--- tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: bench:Get your food to go, find a bench, and kick back with a plate of dumplings. - text: comparison:Frankly, when you compare what you can have here for lunch, versus McDs or so many other sandwich shops in the city, there is no comparison. - text: ton:We had crawfish boiled and despite making a mess, it was a ton of fun and quite tasty as well. - text: traffic noise:It is set far from the small street it's on, and there is no traffic noise. - text: food:The only thing more wonderful than the food (which is exceptional) is the service. metrics: - f1_micro - f1_macro - precision_macro - recall_macro pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1_micro value: 0.8516772438803264 name: F1_Micro - type: f1_macro value: 0.8441110611976916 name: F1_Macro - type: precision_macro value: 0.8482610861593047 name: Precision_Macro - type: recall_macro value: 0.8409649439480325 name: Recall_Macro --- # SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [ronalhung/setfit-absa-restaurants-aspect](https://huggingface.co/ronalhung/setfit-absa-restaurants-aspect) - **SetFitABSA Polarity Model:** [ronalhung/setfit-absa-restaurants-polarity](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity) - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Evaluation ### Metrics | Label | F1_Micro | F1_Macro | Precision_Macro | Recall_Macro | |:--------|:---------|:---------|:----------------|:-------------| | **all** | 0.8517 | 0.8441 | 0.8483 | 0.8410 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "ronalhung/setfit-absa-restaurants-aspect", "ronalhung/setfit-absa-restaurants-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 19.4181 | 45 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 167 | | aspect | 254 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0007 | 1 | 0.3998 | - | | 0.0345 | 50 | 0.3187 | 0.3072 | | 0.0689 | 100 | 0.2744 | 0.2600 | | 0.1034 | 150 | 0.2494 | 0.2504 | | 0.1378 | 200 | 0.2459 | 0.2408 | | 0.1723 | 250 | 0.2242 | 0.2210 | | 0.2068 | 300 | 0.1802 | 0.1815 | | 0.2412 | 350 | 0.1085 | 0.1787 | | 0.2757 | 400 | 0.0435 | 0.1918 | | 0.3101 | 450 | 0.0143 | 0.1832 | | 0.3446 | 500 | 0.0063 | 0.1971 | | 0.3790 | 550 | 0.004 | 0.1945 | | 0.4135 | 600 | 0.002 | 0.2005 | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.2 - Sentence Transformers: 4.1.0 - spaCy: 3.8.7 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```