--- tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: bench:Get your food to go, find a bench, and kick back with a plate of dumplings. - text: comparison:Frankly, when you compare what you can have here for lunch, versus McDs or so many other sandwich shops in the city, there is no comparison. - text: ton:We had crawfish boiled and despite making a mess, it was a ton of fun and quite tasty as well. - text: traffic noise:It is set far from the small street it's on, and there is no traffic noise. - text: food:The only thing more wonderful than the food (which is exceptional) is the service. metrics: - f1_micro - f1_macro - precision_macro - recall_macro pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1_micro value: 0.8516772438803264 name: F1_Micro - type: f1_macro value: 0.8441110611976916 name: F1_Macro - type: precision_macro value: 0.8482610861593047 name: Precision_Macro - type: recall_macro value: 0.8409649439480325 name: Recall_Macro --- # SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect) - **SetFitABSA Polarity Model:** [ronalhung/setfit-absa-restaurants-polarity](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity) - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect |