roujin commited on
Commit
44a8b4b
·
verified ·
1 Parent(s): 22108b2
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. fog1/exp_args.py +31 -0
  2. fog1/log.txt +660 -0
  3. fog1/logs/best_class_iou.txt +52 -0
  4. fog1/logs/best_confmat_cs.pdf +0 -0
  5. fog1/logs/best_confmat_target.pdf +0 -0
  6. fog1/logs/best_target_class_iou.txt +52 -0
  7. fog1/logs/best_target_confmat_cs.pdf +0 -0
  8. fog1/logs/best_target_confmat_target.pdf +0 -0
  9. fog1/logs/class_iou.txt +52 -0
  10. fog1/logs/confmat_cs.pdf +0 -0
  11. fog1/logs/confmat_target.pdf +0 -0
  12. fog1/logs/learning_curve.pdf +0 -0
  13. fog1/logs/log_batch.csv +0 -0
  14. fog1/logs/log_epoch.csv +101 -0
  15. fog1/weights/best_weights.pth.tar +3 -0
  16. fog1/weights/best_weights_target.pth.tar +3 -0
  17. fog1/weights/checkpoint.pth.tar +3 -0
  18. fog2/exp_args.py +31 -0
  19. fog2/log.txt +619 -0
  20. fog2/logs/best_class_iou.txt +52 -0
  21. fog2/logs/best_confmat_cs.pdf +0 -0
  22. fog2/logs/best_confmat_target.pdf +0 -0
  23. fog2/logs/best_target_class_iou.txt +52 -0
  24. fog2/logs/best_target_confmat_cs.pdf +0 -0
  25. fog2/logs/best_target_confmat_target.pdf +0 -0
  26. fog2/logs/class_iou.txt +52 -0
  27. fog2/logs/confmat_cs.pdf +0 -0
  28. fog2/logs/confmat_target.pdf +0 -0
  29. fog2/logs/learning_curve.pdf +0 -0
  30. fog2/logs/log_batch.csv +0 -0
  31. fog2/logs/log_epoch.csv +101 -0
  32. fog2/logs/target_class_iou_65.txt +52 -0
  33. fog2/logs/target_confmat_cs_65.pdf +0 -0
  34. fog2/logs/target_confmat_target_65.pdf +0 -0
  35. fog2/weights/best_weights.pth.tar +3 -0
  36. fog2/weights/best_weights_target.pth.tar +3 -0
  37. fog2/weights/checkpoint.pth.tar +3 -0
  38. fog2/weights/weights_65.pth.tar +3 -0
  39. game1/exp_args.py +31 -0
  40. game1/log.txt +663 -0
  41. game1/logs/best_class_iou.txt +52 -0
  42. game1/logs/best_confmat_cs.pdf +0 -0
  43. game1/logs/best_confmat_target.pdf +0 -0
  44. game1/logs/best_target_class_iou.txt +52 -0
  45. game1/logs/best_target_confmat_cs.pdf +0 -0
  46. game1/logs/best_target_confmat_target.pdf +0 -0
  47. game1/logs/class_iou.txt +52 -0
  48. game1/logs/confmat_cs.pdf +0 -0
  49. game1/logs/confmat_target.pdf +0 -0
  50. game1/logs/learning_curve.pdf +0 -0
fog1/exp_args.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Args:
2
+ synth_path = '/data/shared/luojun/fog_intermediate/leftImg8bit/train/'
3
+ source_path = '/data/shared/luojun/cityscapes/'
4
+ target_type = 'acdc_fog'
5
+ target_path = '/data/shared/luojun/ACDC'
6
+ experiment_name = '/data/shared/luojun/runs/fog1'
7
+ stop_epoch = 0
8
+ debug = False
9
+ load = None
10
+ resume = None
11
+ epochs = 100
12
+ seed = 42
13
+ sim_weight = 0.0
14
+ model = 'resnet-50'
15
+ ssl = 'sim'
16
+ optimizer = 'sgd'
17
+ momentum = 0.9
18
+ wd = 0.0001
19
+ schedular = 'poly'
20
+ batch_size = 4
21
+ lr_head = 0.001
22
+ lr = 0.001
23
+ target_size = (512, 1024)
24
+ crop = 'both_random'
25
+ crop_size = (384, 768)
26
+ blur = False
27
+ cutout = False
28
+ jitter = 0.5
29
+ scale = 0.0
30
+ xs = False
31
+ workers = 4
fog1/log.txt ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model pushed to 1 GPU(s), type NVIDIA GeForce RTX 3090.
2
+ --- Training ---
3
+ Epoch 0 train loss: 1.5708, acc: 0.7830
4
+ --- Validation - Source ---
5
+ * Acc 0.870
6
+ --- Validation - Target ---
7
+ * Acc 0.852
8
+ mIoU improved from 0.0000 to 0.2886.
9
+ mIoU improved from 0.0000 to 0.3399.
10
+ --- Training ---
11
+ Epoch 1 train loss: 0.9868, acc: 0.8561
12
+ --- Validation - Source ---
13
+ * Acc 0.890
14
+ --- Validation - Target ---
15
+ * Acc 0.864
16
+ mIoU improved from 0.2886 to 0.3601.
17
+ mIoU improved from 0.3399 to 0.4410.
18
+ --- Training ---
19
+ Epoch 2 train loss: 0.8692, acc: 0.8711
20
+ --- Validation - Source ---
21
+ * Acc 0.900
22
+ --- Validation - Target ---
23
+ * Acc 0.865
24
+ mIoU improved from 0.3601 to 0.4074.
25
+ mIoU improved from 0.4410 to 0.4838.
26
+ --- Training ---
27
+ Epoch 3 train loss: 0.7982, acc: 0.8811
28
+ --- Validation - Source ---
29
+ * Acc 0.902
30
+ --- Validation - Target ---
31
+ * Acc 0.869
32
+ mIoU improved from 0.4074 to 0.4544.
33
+ mIoU improved from 0.4838 to 0.5102.
34
+ --- Training ---
35
+ Epoch 4 train loss: 0.7464, acc: 0.8883
36
+ --- Validation - Source ---
37
+ * Acc 0.909
38
+ --- Validation - Target ---
39
+ * Acc 0.879
40
+ mIoU improved from 0.4544 to 0.4730.
41
+ mIoU improved from 0.5102 to 0.5273.
42
+ --- Training ---
43
+ Epoch 5 train loss: 0.7089, acc: 0.8939
44
+ --- Validation - Source ---
45
+ * Acc 0.912
46
+ --- Validation - Target ---
47
+ * Acc 0.882
48
+ mIoU improved from 0.4730 to 0.4851.
49
+ mIoU improved from 0.5273 to 0.5399.
50
+ --- Training ---
51
+ Epoch 6 train loss: 0.6833, acc: 0.8976
52
+ --- Validation - Source ---
53
+ * Acc 0.914
54
+ --- Validation - Target ---
55
+ * Acc 0.889
56
+ mIoU improved from 0.4851 to 0.4852.
57
+ mIoU improved from 0.5399 to 0.5526.
58
+ --- Training ---
59
+ Epoch 7 train loss: 0.6545, acc: 0.9012
60
+ --- Validation - Source ---
61
+ * Acc 0.913
62
+ --- Validation - Target ---
63
+ * Acc 0.880
64
+ --- Training ---
65
+ Epoch 8 train loss: 0.6365, acc: 0.9038
66
+ --- Validation - Source ---
67
+ * Acc 0.916
68
+ --- Validation - Target ---
69
+ * Acc 0.892
70
+ mIoU improved from 0.4852 to 0.5107.
71
+ mIoU improved from 0.5526 to 0.5657.
72
+ --- Training ---
73
+ Epoch 9 train loss: 0.6244, acc: 0.9058
74
+ --- Validation - Source ---
75
+ * Acc 0.919
76
+ --- Validation - Target ---
77
+ * Acc 0.898
78
+ mIoU improved from 0.5107 to 0.5302.
79
+ mIoU improved from 0.5657 to 0.5698.
80
+ --- Training ---
81
+ Epoch 10 train loss: 0.6036, acc: 0.9091
82
+ --- Validation - Source ---
83
+ * Acc 0.919
84
+ --- Validation - Target ---
85
+ * Acc 0.891
86
+ mIoU improved from 0.5698 to 0.5851.
87
+ --- Training ---
88
+ Epoch 11 train loss: 0.5942, acc: 0.9100
89
+ --- Validation - Source ---
90
+ * Acc 0.920
91
+ --- Validation - Target ---
92
+ * Acc 0.889
93
+ --- Training ---
94
+ Epoch 12 train loss: 0.5781, acc: 0.9125
95
+ --- Validation - Source ---
96
+ * Acc 0.921
97
+ --- Validation - Target ---
98
+ * Acc 0.890
99
+ mIoU improved from 0.5851 to 0.5887.
100
+ --- Training ---
101
+ Epoch 13 train loss: 0.5680, acc: 0.9139
102
+ --- Validation - Source ---
103
+ * Acc 0.921
104
+ --- Validation - Target ---
105
+ * Acc 0.894
106
+ mIoU improved from 0.5302 to 0.5353.
107
+ --- Training ---
108
+ Epoch 14 train loss: 0.5574, acc: 0.9153
109
+ --- Validation - Source ---
110
+ * Acc 0.922
111
+ --- Validation - Target ---
112
+ * Acc 0.858
113
+ mIoU improved from 0.5887 to 0.5992.
114
+ --- Training ---
115
+ Epoch 15 train loss: 0.5503, acc: 0.9164
116
+ --- Validation - Source ---
117
+ * Acc 0.923
118
+ --- Validation - Target ---
119
+ * Acc 0.885
120
+ mIoU improved from 0.5353 to 0.5409.
121
+ --- Training ---
122
+ Epoch 16 train loss: 0.5427, acc: 0.9175
123
+ --- Validation - Source ---
124
+ * Acc 0.924
125
+ --- Validation - Target ---
126
+ * Acc 0.878
127
+ mIoU improved from 0.5409 to 0.5454.
128
+ mIoU improved from 0.5992 to 0.5993.
129
+ --- Training ---
130
+ Epoch 17 train loss: 0.5378, acc: 0.9181
131
+ --- Validation - Source ---
132
+ * Acc 0.924
133
+ --- Validation - Target ---
134
+ * Acc 0.858
135
+ mIoU improved from 0.5993 to 0.6048.
136
+ --- Training ---
137
+ Epoch 18 train loss: 0.5284, acc: 0.9193
138
+ --- Validation - Source ---
139
+ * Acc 0.926
140
+ --- Validation - Target ---
141
+ * Acc 0.879
142
+ mIoU improved from 0.6048 to 0.6103.
143
+ --- Training ---
144
+ Epoch 19 train loss: 0.5205, acc: 0.9203
145
+ --- Validation - Source ---
146
+ * Acc 0.926
147
+ --- Validation - Target ---
148
+ * Acc 0.874
149
+ mIoU improved from 0.5454 to 0.5563.
150
+ mIoU improved from 0.6103 to 0.6138.
151
+ --- Training ---
152
+ Epoch 20 train loss: 0.5168, acc: 0.9208
153
+ --- Validation - Source ---
154
+ * Acc 0.927
155
+ --- Validation - Target ---
156
+ * Acc 0.885
157
+ mIoU improved from 0.5563 to 0.5589.
158
+ mIoU improved from 0.6138 to 0.6208.
159
+ --- Training ---
160
+ Epoch 21 train loss: 0.5097, acc: 0.9221
161
+ --- Validation - Source ---
162
+ * Acc 0.928
163
+ --- Validation - Target ---
164
+ * Acc 0.860
165
+ mIoU improved from 0.6208 to 0.6209.
166
+ --- Training ---
167
+ Epoch 22 train loss: 0.5055, acc: 0.9224
168
+ --- Validation - Source ---
169
+ * Acc 0.929
170
+ --- Validation - Target ---
171
+ * Acc 0.812
172
+ mIoU improved from 0.6209 to 0.6298.
173
+ --- Training ---
174
+ Epoch 23 train loss: 0.4983, acc: 0.9239
175
+ --- Validation - Source ---
176
+ * Acc 0.929
177
+ --- Validation - Target ---
178
+ * Acc 0.881
179
+ mIoU improved from 0.5589 to 0.5753.
180
+ --- Training ---
181
+ Epoch 24 train loss: 0.4954, acc: 0.9242
182
+ --- Validation - Source ---
183
+ * Acc 0.928
184
+ --- Validation - Target ---
185
+ * Acc 0.865
186
+ --- Training ---
187
+ Epoch 25 train loss: 0.4944, acc: 0.9243
188
+ --- Validation - Source ---
189
+ * Acc 0.929
190
+ --- Validation - Target ---
191
+ * Acc 0.865
192
+ --- Training ---
193
+ Epoch 26 train loss: 0.4898, acc: 0.9250
194
+ --- Validation - Source ---
195
+ * Acc 0.929
196
+ --- Validation - Target ---
197
+ * Acc 0.864
198
+ --- Training ---
199
+ Epoch 27 train loss: 0.4835, acc: 0.9258
200
+ --- Validation - Source ---
201
+ * Acc 0.929
202
+ --- Validation - Target ---
203
+ * Acc 0.869
204
+ mIoU improved from 0.6298 to 0.6322.
205
+ --- Training ---
206
+ Epoch 28 train loss: 0.4783, acc: 0.9266
207
+ --- Validation - Source ---
208
+ * Acc 0.930
209
+ --- Validation - Target ---
210
+ * Acc 0.867
211
+ --- Training ---
212
+ Epoch 29 train loss: 0.4776, acc: 0.9266
213
+ --- Validation - Source ---
214
+ * Acc 0.929
215
+ --- Validation - Target ---
216
+ * Acc 0.876
217
+ mIoU improved from 0.6322 to 0.6346.
218
+ --- Training ---
219
+ Epoch 30 train loss: 0.4724, acc: 0.9273
220
+ --- Validation - Source ---
221
+ * Acc 0.931
222
+ --- Validation - Target ---
223
+ * Acc 0.887
224
+ --- Training ---
225
+ Epoch 31 train loss: 0.4698, acc: 0.9280
226
+ --- Validation - Source ---
227
+ * Acc 0.931
228
+ --- Validation - Target ---
229
+ * Acc 0.901
230
+ mIoU improved from 0.5753 to 0.5825.
231
+ mIoU improved from 0.6346 to 0.6368.
232
+ --- Training ---
233
+ Epoch 32 train loss: 0.4679, acc: 0.9278
234
+ --- Validation - Source ---
235
+ * Acc 0.931
236
+ --- Validation - Target ---
237
+ * Acc 0.862
238
+ mIoU improved from 0.6368 to 0.6374.
239
+ --- Training ---
240
+ Epoch 33 train loss: 0.4623, acc: 0.9289
241
+ --- Validation - Source ---
242
+ * Acc 0.932
243
+ --- Validation - Target ---
244
+ * Acc 0.898
245
+ mIoU improved from 0.5825 to 0.5900.
246
+ mIoU improved from 0.6374 to 0.6430.
247
+ --- Training ---
248
+ Epoch 34 train loss: 0.4597, acc: 0.9293
249
+ --- Validation - Source ---
250
+ * Acc 0.931
251
+ --- Validation - Target ---
252
+ * Acc 0.877
253
+ --- Training ---
254
+ Epoch 35 train loss: 0.4592, acc: 0.9294
255
+ --- Validation - Source ---
256
+ * Acc 0.931
257
+ --- Validation - Target ---
258
+ * Acc 0.852
259
+ --- Training ---
260
+ Epoch 36 train loss: 0.4566, acc: 0.9299
261
+ --- Validation - Source ---
262
+ * Acc 0.931
263
+ --- Validation - Target ---
264
+ * Acc 0.865
265
+ --- Training ---
266
+ Epoch 37 train loss: 0.4571, acc: 0.9297
267
+ --- Validation - Source ---
268
+ * Acc 0.932
269
+ --- Validation - Target ---
270
+ * Acc 0.878
271
+ --- Training ---
272
+ Epoch 38 train loss: 0.4511, acc: 0.9303
273
+ --- Validation - Source ---
274
+ * Acc 0.932
275
+ --- Validation - Target ---
276
+ * Acc 0.866
277
+ mIoU improved from 0.6430 to 0.6442.
278
+ --- Training ---
279
+ Epoch 39 train loss: 0.4520, acc: 0.9303
280
+ --- Validation - Source ---
281
+ * Acc 0.934
282
+ --- Validation - Target ---
283
+ * Acc 0.876
284
+ mIoU improved from 0.6442 to 0.6499.
285
+ --- Training ---
286
+ Epoch 40 train loss: 0.4472, acc: 0.9312
287
+ --- Validation - Source ---
288
+ * Acc 0.932
289
+ --- Validation - Target ---
290
+ * Acc 0.879
291
+ --- Training ---
292
+ Epoch 41 train loss: 0.4435, acc: 0.9317
293
+ --- Validation - Source ---
294
+ * Acc 0.934
295
+ --- Validation - Target ---
296
+ * Acc 0.880
297
+ --- Training ---
298
+ Epoch 42 train loss: 0.4437, acc: 0.9317
299
+ --- Validation - Source ---
300
+ * Acc 0.934
301
+ --- Validation - Target ---
302
+ * Acc 0.884
303
+ --- Training ---
304
+ Epoch 43 train loss: 0.4384, acc: 0.9323
305
+ --- Validation - Source ---
306
+ * Acc 0.934
307
+ --- Validation - Target ---
308
+ * Acc 0.880
309
+ --- Training ---
310
+ Epoch 44 train loss: 0.4372, acc: 0.9325
311
+ --- Validation - Source ---
312
+ * Acc 0.934
313
+ --- Validation - Target ---
314
+ * Acc 0.880
315
+ --- Training ---
316
+ Epoch 45 train loss: 0.4353, acc: 0.9329
317
+ --- Validation - Source ---
318
+ * Acc 0.935
319
+ --- Validation - Target ---
320
+ * Acc 0.850
321
+ mIoU improved from 0.6499 to 0.6534.
322
+ --- Training ---
323
+ Epoch 46 train loss: 0.4370, acc: 0.9325
324
+ --- Validation - Source ---
325
+ * Acc 0.935
326
+ --- Validation - Target ---
327
+ * Acc 0.879
328
+ --- Training ---
329
+ Epoch 47 train loss: 0.4343, acc: 0.9329
330
+ --- Validation - Source ---
331
+ * Acc 0.935
332
+ --- Validation - Target ---
333
+ * Acc 0.839
334
+ --- Training ---
335
+ Epoch 48 train loss: 0.4305, acc: 0.9330
336
+ --- Validation - Source ---
337
+ * Acc 0.935
338
+ --- Validation - Target ---
339
+ * Acc 0.870
340
+ mIoU improved from 0.6534 to 0.6534.
341
+ --- Training ---
342
+ Epoch 49 train loss: 0.4287, acc: 0.9338
343
+ --- Validation - Source ---
344
+ * Acc 0.935
345
+ --- Validation - Target ---
346
+ * Acc 0.819
347
+ --- Training ---
348
+ Epoch 50 train loss: 0.4279, acc: 0.9336
349
+ --- Validation - Source ---
350
+ * Acc 0.935
351
+ --- Validation - Target ---
352
+ * Acc 0.815
353
+ mIoU improved from 0.6534 to 0.6552.
354
+ --- Training ---
355
+ Epoch 51 train loss: 0.4248, acc: 0.9343
356
+ --- Validation - Source ---
357
+ * Acc 0.935
358
+ --- Validation - Target ---
359
+ * Acc 0.878
360
+ mIoU improved from 0.6552 to 0.6596.
361
+ --- Training ---
362
+ Epoch 52 train loss: 0.4237, acc: 0.9345
363
+ --- Validation - Source ---
364
+ * Acc 0.936
365
+ --- Validation - Target ---
366
+ * Acc 0.861
367
+ --- Training ---
368
+ Epoch 53 train loss: 0.4242, acc: 0.9343
369
+ --- Validation - Source ---
370
+ * Acc 0.936
371
+ --- Validation - Target ---
372
+ * Acc 0.863
373
+ --- Training ---
374
+ Epoch 54 train loss: 0.4212, acc: 0.9347
375
+ --- Validation - Source ---
376
+ * Acc 0.935
377
+ --- Validation - Target ---
378
+ * Acc 0.882
379
+ --- Training ---
380
+ Epoch 55 train loss: 0.4206, acc: 0.9351
381
+ --- Validation - Source ---
382
+ * Acc 0.936
383
+ --- Validation - Target ---
384
+ * Acc 0.878
385
+ mIoU improved from 0.5900 to 0.5958.
386
+ --- Training ---
387
+ Epoch 56 train loss: 0.4209, acc: 0.9348
388
+ --- Validation - Source ---
389
+ * Acc 0.935
390
+ --- Validation - Target ---
391
+ * Acc 0.850
392
+ --- Training ---
393
+ Epoch 57 train loss: 0.4190, acc: 0.9347
394
+ --- Validation - Source ---
395
+ * Acc 0.936
396
+ --- Validation - Target ---
397
+ * Acc 0.858
398
+ --- Training ---
399
+ Epoch 58 train loss: 0.4178, acc: 0.9351
400
+ --- Validation - Source ---
401
+ * Acc 0.936
402
+ --- Validation - Target ---
403
+ * Acc 0.852
404
+ mIoU improved from 0.6596 to 0.6597.
405
+ --- Training ---
406
+ Epoch 59 train loss: 0.4141, acc: 0.9356
407
+ --- Validation - Source ---
408
+ * Acc 0.937
409
+ --- Validation - Target ---
410
+ * Acc 0.851
411
+ --- Training ---
412
+ Epoch 60 train loss: 0.4132, acc: 0.9360
413
+ --- Validation - Source ---
414
+ * Acc 0.935
415
+ --- Validation - Target ---
416
+ * Acc 0.882
417
+ --- Training ---
418
+ Epoch 61 train loss: 0.4144, acc: 0.9357
419
+ --- Validation - Source ---
420
+ * Acc 0.936
421
+ --- Validation - Target ---
422
+ * Acc 0.854
423
+ --- Training ---
424
+ Epoch 62 train loss: 0.4131, acc: 0.9361
425
+ --- Validation - Source ---
426
+ * Acc 0.937
427
+ --- Validation - Target ---
428
+ * Acc 0.874
429
+ mIoU improved from 0.6597 to 0.6626.
430
+ --- Training ---
431
+ Epoch 63 train loss: 0.4110, acc: 0.9362
432
+ --- Validation - Source ---
433
+ * Acc 0.937
434
+ --- Validation - Target ---
435
+ * Acc 0.871
436
+ mIoU improved from 0.5958 to 0.6036.
437
+ --- Training ---
438
+ Epoch 64 train loss: 0.4110, acc: 0.9360
439
+ --- Validation - Source ---
440
+ * Acc 0.937
441
+ --- Validation - Target ---
442
+ * Acc 0.872
443
+ mIoU improved from 0.6626 to 0.6665.
444
+ --- Training ---
445
+ Epoch 65 train loss: 0.4096, acc: 0.9364
446
+ --- Validation - Source ---
447
+ * Acc 0.936
448
+ --- Validation - Target ---
449
+ * Acc 0.842
450
+ --- Training ---
451
+ Epoch 66 train loss: 0.4083, acc: 0.9367
452
+ --- Validation - Source ---
453
+ * Acc 0.936
454
+ --- Validation - Target ---
455
+ * Acc 0.867
456
+ --- Training ---
457
+ Epoch 67 train loss: 0.4072, acc: 0.9370
458
+ --- Validation - Source ---
459
+ * Acc 0.936
460
+ --- Validation - Target ---
461
+ * Acc 0.877
462
+ --- Training ---
463
+ Epoch 68 train loss: 0.4064, acc: 0.9371
464
+ --- Validation - Source ---
465
+ * Acc 0.937
466
+ --- Validation - Target ---
467
+ * Acc 0.872
468
+ mIoU improved from 0.6665 to 0.6690.
469
+ --- Training ---
470
+ Epoch 69 train loss: 0.4063, acc: 0.9370
471
+ --- Validation - Source ---
472
+ * Acc 0.937
473
+ --- Validation - Target ---
474
+ * Acc 0.885
475
+ mIoU improved from 0.6036 to 0.6045.
476
+ --- Training ---
477
+ Epoch 70 train loss: 0.4055, acc: 0.9370
478
+ --- Validation - Source ---
479
+ * Acc 0.938
480
+ --- Validation - Target ---
481
+ * Acc 0.882
482
+ mIoU improved from 0.6045 to 0.6057.
483
+ --- Training ---
484
+ Epoch 71 train loss: 0.4049, acc: 0.9371
485
+ --- Validation - Source ---
486
+ * Acc 0.937
487
+ --- Validation - Target ---
488
+ * Acc 0.871
489
+ --- Training ---
490
+ Epoch 72 train loss: 0.4023, acc: 0.9375
491
+ --- Validation - Source ---
492
+ * Acc 0.936
493
+ --- Validation - Target ---
494
+ * Acc 0.846
495
+ --- Training ---
496
+ Epoch 73 train loss: 0.4031, acc: 0.9373
497
+ --- Validation - Source ---
498
+ * Acc 0.937
499
+ --- Validation - Target ---
500
+ * Acc 0.858
501
+ --- Training ---
502
+ Epoch 74 train loss: 0.4023, acc: 0.9374
503
+ --- Validation - Source ---
504
+ * Acc 0.937
505
+ --- Validation - Target ---
506
+ * Acc 0.876
507
+ --- Training ---
508
+ Epoch 75 train loss: 0.4016, acc: 0.9375
509
+ --- Validation - Source ---
510
+ * Acc 0.937
511
+ --- Validation - Target ---
512
+ * Acc 0.868
513
+ --- Training ---
514
+ Epoch 76 train loss: 0.4039, acc: 0.9373
515
+ --- Validation - Source ---
516
+ * Acc 0.936
517
+ --- Validation - Target ---
518
+ * Acc 0.852
519
+ --- Training ---
520
+ Epoch 77 train loss: 0.3973, acc: 0.9382
521
+ --- Validation - Source ---
522
+ * Acc 0.937
523
+ --- Validation - Target ---
524
+ * Acc 0.855
525
+ --- Training ---
526
+ Epoch 78 train loss: 0.4002, acc: 0.9376
527
+ --- Validation - Source ---
528
+ * Acc 0.937
529
+ --- Validation - Target ---
530
+ * Acc 0.841
531
+ --- Training ---
532
+ Epoch 79 train loss: 0.4006, acc: 0.9375
533
+ --- Validation - Source ---
534
+ * Acc 0.938
535
+ --- Validation - Target ---
536
+ * Acc 0.871
537
+ --- Training ---
538
+ Epoch 80 train loss: 0.3991, acc: 0.9378
539
+ --- Validation - Source ---
540
+ * Acc 0.937
541
+ --- Validation - Target ---
542
+ * Acc 0.896
543
+ --- Training ---
544
+ Epoch 81 train loss: 0.3955, acc: 0.9385
545
+ --- Validation - Source ---
546
+ * Acc 0.937
547
+ --- Validation - Target ---
548
+ * Acc 0.837
549
+ --- Training ---
550
+ Epoch 82 train loss: 0.3987, acc: 0.9382
551
+ --- Validation - Source ---
552
+ * Acc 0.938
553
+ --- Validation - Target ---
554
+ * Acc 0.854
555
+ --- Training ---
556
+ Epoch 83 train loss: 0.3972, acc: 0.9384
557
+ --- Validation - Source ---
558
+ * Acc 0.938
559
+ --- Validation - Target ---
560
+ * Acc 0.810
561
+ mIoU improved from 0.6690 to 0.6713.
562
+ --- Training ---
563
+ Epoch 84 train loss: 0.3971, acc: 0.9381
564
+ --- Validation - Source ---
565
+ * Acc 0.938
566
+ --- Validation - Target ---
567
+ * Acc 0.857
568
+ --- Training ---
569
+ Epoch 85 train loss: 0.3963, acc: 0.9384
570
+ --- Validation - Source ---
571
+ * Acc 0.937
572
+ --- Validation - Target ---
573
+ * Acc 0.879
574
+ --- Training ---
575
+ Epoch 86 train loss: 0.3954, acc: 0.9384
576
+ --- Validation - Source ---
577
+ * Acc 0.938
578
+ --- Validation - Target ---
579
+ * Acc 0.886
580
+ --- Training ---
581
+ Epoch 87 train loss: 0.3933, acc: 0.9386
582
+ --- Validation - Source ---
583
+ * Acc 0.938
584
+ --- Validation - Target ---
585
+ * Acc 0.866
586
+ --- Training ---
587
+ Epoch 88 train loss: 0.3931, acc: 0.9388
588
+ --- Validation - Source ---
589
+ * Acc 0.938
590
+ --- Validation - Target ---
591
+ * Acc 0.850
592
+ --- Training ---
593
+ Epoch 89 train loss: 0.3951, acc: 0.9387
594
+ --- Validation - Source ---
595
+ * Acc 0.937
596
+ --- Validation - Target ---
597
+ * Acc 0.841
598
+ --- Training ---
599
+ Epoch 90 train loss: 0.3931, acc: 0.9386
600
+ --- Validation - Source ---
601
+ * Acc 0.939
602
+ --- Validation - Target ---
603
+ * Acc 0.841
604
+ --- Training ---
605
+ Epoch 91 train loss: 0.3930, acc: 0.9388
606
+ --- Validation - Source ---
607
+ * Acc 0.938
608
+ --- Validation - Target ---
609
+ * Acc 0.866
610
+ --- Training ---
611
+ Epoch 92 train loss: 0.3940, acc: 0.9385
612
+ --- Validation - Source ---
613
+ * Acc 0.937
614
+ --- Validation - Target ---
615
+ * Acc 0.854
616
+ --- Training ---
617
+ Epoch 93 train loss: 0.3948, acc: 0.9387
618
+ --- Validation - Source ---
619
+ * Acc 0.938
620
+ --- Validation - Target ---
621
+ * Acc 0.874
622
+ --- Training ---
623
+ Epoch 94 train loss: 0.3910, acc: 0.9390
624
+ --- Validation - Source ---
625
+ * Acc 0.939
626
+ --- Validation - Target ---
627
+ * Acc 0.867
628
+ mIoU improved from 0.6713 to 0.6715.
629
+ --- Training ---
630
+ Epoch 95 train loss: 0.3928, acc: 0.9388
631
+ --- Validation - Source ---
632
+ * Acc 0.938
633
+ --- Validation - Target ---
634
+ * Acc 0.855
635
+ --- Training ---
636
+ Epoch 96 train loss: 0.3907, acc: 0.9393
637
+ --- Validation - Source ---
638
+ * Acc 0.937
639
+ --- Validation - Target ---
640
+ * Acc 0.871
641
+ --- Training ---
642
+ Epoch 97 train loss: 0.3943, acc: 0.9385
643
+ --- Validation - Source ---
644
+ * Acc 0.938
645
+ --- Validation - Target ---
646
+ * Acc 0.846
647
+ --- Training ---
648
+ Epoch 98 train loss: 0.3939, acc: 0.9385
649
+ --- Validation - Source ---
650
+ * Acc 0.938
651
+ --- Validation - Target ---
652
+ * Acc 0.864
653
+ --- Training ---
654
+ Epoch 99 train loss: 0.3908, acc: 0.9390
655
+ --- Validation - Source ---
656
+ * Acc 0.938
657
+ --- Validation - Target ---
658
+ * Acc 0.865
659
+ Training complete in 659m 20s
660
+ Best mIoU target: 0.605690
fog1/logs/best_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 94
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.972
6
+ sidewalk : 0.791
7
+ building : 0.885
8
+ wall : 0.449
9
+ fence : 0.484
10
+ pole : 0.414
11
+ traffic light : 0.441
12
+ traffic sign : 0.581
13
+ vegetation : 0.893
14
+ terrain : 0.561
15
+ sky : 0.925
16
+ person : 0.685
17
+ rider : 0.422
18
+ car : 0.909
19
+ truck : 0.731
20
+ bus : 0.796
21
+ train : 0.700
22
+ motorcycle : 0.478
23
+ bicycle : 0.643
24
+ ---------------------
25
+ Score Average : 0.672
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 94
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.929
32
+ sidewalk : 0.763
33
+ building : 0.700
34
+ wall : 0.420
35
+ fence : 0.350
36
+ pole : 0.283
37
+ traffic light : 0.503
38
+ traffic sign : 0.481
39
+ vegetation : 0.782
40
+ terrain : 0.427
41
+ sky : 0.794
42
+ person : 0.486
43
+ rider : 0.570
44
+ car : 0.772
45
+ truck : 0.540
46
+ bus : 0.694
47
+ train : 0.608
48
+ motorcycle : 0.653
49
+ bicycle : 0.424
50
+ ---------------------
51
+ Score Average : 0.588
52
+ ---------------------
fog1/logs/best_confmat_cs.pdf ADDED
Binary file (25.4 kB). View file
 
fog1/logs/best_confmat_target.pdf ADDED
Binary file (25.4 kB). View file
 
fog1/logs/best_target_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 70
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.972
6
+ sidewalk : 0.787
7
+ building : 0.882
8
+ wall : 0.406
9
+ fence : 0.482
10
+ pole : 0.421
11
+ traffic light : 0.432
12
+ traffic sign : 0.573
13
+ vegetation : 0.892
14
+ terrain : 0.563
15
+ sky : 0.925
16
+ person : 0.681
17
+ rider : 0.425
18
+ car : 0.908
19
+ truck : 0.720
20
+ bus : 0.776
21
+ train : 0.657
22
+ motorcycle : 0.480
23
+ bicycle : 0.640
24
+ ---------------------
25
+ Score Average : 0.664
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 70
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.917
32
+ sidewalk : 0.753
33
+ building : 0.743
34
+ wall : 0.433
35
+ fence : 0.352
36
+ pole : 0.304
37
+ traffic light : 0.506
38
+ traffic sign : 0.472
39
+ vegetation : 0.804
40
+ terrain : 0.382
41
+ sky : 0.845
42
+ person : 0.469
43
+ rider : 0.579
44
+ car : 0.787
45
+ truck : 0.533
46
+ bus : 0.780
47
+ train : 0.793
48
+ motorcycle : 0.611
49
+ bicycle : 0.446
50
+ ---------------------
51
+ Score Average : 0.606
52
+ ---------------------
fog1/logs/best_target_confmat_cs.pdf ADDED
Binary file (25.7 kB). View file
 
fog1/logs/best_target_confmat_target.pdf ADDED
Binary file (25.3 kB). View file
 
fog1/logs/class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 99
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.972
6
+ sidewalk : 0.788
7
+ building : 0.885
8
+ wall : 0.464
9
+ fence : 0.484
10
+ pole : 0.425
11
+ traffic light : 0.445
12
+ traffic sign : 0.586
13
+ vegetation : 0.893
14
+ terrain : 0.560
15
+ sky : 0.925
16
+ person : 0.685
17
+ rider : 0.427
18
+ car : 0.909
19
+ truck : 0.714
20
+ bus : 0.773
21
+ train : 0.649
22
+ motorcycle : 0.499
23
+ bicycle : 0.649
24
+ ---------------------
25
+ Score Average : 0.670
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 99
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.909
32
+ sidewalk : 0.753
33
+ building : 0.731
34
+ wall : 0.422
35
+ fence : 0.334
36
+ pole : 0.316
37
+ traffic light : 0.502
38
+ traffic sign : 0.453
39
+ vegetation : 0.770
40
+ terrain : 0.379
41
+ sky : 0.795
42
+ person : 0.480
43
+ rider : 0.589
44
+ car : 0.781
45
+ truck : 0.508
46
+ bus : 0.785
47
+ train : 0.677
48
+ motorcycle : 0.640
49
+ bicycle : 0.496
50
+ ---------------------
51
+ Score Average : 0.596
52
+ ---------------------
fog1/logs/confmat_cs.pdf ADDED
Binary file (25.2 kB). View file
 
fog1/logs/confmat_target.pdf ADDED
Binary file (25.4 kB). View file
 
fog1/logs/learning_curve.pdf ADDED
Binary file (17.6 kB). View file
 
fog1/logs/log_batch.csv ADDED
The diff for this file is too large to render. See raw diff
 
fog1/logs/log_epoch.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train loss, train source loss, train synth loss, train sim loss, val loss source, train acc, train acc synth, val acc source, test target acc, miou, miou target, learning rate, scale
2
+ 0, 1.57081, 0.76520, 0.80561, 0.00000, 0.43447, 0.78301, 0.77152, 0.87044, 0.85164, 0.33995, 0.28862, 0.00100
3
+ 1, 0.98682, 0.47310, 0.51373, 0.00000, 0.35686, 0.85609, 0.84458, 0.89019, 0.86376, 0.44100, 0.36011, 0.00099
4
+ 2, 0.86924, 0.41446, 0.45478, 0.00000, 0.31700, 0.87114, 0.85976, 0.90009, 0.86514, 0.48378, 0.40741, 0.00098
5
+ 3, 0.79816, 0.37915, 0.41902, 0.00000, 0.31680, 0.88106, 0.86950, 0.90172, 0.86852, 0.51020, 0.45443, 0.00097
6
+ 4, 0.74635, 0.35348, 0.39288, 0.00000, 0.28324, 0.88834, 0.87658, 0.90935, 0.87924, 0.52732, 0.47296, 0.00096
7
+ 5, 0.70886, 0.33510, 0.37376, 0.00000, 0.27457, 0.89387, 0.88269, 0.91170, 0.88185, 0.53993, 0.48507, 0.00095
8
+ 6, 0.68332, 0.32217, 0.36116, 0.00000, 0.26796, 0.89761, 0.88625, 0.91374, 0.88925, 0.55260, 0.48524, 0.00095
9
+ 7, 0.65451, 0.30848, 0.34602, 0.00000, 0.27047, 0.90125, 0.89002, 0.91329, 0.87980, 0.54783, 0.47526, 0.00094
10
+ 8, 0.63653, 0.29962, 0.33691, 0.00000, 0.25889, 0.90383, 0.89296, 0.91558, 0.89192, 0.56571, 0.51070, 0.00093
11
+ 9, 0.62441, 0.29400, 0.33041, 0.00000, 0.25112, 0.90583, 0.89490, 0.91851, 0.89771, 0.56978, 0.53018, 0.00092
12
+ 10, 0.60358, 0.28289, 0.32068, 0.00000, 0.24742, 0.90910, 0.89789, 0.91899, 0.89055, 0.58513, 0.52735, 0.00091
13
+ 11, 0.59416, 0.27880, 0.31536, 0.00000, 0.24357, 0.90997, 0.89919, 0.92005, 0.88873, 0.58110, 0.52075, 0.00090
14
+ 12, 0.57811, 0.27102, 0.30709, 0.00000, 0.24347, 0.91249, 0.90145, 0.92073, 0.88990, 0.58874, 0.51953, 0.00089
15
+ 13, 0.56799, 0.26614, 0.30185, 0.00000, 0.24199, 0.91391, 0.90313, 0.92076, 0.89397, 0.58213, 0.53532, 0.00088
16
+ 14, 0.55743, 0.26206, 0.29537, 0.00000, 0.23566, 0.91528, 0.90510, 0.92242, 0.85800, 0.59920, 0.52846, 0.00087
17
+ 15, 0.55032, 0.25788, 0.29244, 0.00000, 0.23677, 0.91638, 0.90586, 0.92257, 0.88542, 0.59087, 0.54088, 0.00086
18
+ 16, 0.54275, 0.25404, 0.28871, 0.00000, 0.23057, 0.91754, 0.90701, 0.92399, 0.87760, 0.59927, 0.54535, 0.00085
19
+ 17, 0.53784, 0.25260, 0.28524, 0.00000, 0.23183, 0.91806, 0.90839, 0.92365, 0.85759, 0.60484, 0.53773, 0.00085
20
+ 18, 0.52840, 0.24729, 0.28111, 0.00000, 0.22479, 0.91930, 0.90913, 0.92588, 0.87924, 0.61030, 0.54459, 0.00084
21
