task:
32
+ type: text-classification
33
+ name: Text Classification
34
+ dataset:
35
+ name: Unknown
36
+ type: unknown
37
+ split: test
38
+ metrics:
39
+ - type: accuracy
40
+ value: 0.7244094488188977
41
+ name: Accuracy
42
+ ---
43
+
44
+ # SetFit Polarity Model with sentence-transformers/all-MiniLM-L6-v2
45
+
46
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
47
+
48
+ The model has been trained using an efficient few-shot learning technique that involves:
49
+
50
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
51
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
52
+
53
+ This model was trained within the context of a larger system for ABSA, which looks like so:
54
+
55
+ 1. Use a spaCy model to select possible aspect span candidates.
56
+ 2. Use a SetFit model to filter these possible aspect span candidates.
57
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** SetFit
63
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
64
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
65
+ - **spaCy Model:** en_core_web_sm
66
+ - **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect)
67
+ - **SetFitABSA Polarity Model:** [ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect)
68
+ - **Maximum Sequence Length:** 256 tokens
69
+ - **Number of Classes:** 4 classes
70
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
71
+ <!-- - **Language:** Unknown -->
72
+ <!-- - **License:** Unknown -->
73
+
74
+ ### Model Sources
75
+
76
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
77
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
78
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
79
+
80
+ ### Model Labels
81
+ | Label | Examples |
82
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
+ | negative | <ul><li>'But the staff was so horrible:But the staff was so horrible to us.'</li><li>', forgot our toast, left out:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'</li><li>'did not have mayonnaise, forgot our:They did not have mayonnaise, forgot our toast, left out ingredients (ie cheese in an omelet), below hot temperatures and the bacon was so over cooked it crumbled on the plate when you touched it.'</li></ul> |
84
+ | positive | <ul><li>"factor was the food, which was:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"The food is uniformly exceptional:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li><li>"a very capable kitchen which will proudly:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
85
+ | neutral | <ul><li>"'s on the menu or not.:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li><li>'to sample both meats).:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'</li><li>'to split the dish in half so:Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).'</li></ul> |
86
+ | conflict | <ul><li>'The food was delicious but:The food was delicious but do not come here on a empty stomach.'</li><li>"The service varys from day:The service varys from day to day- sometimes they're very nice, and sometimes not."</li></ul> |
87
+
88
+ ## Evaluation
89
+
90
+ ### Metrics
91
+ | Label | Accuracy |
92
+ |:--------|:---------|
93
+ | **all** | 0.7244 |
94
+
95
+ ## Uses
96
+
97
+ ### Direct Use for Inference
98
+
99
+ First install the SetFit library:
100
+
101
+ ```bash
102
+ pip install setfit
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+
107
+ ```python
108
+ from setfit import AbsaModel
109
+
110
+ # Download from the 🤗 Hub
111
+ model = AbsaModel.from_pretrained(
112
+ "setfit-absa-aspect",
113
+ "ronalhung/setfit-absa-restaurants-aspect",
114
+ )
115
+ # Run inference
116
+ preds = model("The food was great, but the venue is just way too busy.")
117
+ ```
118
+
119
+ <!--
120
+ ### Downstream Use
121
+
122
+ *List how someone could finetune this model on their own dataset.*
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Set Metrics
146
+ | Training set | Min | Median | Max |
147
+ |:-------------|:----|:--------|:----|
148
+ | Word count | 6 | 21.3594 | 43 |
149
+
150
+ | Label | Training Sample Count |
151
+ |:---------|:----------------------|
152
+ | conflict | 2 |
153
+ | negative | 19 |
154
+ | neutral | 25 |
155
+ | positive | 82 |
156
+
157
+ ### Training Hyperparameters
158
+ - batch_size: (128, 128)
159
+ - num_epochs: (5, 5)
160
+ - max_steps: -1
161
+ - sampling_strategy: oversampling
162
+ - body_learning_rate: (2e-05, 1e-05)
163
+ - head_learning_rate: 0.01
164
+ - loss: CosineSimilarityLoss
165
+ - distance_metric: cosine_distance
166
+ - margin: 0.25
167
+ - end_to_end: False
168
+ - use_amp: True
169
+ - warmup_proportion: 0.1
170
+ - l2_weight: 0.01
171
+ - seed: 42
172
+ - eval_max_steps: -1
173
+ - load_best_model_at_end: True
174
+
175
+ ### Training Results
176
+ | Epoch | Step | Training Loss | Validation Loss |
177
+ |:------:|:----:|:-------------:|:---------------:|
178
+ | 0.0147 | 1 | 0.2971 | - |
179
+ | 0.7353 | 50 | 0.1983 | 0.2178 |
180
+ | 1.4706 | 100 | 0.0542 | 0.2536 |
181
+ | 2.2059 | 150 | 0.0214 | 0.2654 |
182
+ | 2.9412 | 200 | 0.0096 | 0.2638 |
183
+ | 3.6765 | 250 | 0.0044 | 0.2704 |
184
+ | 4.4118 | 300 | 0.0032 | 0.2726 |
185
+
186
+ ### Framework Versions
187
+ - Python: 3.11.12
188
+ - SetFit: 1.1.2
189
+ - Sentence Transformers: 3.4.1
190
+ - spaCy: 3.8.5
191
+ - Transformers: 4.51.1
192
+ - PyTorch: 2.6.0+cu124
193
+ - Datasets: 3.5.0
194
+ - Tokenizers: 0.21.1
195
+
196
+ ## Citation
197
+
198
+ ### BibTeX
199
+ ```bibtex
200
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
201
+ doi = {10.48550/ARXIV.2209.11055},
202
+ url = {https://arxiv.org/abs/2209.11055},
203
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
204
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
205
+ title = {Efficient Few-Shot Learning Without Prompts},
206
+ publisher = {arXiv},
207
+ year = {2022},
208
+ copyright = {Creative Commons Attribution 4.0 International}
209
+ }
210
+ ```
211
+
212
+ <!--
213
+ ## Glossary
214
+
215
+ *Clearly define terms in order to be accessible across audiences.*
216
+ -->
217
+
218
+ <!--
219
+ ## Model Card Authors
220
+
221
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
222
+ -->
223
+
224
+ <!--
225
+ ## Model Card Contact
226
+
227
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
228
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.1",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "spacy_model": "en_core_web_sm",
3
+ "normalize_embeddings": false,
4
+ "labels": [
5
+ "conflict",
6
+ "negative",
7
+ "neutral",
8
+ "positive"
9
+ ],
10
+ "span_context": 3
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4af4af42855741892c2caa73813bce782a16e9351b40f69a3c67ba7d0f59054d
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2157a7a33f2f80d4c1eb090b734d70e0274ad9e168e658ecc56e66d3fb3bbe
3
+ size 13287
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff