--- tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: even the wine by the glass was good.:even the wine by the glass was good. - text: I had the Pad Thai and the noodles:I had the Pad Thai and the noodles were sticky. - text: happy and the food was delicious,:The have over 100 different beers to offer thier guest so that made my husband very happy and the food was delicious, if I must recommend a dish it must be the pumkin tortelini. - text: The takeout menu says to keep:The takeout menu says to keep an eye out for an expanded menu offering more italian dishes, I can't wait! - text: fresh garlic or eggplant.:Try their plain pizza with fresh garlic or eggplant. metrics: - f1_micro - f1_macro - precision_macro - recall_macro pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1_micro value: 0.7398546335554209 name: F1_Micro - type: f1_macro value: 0.47927842814066474 name: F1_Macro - type: precision_macro value: 0.49187400153564864 name: Precision_Macro - type: recall_macro value: 0.48087480356207435 name: Recall_Macro --- # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [setfit-absa-aspect](https://huggingface.co/setfit-absa-aspect) - **SetFitABSA Polarity Model:** [ronalhung/setfit-absa-restaurants-polarity-128](https://huggingface.co/ronalhung/setfit-absa-restaurants-polarity-128) - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | | neutral | | | conflict | | ## Evaluation ### Metrics | Label | F1_Micro | F1_Macro | Precision_Macro | Recall_Macro | |:--------|:---------|:---------|:----------------|:-------------| | **all** | 0.7399 | 0.4793 | 0.4919 | 0.4809 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "setfit-absa-aspect", "ronalhung/setfit-absa-restaurants-polarity-128", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 21.3594 | 43 | | Label | Training Sample Count | |:---------|:----------------------| | conflict | 2 | | negative | 19 | | neutral | 25 | | positive | 82 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0074 | 1 | 0.3008 | - | | 0.3676 | 50 | 0.1867 | 0.1974 | | 0.7353 | 100 | 0.0346 | 0.1855 | | 1.1029 | 150 | 0.0061 | 0.2165 | | 1.4706 | 200 | 0.0007 | 0.2194 | | 1.8382 | 250 | 0.0003 | 0.2145 | | 2.2059 | 300 | 0.0006 | 0.2150 | | 2.5735 | 350 | 0.0002 | 0.2223 | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.2 - Sentence Transformers: 4.1.0 - spaCy: 3.8.7 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```