+ 19, 0.52047, 0.24405, 0.27642, 0.00000, 0.22502, 0.92034, 0.91055, 0.92562, 0.87442, 0.61384, 0.55625, 0.00083
22
+ 20, 0.51685, 0.24237, 0.27447, 0.00000, 0.21908, 0.92083, 0.91123, 0.92742, 0.88468, 0.62075, 0.55886, 0.00082
23
+ 21, 0.50972, 0.23874, 0.27098, 0.00000, 0.21879, 0.92214, 0.91222, 0.92759, 0.85971, 0.62091, 0.55122, 0.00081
24
+ 22, 0.50547, 0.23627, 0.26920, 0.00000, 0.21583, 0.92245, 0.91256, 0.92866, 0.81247, 0.62984, 0.53822, 0.00080
25
+ 23, 0.49826, 0.23314, 0.26513, 0.00000, 0.21420, 0.92389, 0.91422, 0.92877, 0.88132, 0.62743, 0.57528, 0.00079
26
+ 24, 0.49537, 0.23187, 0.26351, 0.00000, 0.21857, 0.92421, 0.91444, 0.92753, 0.86545, 0.62238, 0.55666, 0.00078
27
+ 25, 0.49441, 0.23114, 0.26327, 0.00000, 0.21470, 0.92429, 0.91457, 0.92920, 0.86470, 0.62822, 0.55113, 0.00077
28
+ 26, 0.48975, 0.22904, 0.26071, 0.00000, 0.21407, 0.92500, 0.91540, 0.92936, 0.86428, 0.62677, 0.54297, 0.00076
29
+ 27, 0.48348, 0.22590, 0.25758, 0.00000, 0.21264, 0.92581, 0.91611, 0.92947, 0.86930, 0.63216, 0.55862, 0.00075
30
+ 28, 0.47828, 0.22348, 0.25480, 0.00000, 0.21250, 0.92662, 0.91703, 0.92967, 0.86662, 0.62891, 0.54995, 0.00074
31
+ 29, 0.47763, 0.22333, 0.25430, 0.00000, 0.21292, 0.92658, 0.91707, 0.92930, 0.87616, 0.63465, 0.55819, 0.00073
32
+ 30, 0.47237, 0.22077, 0.25160, 0.00000, 0.20629, 0.92734, 0.91796, 0.93127, 0.88678, 0.63341, 0.57375, 0.00073
33
+ 31, 0.46981, 0.21888, 0.25093, 0.00000, 0.20922, 0.92797, 0.91836, 0.93068, 0.90057, 0.63680, 0.58249, 0.00072
34
+ 32, 0.46794, 0.21926, 0.24868, 0.00000, 0.20764, 0.92783, 0.91874, 0.93132, 0.86151, 0.63737, 0.56400, 0.00071
35
+ 33, 0.46227, 0.21569, 0.24658, 0.00000, 0.20515, 0.92893, 0.91968, 0.93170, 0.89832, 0.64300, 0.59004, 0.00070
36
+ 34, 0.45971, 0.21494, 0.24477, 0.00000, 0.20756, 0.92931, 0.92039, 0.93112, 0.87741, 0.63592, 0.56097, 0.00069
37
+ 35, 0.45924, 0.21386, 0.24538, 0.00000, 0.20646, 0.92941, 0.92019, 0.93148, 0.85210, 0.63809, 0.56056, 0.00068
38
+ 36, 0.45661, 0.21293, 0.24368, 0.00000, 0.20727, 0.92987, 0.92042, 0.93117, 0.86511, 0.63650, 0.55132, 0.00067
39
+ 37, 0.45709, 0.21374, 0.24336, 0.00000, 0.20385, 0.92973, 0.92054, 0.93246, 0.87773, 0.64156, 0.56738, 0.00066
40
+ 38, 0.45113, 0.21068, 0.24045, 0.00000, 0.20330, 0.93028, 0.92138, 0.93223, 0.86605, 0.64424, 0.56824, 0.00065
41
+ 39, 0.45204, 0.21099, 0.24104, 0.00000, 0.19956, 0.93029, 0.92102, 0.93369, 0.87646, 0.64989, 0.57565, 0.00064
42
+ 40, 0.44719, 0.20850, 0.23869, 0.00000, 0.20334, 0.93118, 0.92175, 0.93228, 0.87854, 0.64830, 0.58435, 0.00063
43
+ 41, 0.44350, 0.20646, 0.23705, 0.00000, 0.20054, 0.93165, 0.92230, 0.93388, 0.88007, 0.64673, 0.56933, 0.00062
44
+ 42, 0.44370, 0.20673, 0.23698, 0.00000, 0.19723, 0.93167, 0.92232, 0.93435, 0.88410, 0.64959, 0.58732, 0.00061
45
+ 43, 0.43841, 0.20469, 0.23372, 0.00000, 0.19701, 0.93225, 0.92345, 0.93432, 0.88037, 0.64747, 0.58647, 0.00060
46
+ 44, 0.43725, 0.20365, 0.23359, 0.00000, 0.19843, 0.93249, 0.92335, 0.93393, 0.88026, 0.64965, 0.57035, 0.00059
47
+ 45, 0.43527, 0.20272, 0.23255, 0.00000, 0.19608, 0.93292, 0.92385, 0.93481, 0.84969, 0.65335, 0.57132, 0.00058
48
+ 46, 0.43698, 0.20392, 0.23306, 0.00000, 0.19663, 0.93248, 0.92354, 0.93455, 0.87862, 0.65301, 0.57554, 0.00057
49
+ 47, 0.43430, 0.20236, 0.23194, 0.00000, 0.19650, 0.93285, 0.92384, 0.93479, 0.83932, 0.65269, 0.55875, 0.00056
50
+ 48, 0.43050, 0.20132, 0.22917, 0.00000, 0.19493, 0.93303, 0.92477, 0.93495, 0.86985, 0.65339, 0.58316, 0.00056
51
+ 49, 0.42867, 0.19955, 0.22912, 0.00000, 0.19629, 0.93381, 0.92480, 0.93480, 0.81871, 0.65326, 0.54302, 0.00055
52
+ 50, 0.42789, 0.20009, 0.22779, 0.00000, 0.19627, 0.93356, 0.92526, 0.93485, 0.81460, 0.65520, 0.53478, 0.00054
53
+ 51, 0.42476, 0.19799, 0.22677, 0.00000, 0.19373, 0.93434, 0.92569, 0.93544, 0.87804, 0.65964, 0.58559, 0.00053
54
+ 52, 0.42369, 0.19758, 0.22610, 0.00000, 0.19423, 0.93455, 0.92561, 0.93568, 0.86141, 0.65773, 0.56902, 0.00052
55
+ 53, 0.42421, 0.19807, 0.22614, 0.00000, 0.19420, 0.93427, 0.92565, 0.93551, 0.86337, 0.65344, 0.57982, 0.00051
56
+ 54, 0.42119, 0.19639, 0.22480, 0.00000, 0.19423, 0.93474, 0.92614, 0.93520, 0.88153, 0.65312, 0.58173, 0.00050
57
+ 55, 0.42058, 0.19567, 0.22490, 0.00000, 0.19317, 0.93505, 0.92604, 0.93603, 0.87843, 0.65428, 0.59582, 0.00049
58
+ 56, 0.42086, 0.19629, 0.22457, 0.00000, 0.19398, 0.93476, 0.92605, 0.93531, 0.85001, 0.65367, 0.57542, 0.00048
59
+ 57, 0.41896, 0.19599, 0.22296, 0.00000, 0.19542, 0.93474, 0.92657, 0.93578, 0.85824, 0.65503, 0.56625, 0.00047
60
+ 58, 0.41779, 0.19501, 0.22278, 0.00000, 0.19136, 0.93513, 0.92661, 0.93605, 0.85218, 0.65967, 0.56544, 0.00046
61
+ 59, 0.41411, 0.19338, 0.22073, 0.00000, 0.19058, 0.93556, 0.92718, 0.93655, 0.85071, 0.65850, 0.56667, 0.00045
62
+ 60, 0.41319, 0.19266, 0.22053, 0.00000, 0.19481, 0.93603, 0.92728, 0.93517, 0.88204, 0.65850, 0.59013, 0.00044
63
+ 61, 0.41441, 0.19309, 0.22132, 0.00000, 0.19268, 0.93573, 0.92713, 0.93634, 0.85445, 0.65504, 0.57515, 0.00043
64
+ 62, 0.41306, 0.19240, 0.22065, 0.00000, 0.18932, 0.93609, 0.92734, 0.93719, 0.87420, 0.66264, 0.59029, 0.00042
65
+ 63, 0.41098, 0.19145, 0.21953, 0.00000, 0.19024, 0.93621, 0.92763, 0.93665, 0.87086, 0.66018, 0.60357, 0.00041
66
+ 64, 0.41101, 0.19218, 0.21884, 0.00000, 0.18925, 0.93605, 0.92785, 0.93722, 0.87162, 0.66649, 0.59520, 0.00040
67
+ 65, 0.40957, 0.19100, 0.21857, 0.00000, 0.19440, 0.93637, 0.92781, 0.93550, 0.84212, 0.65483, 0.55688, 0.00039
68
+ 66, 0.40831, 0.19045, 0.21786, 0.00000, 0.19063, 0.93666, 0.92805, 0.93631, 0.86683, 0.66198, 0.59066, 0.00038
69
+ 67, 0.40722, 0.18964, 0.21758, 0.00000, 0.19397, 0.93695, 0.92826, 0.93552, 0.87700, 0.65796, 0.56774, 0.00037
70
+ 68, 0.40637, 0.18916, 0.21720, 0.00000, 0.18796, 0.93712, 0.92850, 0.93743, 0.87244, 0.66902, 0.58153, 0.00036
71
+ 69, 0.40630, 0.18944, 0.21686, 0.00000, 0.18794, 0.93703, 0.92856, 0.93731, 0.88521, 0.66771, 0.60445, 0.00035
72
+ 70, 0.40550, 0.18922, 0.21627, 0.00000, 0.18742, 0.93696, 0.92870, 0.93771, 0.88209, 0.66434, 0.60569, 0.00034
73
+ 71, 0.40487, 0.18868, 0.21620, 0.00000, 0.18976, 0.93706, 0.92858, 0.93676, 0.87113, 0.66082, 0.58660, 0.00033
74
+ 72, 0.40227, 0.18740, 0.21486, 0.00000, 0.19129, 0.93754, 0.92901, 0.93614, 0.84626, 0.66083, 0.57427, 0.00032
75
+ 73, 0.40307, 0.18798, 0.21509, 0.00000, 0.18969, 0.93732, 0.92893, 0.93677, 0.85757, 0.66106, 0.59342, 0.00031
76
+ 74, 0.40225, 0.18776, 0.21449, 0.00000, 0.18845, 0.93737, 0.92922, 0.93720, 0.87591, 0.66129, 0.59735, 0.00030
77
+ 75, 0.40160, 0.18753, 0.21407, 0.00000, 0.18816, 0.93745, 0.92942, 0.93746, 0.86804, 0.66450, 0.59170, 0.00029
78
+ 76, 0.40391, 0.18833, 0.21558, 0.00000, 0.19089, 0.93726, 0.92880, 0.93619, 0.85240, 0.66038, 0.56960, 0.00028
79
+ 77, 0.39729, 0.18542, 0.21187, 0.00000, 0.18913, 0.93816, 0.92992, 0.93689, 0.85529, 0.66337, 0.56523, 0.00027
80
+ 78, 0.40017, 0.18665, 0.21352, 0.00000, 0.18998, 0.93764, 0.92935, 0.93698, 0.84125, 0.66174, 0.56809, 0.00026
81
+ 79, 0.40055, 0.18721, 0.21335, 0.00000, 0.18670, 0.93751, 0.92946, 0.93754, 0.87127, 0.66855, 0.59614, 0.00025
82
+ 80, 0.39911, 0.18670, 0.21241, 0.00000, 0.18685, 0.93782, 0.92986, 0.93747, 0.89623, 0.66459, 0.59809, 0.00023
83
+ 81, 0.39546, 0.18392, 0.21154, 0.00000, 0.18942, 0.93848, 0.93007, 0.93719, 0.83692, 0.66321, 0.56267, 0.00022
84
+ 82, 0.39873, 0.18598, 0.21275, 0.00000, 0.18617, 0.93816, 0.92991, 0.93806, 0.85449, 0.66848, 0.58528, 0.00021
85
+ 83, 0.39720, 0.18474, 0.21246, 0.00000, 0.18586, 0.93836, 0.92971, 0.93828, 0.80973, 0.67127, 0.56841, 0.00020
86
+ 84, 0.39708, 0.18550, 0.21158, 0.00000, 0.18688, 0.93812, 0.93004, 0.93800, 0.85718, 0.66284, 0.58662, 0.00019
87
+ 85, 0.39628, 0.18496, 0.21132, 0.00000, 0.18940, 0.93841, 0.93024, 0.93737, 0.87861, 0.66173, 0.58302, 0.00018
88
+ 86, 0.39544, 0.18415, 0.21129, 0.00000, 0.18714, 0.93839, 0.93003, 0.93779, 0.88636, 0.66477, 0.59475, 0.00017
89
+ 87, 0.39332, 0.18380, 0.20952, 0.00000, 0.18569, 0.93860, 0.93068, 0.93840, 0.86643, 0.66794, 0.58798, 0.00016
90
+ 88, 0.39308, 0.18323, 0.20985, 0.00000, 0.18711, 0.93877, 0.93049, 0.93778, 0.84998, 0.66869, 0.57309, 0.00015
91
+ 89, 0.39511, 0.18387, 0.21125, 0.00000, 0.18824, 0.93874, 0.93029, 0.93730, 0.84115, 0.66511, 0.57431, 0.00014
92
+ 90, 0.39306, 0.18381, 0.20925, 0.00000, 0.18584, 0.93861, 0.93064, 0.93858, 0.84106, 0.67074, 0.58712, 0.00013
93
+ 91, 0.39304, 0.18326, 0.20978, 0.00000, 0.18708, 0.93882, 0.93061, 0.93765, 0.86647, 0.66825, 0.59050, 0.00011
94
+ 92, 0.39402, 0.18366, 0.21035, 0.00000, 0.18853, 0.93855, 0.93032, 0.93739, 0.85421, 0.66098, 0.57073, 0.00010
95
+ 93, 0.39477, 0.18378, 0.21098, 0.00000, 0.18619, 0.93867, 0.93025, 0.93801, 0.87426, 0.67032, 0.59115, 0.00009
96
+ 94, 0.39100, 0.18217, 0.20883, 0.00000, 0.18392, 0.93903, 0.93090, 0.93891, 0.86660, 0.67153, 0.58828, 0.00008
97
+ 95, 0.39282, 0.18308, 0.20974, 0.00000, 0.18519, 0.93875, 0.93063, 0.93841, 0.85476, 0.67010, 0.58006, 0.00007
98
+ 96, 0.39068, 0.18128, 0.20940, 0.00000, 0.18745, 0.93933, 0.93087, 0.93736, 0.87076, 0.66638, 0.58882, 0.00006
99
+ 97, 0.39432, 0.18407, 0.21024, 0.00000, 0.18672, 0.93849, 0.93052, 0.93762, 0.84610, 0.66227, 0.57317, 0.00004
100
+ 98, 0.39387, 0.18383, 0.21004, 0.00000, 0.18585, 0.93847, 0.93032, 0.93796, 0.86410, 0.66829, 0.59327, 0.00003
101
+ 99, 0.39080, 0.18241, 0.20839, 0.00000, 0.18510, 0.93904, 0.93105, 0.93846, 0.86463, 0.67011, 0.59564, 0.00002
fog1/weights/best_weights.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca0d8b34fe18b566e5d54bf6fc04deda8007dff0bbb4a104a7467395999ac97c
3
+ size 159407526
fog1/weights/best_weights_target.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ad8016fc5edb7e9991940c60d873c95d1518c3f3e0a3c34ccf8bcb2da3574e
3
+ size 159410194
fog1/weights/checkpoint.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aa11576cf9283786ab841668fb7cf40514d82b921f3e6cf28bd8721037ce6a2
3
+ size 318638251
fog2/exp_args.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Args:
2
+ synth_path = '/data/shared/luojun/fog_intermediate/leftImg8bit/train/'
3
+ source_path = '/data/shared/luojun/fog_target'
4
+ target_type = 'acdc_fog'
5
+ target_path = '/data/shared/luojun/ACDC'
6
+ experiment_name = '/data/shared/luojun/runs/fog2'
7
+ stop_epoch = 65
8
+ debug = False
9
+ load = '/data/shared/luojun/runs/fog1/weights/checkpoint.pth.tar'
10
+ resume = None
11
+ epochs = 100
12
+ seed = 42
13
+ sim_weight = 0.0
14
+ model = 'resnet-50'
15
+ ssl = 'sim'
16
+ optimizer = 'sgd'
17
+ momentum = 0.9
18
+ wd = 0.0001
19
+ schedular = 'poly'
20
+ batch_size = 4
21
+ lr_head = 0.001
22
+ lr = 0.001
23
+ target_size = (512, 1024)
24
+ crop = 'both_random'
25
+ crop_size = (384, 768)
26
+ blur = False
27
+ cutout = False
28
+ jitter = 0.5
29
+ scale = 0.0
30
+ xs = False
31
+ workers = 4
fog2/log.txt ADDED
@@ -0,0 +1,619 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model pushed to 1 GPU(s), type NVIDIA GeForce RTX 3090.
2
+ Loaded pretrained model from /data/shared/luojun/runs/fog1/weights/checkpoint.pth.tar
3
+ --- Training ---
4
+ Epoch 0 train loss: 0.4786, acc: 0.9139
5
+ --- Validation - Source ---
6
+ * Acc 0.938
7
+ --- Validation - Target ---
8
+ * Acc 0.895
9
+ mIoU improved from 0.0000 to 0.5927.
10
+ mIoU improved from 0.0000 to 0.6691.
11
+ --- Training ---
12
+ Epoch 1 train loss: 0.4760, acc: 0.9147
13
+ --- Validation - Source ---
14
+ * Acc 0.937
15
+ --- Validation - Target ---
16
+ * Acc 0.874
17
+ --- Training ---
18
+ Epoch 2 train loss: 0.4691, acc: 0.9160
19
+ --- Validation - Source ---
20
+ * Acc 0.934
21
+ --- Validation - Target ---
22
+ * Acc 0.862
23
+ --- Training ---
24
+ Epoch 3 train loss: 0.4635, acc: 0.9171
25
+ --- Validation - Source ---
26
+ * Acc 0.937
27
+ --- Validation - Target ---
28
+ * Acc 0.858
29
+ --- Training ---
30
+ Epoch 4 train loss: 0.4582, acc: 0.9180
31
+ --- Validation - Source ---
32
+ * Acc 0.937
33
+ --- Validation - Target ---
34
+ * Acc 0.891
35
+ mIoU improved from 0.5927 to 0.6145.
36
+ --- Training ---
37
+ Epoch 5 train loss: 0.4572, acc: 0.9185
38
+ --- Validation - Source ---
39
+ * Acc 0.938
40
+ --- Validation - Target ---
41
+ * Acc 0.879
42
+ --- Training ---
43
+ Epoch 6 train loss: 0.4530, acc: 0.9191
44
+ --- Validation - Source ---
45
+ * Acc 0.937
46
+ --- Validation - Target ---
47
+ * Acc 0.833
48
+ --- Training ---
49
+ Epoch 7 train loss: 0.4528, acc: 0.9193
50
+ --- Validation - Source ---
51
+ * Acc 0.937
52
+ --- Validation - Target ---
53
+ * Acc 0.861
54
+ --- Training ---
55
+ Epoch 8 train loss: 0.4497, acc: 0.9192
56
+ --- Validation - Source ---
57
+ * Acc 0.936
58
+ --- Validation - Target ---
59
+ * Acc 0.892
60
+ --- Training ---
61
+ Epoch 9 train loss: 0.4507, acc: 0.9196
62
+ --- Validation - Source ---
63
+ * Acc 0.938
64
+ --- Validation - Target ---
65
+ * Acc 0.882
66
+ --- Training ---
67
+ Epoch 10 train loss: 0.4455, acc: 0.9204
68
+ --- Validation - Source ---
69
+ * Acc 0.937
70
+ --- Validation - Target ---
71
+ * Acc 0.862
72
+ mIoU improved from 0.6691 to 0.6714.
73
+ --- Training ---
74
+ Epoch 11 train loss: 0.4461, acc: 0.9201
75
+ --- Validation - Source ---
76
+ * Acc 0.938
77
+ --- Validation - Target ---
78
+ * Acc 0.871
79
+ --- Training ---
80
+ Epoch 12 train loss: 0.4407, acc: 0.9217
81
+ --- Validation - Source ---
82
+ * Acc 0.937
83
+ --- Validation - Target ---
84
+ * Acc 0.866
85
+ --- Training ---
86
+ Epoch 13 train loss: 0.4387, acc: 0.9220
87
+ --- Validation - Source ---
88
+ * Acc 0.938
89
+ --- Validation - Target ---
90
+ * Acc 0.869
91
+ --- Training ---
92
+ Epoch 14 train loss: 0.4366, acc: 0.9222
93
+ --- Validation - Source ---
94
+ * Acc 0.938
95
+ --- Validation - Target ---
96
+ * Acc 0.841
97
+ mIoU improved from 0.6714 to 0.6719.
98
+ --- Training ---
99
+ Epoch 15 train loss: 0.4340, acc: 0.9224
100
+ --- Validation - Source ---
101
+ * Acc 0.938
102
+ --- Validation - Target ---
103
+ * Acc 0.878
104
+ --- Training ---
105
+ Epoch 16 train loss: 0.4347, acc: 0.9226
106
+ --- Validation - Source ---
107
+ * Acc 0.938
108
+ --- Validation - Target ---
109
+ * Acc 0.849
110
+ --- Training ---
111
+ Epoch 17 train loss: 0.4340, acc: 0.9224
112
+ --- Validation - Source ---
113
+ * Acc 0.938
114
+ --- Validation - Target ---
115
+ * Acc 0.841
116
+ --- Training ---
117
+ Epoch 18 train loss: 0.4317, acc: 0.9229
118
+ --- Validation - Source ---
119
+ * Acc 0.939
120
+ --- Validation - Target ---
121
+ * Acc 0.878
122
+ --- Training ---
123
+ Epoch 19 train loss: 0.4283, acc: 0.9235
124
+ --- Validation - Source ---
125
+ * Acc 0.938
126
+ --- Validation - Target ---
127
+ * Acc 0.869
128
+ --- Training ---
129
+ Epoch 20 train loss: 0.4271, acc: 0.9239
130
+ --- Validation - Source ---
131
+ * Acc 0.939
132
+ --- Validation - Target ---
133
+ * Acc 0.865
134
+ mIoU improved from 0.6719 to 0.6721.
135
+ --- Training ---
136
+ Epoch 21 train loss: 0.4244, acc: 0.9242
137
+ --- Validation - Source ---
138
+ * Acc 0.939
139
+ --- Validation - Target ---
140
+ * Acc 0.860
141
+ --- Training ---
142
+ Epoch 22 train loss: 0.4234, acc: 0.9244
143
+ --- Validation - Source ---
144
+ * Acc 0.939
145
+ --- Validation - Target ---
146
+ * Acc 0.831
147
+ mIoU improved from 0.6721 to 0.6749.
148
+ --- Training ---
149
+ Epoch 23 train loss: 0.4234, acc: 0.9245
150
+ --- Validation - Source ---
151
+ * Acc 0.939
152
+ --- Validation - Target ---
153
+ * Acc 0.874
154
+ mIoU improved from 0.6749 to 0.6756.
155
+ --- Training ---
156
+ Epoch 24 train loss: 0.4215, acc: 0.9246
157
+ --- Validation - Source ---
158
+ * Acc 0.939
159
+ --- Validation - Target ---
160
+ * Acc 0.869
161
+ --- Training ---
162
+ Epoch 25 train loss: 0.4219, acc: 0.9245
163
+ --- Validation - Source ---
164
+ * Acc 0.939
165
+ --- Validation - Target ---
166
+ * Acc 0.850
167
+ --- Training ---
168
+ Epoch 26 train loss: 0.4211, acc: 0.9251
169
+ --- Validation - Source ---
170
+ * Acc 0.938
171
+ --- Validation - Target ---
172
+ * Acc 0.870
173
+ --- Training ---
174
+ Epoch 27 train loss: 0.4190, acc: 0.9251
175
+ --- Validation - Source ---
176
+ * Acc 0.938
177
+ --- Validation - Target ---
178
+ * Acc 0.877
179
+ --- Training ---
180
+ Epoch 28 train loss: 0.4166, acc: 0.9256
181
+ --- Validation - Source ---
182
+ * Acc 0.939
183
+ --- Validation - Target ---
184
+ * Acc 0.866
185
+ --- Training ---
186
+ Epoch 29 train loss: 0.4156, acc: 0.9258
187
+ --- Validation - Source ---
188
+ * Acc 0.939
189
+ --- Validation - Target ---
190
+ * Acc 0.872
191
+ --- Training ---
192
+ Epoch 30 train loss: 0.4153, acc: 0.9258
193
+ --- Validation - Source ---
194
+ * Acc 0.939
195
+ --- Validation - Target ---
196
+ * Acc 0.880
197
+ --- Training ---
198
+ Epoch 31 train loss: 0.4122, acc: 0.9264
199
+ --- Validation - Source ---
200
+ * Acc 0.939
201
+ --- Validation - Target ---
202
+ * Acc 0.903
203
+ mIoU improved from 0.6756 to 0.6759.
204
+ --- Training ---
205
+ Epoch 32 train loss: 0.4147, acc: 0.9258
206
+ --- Validation - Source ---
207
+ * Acc 0.939
208
+ --- Validation - Target ---
209
+ * Acc 0.864
210
+ --- Training ---
211
+ Epoch 33 train loss: 0.4116, acc: 0.9265
212
+ --- Validation - Source ---
213
+ * Acc 0.939
214
+ --- Validation - Target ---
215
+ * Acc 0.885
216
+ mIoU improved from 0.6759 to 0.6778.
217
+ --- Training ---
218
+ Epoch 34 train loss: 0.4088, acc: 0.9271
219
+ --- Validation - Source ---
220
+ * Acc 0.939
221
+ --- Validation - Target ---
222
+ * Acc 0.863
223
+ --- Training ---
224
+ Epoch 35 train loss: 0.4105, acc: 0.9269
225
+ --- Validation - Source ---
226
+ * Acc 0.940
227
+ --- Validation - Target ---
228
+ * Acc 0.856
229
+ --- Training ---
230
+ Epoch 36 train loss: 0.4092, acc: 0.9268
231
+ --- Validation - Source ---
232
+ * Acc 0.940
233
+ --- Validation - Target ---
234
+ * Acc 0.859
235
+ --- Training ---
236
+ Epoch 37 train loss: 0.4102, acc: 0.9267
237
+ --- Validation - Source ---
238
+ * Acc 0.939
239
+ --- Validation - Target ---
240
+ * Acc 0.870
241
+ --- Training ---
242
+ Epoch 38 train loss: 0.4080, acc: 0.9270
243
+ --- Validation - Source ---
244
+ * Acc 0.939
245
+ --- Validation - Target ---
246
+ * Acc 0.861
247
+ --- Training ---
248
+ Epoch 39 train loss: 0.4074, acc: 0.9269
249
+ --- Validation - Source ---
250
+ * Acc 0.940
251
+ --- Validation - Target ---
252
+ * Acc 0.872
253
+ --- Training ---
254
+ Epoch 40 train loss: 0.4050, acc: 0.9277
255
+ --- Validation - Source ---
256
+ * Acc 0.940
257
+ --- Validation - Target ---
258
+ * Acc 0.871
259
+ --- Training ---
260
+ Epoch 41 train loss: 0.4039, acc: 0.9279
261
+ --- Validation - Source ---
262
+ * Acc 0.940
263
+ --- Validation - Target ---
264
+ * Acc 0.854
265
+ --- Training ---
266
+ Epoch 42 train loss: 0.4051, acc: 0.9276
267
+ --- Validation - Source ---
268
+ * Acc 0.940
269
+ --- Validation - Target ---
270
+ * Acc 0.872
271
+ --- Training ---
272
+ Epoch 43 train loss: 0.4016, acc: 0.9284
273
+ --- Validation - Source ---
274
+ * Acc 0.940
275
+ --- Validation - Target ---
276
+ * Acc 0.860
277
+ --- Training ---
278
+ Epoch 44 train loss: 0.4005, acc: 0.9285
279
+ --- Validation - Source ---
280
+ * Acc 0.940
281
+ --- Validation - Target ---
282
+ * Acc 0.858
283
+ --- Training ---
284
+ Epoch 45 train loss: 0.3998, acc: 0.9287
285
+ --- Validation - Source ---
286
+ * Acc 0.941
287
+ --- Validation - Target ---
288
+ * Acc 0.866
289
+ mIoU improved from 0.6778 to 0.6778.
290
+ --- Training ---
291
+ Epoch 46 train loss: 0.4018, acc: 0.9284
292
+ --- Validation - Source ---
293
+ * Acc 0.940
294
+ --- Validation - Target ---
295
+ * Acc 0.859
296
+ --- Training ---
297
+ Epoch 47 train loss: 0.3982, acc: 0.9289
298
+ --- Validation - Source ---
299
+ * Acc 0.940
300
+ --- Validation - Target ---
301
+ * Acc 0.837
302
+ --- Training ---
303
+ Epoch 48 train loss: 0.3975, acc: 0.9289
304
+ --- Validation - Source ---
305
+ * Acc 0.941
306
+ --- Validation - Target ---
307
+ * Acc 0.860
308
+ --- Training ---
309
+ Epoch 49 train loss: 0.3959, acc: 0.9293
310
+ --- Validation - Source ---
311
+ * Acc 0.940
312
+ --- Validation - Target ---
313
+ * Acc 0.865
314
+ --- Training ---
315
+ Epoch 50 train loss: 0.3966, acc: 0.9291
316
+ --- Validation - Source ---
317
+ * Acc 0.941
318
+ --- Validation - Target ---
319
+ * Acc 0.857
320
+ --- Training ---
321
+ Epoch 51 train loss: 0.3951, acc: 0.9295
322
+ --- Validation - Source ---
323
+ * Acc 0.940
324
+ --- Validation - Target ---
325
+ * Acc 0.866
326
+ --- Training ---
327
+ Epoch 52 train loss: 0.3950, acc: 0.9295
328
+ --- Validation - Source ---
329
+ * Acc 0.940
330
+ --- Validation - Target ---
331
+ * Acc 0.858
332
+ --- Training ---
333
+ Epoch 53 train loss: 0.3948, acc: 0.9294
334
+ --- Validation - Source ---
335
+ * Acc 0.940
336
+ --- Validation - Target ---
337
+ * Acc 0.873
338
+ --- Training ---
339
+ Epoch 54 train loss: 0.3937, acc: 0.9297
340
+ --- Validation - Source ---
341
+ * Acc 0.940
342
+ --- Validation - Target ---
343
+ * Acc 0.879
344
+ --- Training ---
345
+ Epoch 55 train loss: 0.3927, acc: 0.9301
346
+ --- Validation - Source ---
347
+ * Acc 0.940
348
+ --- Validation - Target ---
349
+ * Acc 0.875
350
+ --- Training ---
351
+ Epoch 56 train loss: 0.3932, acc: 0.9297
352
+ --- Validation - Source ---
353
+ * Acc 0.940
354
+ --- Validation - Target ---
355
+ * Acc 0.860
356
+ --- Training ---
357
+ Epoch 57 train loss: 0.3913, acc: 0.9304
358
+ --- Validation - Source ---
359
+ * Acc 0.940
360
+ --- Validation - Target ---
361
+ * Acc 0.881
362
+ --- Training ---
363
+ Epoch 58 train loss: 0.3915, acc: 0.9302
364
+ --- Validation - Source ---
365
+ * Acc 0.941
366
+ --- Validation - Target ---
367
+ * Acc 0.874
368
+ --- Training ---
369
+ Epoch 59 train loss: 0.3879, acc: 0.9310
370
+ --- Validation - Source ---
371
+ * Acc 0.940
372
+ --- Validation - Target ---
373
+ * Acc 0.855
374
+ --- Training ---
375
+ Epoch 60 train loss: 0.3885, acc: 0.9307
376
+ --- Validation - Source ---
377
+ * Acc 0.940
378
+ --- Validation - Target ---
379
+ * Acc 0.884
380
+ --- Training ---
381
+ Epoch 61 train loss: 0.3896, acc: 0.9306
382
+ --- Validation - Source ---
383
+ * Acc 0.940
384
+ --- Validation - Target ---
385
+ * Acc 0.866
386
+ --- Training ---
387
+ Epoch 62 train loss: 0.3881, acc: 0.9312
388
+ --- Validation - Source ---
389
+ * Acc 0.941
390
+ --- Validation - Target ---
391
+ * Acc 0.874
392
+ mIoU improved from 0.6778 to 0.6800.
393
+ --- Training ---
394
+ Epoch 63 train loss: 0.3879, acc: 0.9307
395
+ --- Validation - Source ---
396
+ * Acc 0.941
397
+ --- Validation - Target ---
398
+ * Acc 0.877
399
+ --- Training ---
400
+ Epoch 64 train loss: 0.3874, acc: 0.9308
401
+ --- Validation - Source ---
402
+ * Acc 0.941
403
+ --- Validation - Target ---
404
+ * Acc 0.880
405
+ --- Training ---
406
+ Epoch 65 train loss: 0.3873, acc: 0.9311
407
+ --- Validation - Source ---
408
+ * Acc 0.940
409
+ --- Validation - Target ---
410
+ * Acc 0.877
411
+ --- Training ---
412
+ Epoch 66 train loss: 0.3861, acc: 0.9311
413
+ --- Validation - Source ---
414
+ * Acc 0.941
415
+ --- Validation - Target ---
416
+ * Acc 0.876
417
+ --- Training ---
418
+ Epoch 67 train loss: 0.3864, acc: 0.9312
419
+ --- Validation - Source ---
420
+ * Acc 0.940
421
+ --- Validation - Target ---
422
+ * Acc 0.878
423
+ --- Training ---
424
+ Epoch 68 train loss: 0.3847, acc: 0.9316
425
+ --- Validation - Source ---
426
+ * Acc 0.941
427
+ --- Validation - Target ---
428
+ * Acc 0.874
429
+ mIoU improved from 0.6800 to 0.6821.
430
+ --- Training ---
431
+ Epoch 69 train loss: 0.3850, acc: 0.9315
432
+ --- Validation - Source ---
433
+ * Acc 0.941
434
+ --- Validation - Target ---
435
+ * Acc 0.871
436
+ mIoU improved from 0.6821 to 0.6829.
437
+ --- Training ---
438
+ Epoch 70 train loss: 0.3844, acc: 0.9314
439
+ --- Validation - Source ---
440
+ * Acc 0.941
441
+ --- Validation - Target ---
442
+ * Acc 0.868
443
+ --- Training ---
444
+ Epoch 71 train loss: 0.3832, acc: 0.9319
445
+ --- Validation - Source ---
446
+ * Acc 0.941
447
+ --- Validation - Target ---
448
+ * Acc 0.868
449
+ --- Training ---
450
+ Epoch 72 train loss: 0.3821, acc: 0.9318
451
+ --- Validation - Source ---
452
+ * Acc 0.941
453
+ --- Validation - Target ---
454
+ * Acc 0.864
455
+ --- Training ---
456
+ Epoch 73 train loss: 0.3838, acc: 0.9313
457
+ --- Validation - Source ---
458
+ * Acc 0.941
459
+ --- Validation - Target ---
460
+ * Acc 0.860
461
+ --- Training ---
462
+ Epoch 74 train loss: 0.3825, acc: 0.9317
463
+ --- Validation - Source ---
464
+ * Acc 0.941
465
+ --- Validation - Target ---
466
+ * Acc 0.874
467
+ --- Training ---
468
+ Epoch 75 train loss: 0.3832, acc: 0.9317
469
+ --- Validation - Source ---
470
+ * Acc 0.941
471
+ --- Validation - Target ---
472
+ * Acc 0.868
473
+ --- Training ---
474
+ Epoch 76 train loss: 0.3834, acc: 0.9319
475
+ --- Validation - Source ---
476
+ * Acc 0.941
477
+ --- Validation - Target ---
478
+ * Acc 0.878
479
+ --- Training ---
480
+ Epoch 77 train loss: 0.3803, acc: 0.9321
481
+ --- Validation - Source ---
482
+ * Acc 0.941
483
+ --- Validation - Target ---
484
+ * Acc 0.874
485
+ --- Training ---
486
+ Epoch 78 train loss: 0.3812, acc: 0.9321
487
+ --- Validation - Source ---
488
+ * Acc 0.941
489
+ --- Validation - Target ---
490
+ * Acc 0.864
491
+ --- Training ---
492
+ Epoch 79 train loss: 0.3818, acc: 0.9319
493
+ --- Validation - Source ---
494
+ * Acc 0.941
495
+ --- Validation - Target ---
496
+ * Acc 0.871
497
+ --- Training ---
498
+ Epoch 80 train loss: 0.3806, acc: 0.9322
499
+ --- Validation - Source ---
500
+ * Acc 0.941
501
+ --- Validation - Target ---
502
+ * Acc 0.879
503
+ --- Training ---
504
+ Epoch 81 train loss: 0.3791, acc: 0.9326
505
+ --- Validation - Source ---
506
+ * Acc 0.941
507
+ --- Validation - Target ---
508
+ * Acc 0.863
509
+ --- Training ---
510
+ Epoch 82 train loss: 0.3809, acc: 0.9324
511
+ --- Validation - Source ---
512
+ * Acc 0.941
513
+ --- Validation - Target ---
514
+ * Acc 0.866
515
+ --- Training ---
516
+ Epoch 83 train loss: 0.3795, acc: 0.9326
517
+ --- Validation - Source ---
518
+ * Acc 0.941
519
+ --- Validation - Target ---
520
+ * Acc 0.832
521
+ mIoU improved from 0.6829 to 0.6834.
522
+ --- Training ---
523
+ Epoch 84 train loss: 0.3809, acc: 0.9320
524
+ --- Validation - Source ---
525
+ * Acc 0.941
526
+ --- Validation - Target ---
527
+ * Acc 0.864
528
+ --- Training ---
529
+ Epoch 85 train loss: 0.3793, acc: 0.9326
530
+ --- Validation - Source ---
531
+ * Acc 0.941
532
+ --- Validation - Target ---
533
+ * Acc 0.879
534
+ --- Training ---
535
+ Epoch 86 train loss: 0.3804, acc: 0.9321
536
+ --- Validation - Source ---
537
+ * Acc 0.941
538
+ --- Validation - Target ---
539
+ * Acc 0.888
540
+ --- Training ---
541
+ Epoch 87 train loss: 0.3774, acc: 0.9326
542
+ --- Validation - Source ---
543
+ * Acc 0.942
544
+ --- Validation - Target ---
545
+ * Acc 0.864
546
+ --- Training ---
547
+ Epoch 88 train loss: 0.3770, acc: 0.9329
548
+ --- Validation - Source ---
549
+ * Acc 0.941
550
+ --- Validation - Target ---
551
+ * Acc 0.875
552
+ --- Training ---
553
+ Epoch 89 train loss: 0.3786, acc: 0.9326
554
+ --- Validation - Source ---
555
+ * Acc 0.941
556
+ --- Validation - Target ---
557
+ * Acc 0.859
558
+ --- Training ---
559
+ Epoch 90 train loss: 0.3773, acc: 0.9327
560
+ --- Validation - Source ---
561
+ * Acc 0.941
562
+ --- Validation - Target ---
563
+ * Acc 0.855
564
+ --- Training ---
565
+ Epoch 91 train loss: 0.3780, acc: 0.9327
566
+ --- Validation - Source ---
567
+ * Acc 0.941
568
+ --- Validation - Target ---
569
+ * Acc 0.862
570
+ --- Training ---
571
+ Epoch 92 train loss: 0.3765, acc: 0.9330
572
+ --- Validation - Source ---
573
+ * Acc 0.941
574
+ --- Validation - Target ---
575
+ * Acc 0.856
576
+ --- Training ---
577
+ Epoch 93 train loss: 0.3781, acc: 0.9329
578
+ --- Validation - Source ---
579
+ * Acc 0.941
580
+ --- Validation - Target ---
581
+ * Acc 0.870
582
+ --- Training ---
583
+ Epoch 94 train loss: 0.3768, acc: 0.9330
584
+ --- Validation - Source ---
585
+ * Acc 0.942
586
+ --- Validation - Target ---
587
+ * Acc 0.864
588
+ --- Training ---
589
+ Epoch 95 train loss: 0.3781, acc: 0.9325
590
+ --- Validation - Source ---
591
+ * Acc 0.942
592
+ --- Validation - Target ---
593
+ * Acc 0.859
594
+ --- Training ---
595
+ Epoch 96 train loss: 0.3763, acc: 0.9332
596
+ --- Validation - Source ---
597
+ * Acc 0.941
598
+ --- Validation - Target ---
599
+ * Acc 0.863
600
+ --- Training ---
601
+ Epoch 97 train loss: 0.3791, acc: 0.9326
602
+ --- Validation - Source ---
603
+ * Acc 0.941
604
+ --- Validation - Target ---
605
+ * Acc 0.859
606
+ --- Training ---
607
+ Epoch 98 train loss: 0.3781, acc: 0.9326
608
+ --- Validation - Source ---
609
+ * Acc 0.941
610
+ --- Validation - Target ---
611
+ * Acc 0.869
612
+ --- Training ---
613
+ Epoch 99 train loss: 0.3770, acc: 0.9329
614
+ --- Validation - Source ---
615
+ * Acc 0.942
616
+ --- Validation - Target ---
617
+ * Acc 0.870
618
+ Training complete in 318m 11s
619
+ Best mIoU target: 0.614531
fog2/logs/best_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 83
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.975
6
+ sidewalk : 0.802
7
+ building : 0.889
8
+ wall : 0.487
9
+ fence : 0.488
10
+ pole : 0.452
11
+ traffic light : 0.472
12
+ traffic sign : 0.612
13
+ vegetation : 0.894
14
+ terrain : 0.550
15
+ sky : 0.932
16
+ person : 0.698
17
+ rider : 0.459
18
+ car : 0.914
19
+ truck : 0.713
20
+ bus : 0.795
21
+ train : 0.707
22
+ motorcycle : 0.497
23
+ bicycle : 0.648
24
+ ---------------------
25
+ Score Average : 0.683
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 83
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.917
32
+ sidewalk : 0.773
33
+ building : 0.687
34
+ wall : 0.432
35
+ fence : 0.346
36
+ pole : 0.293
37
+ traffic light : 0.529
38
+ traffic sign : 0.478
39
+ vegetation : 0.715
40
+ terrain : 0.443
41
+ sky : 0.679
42
+ person : 0.506
43
+ rider : 0.417
44
+ car : 0.756
45
+ truck : 0.636
46
+ bus : 0.739
47
+ train : 0.639
48
+ motorcycle : 0.601
49
+ bicycle : 0.408
50
+ ---------------------
51
+ Score Average : 0.579
52
+ ---------------------
fog2/logs/best_confmat_cs.pdf ADDED
Binary file (25.8 kB). View file
 
fog2/logs/best_confmat_target.pdf ADDED
Binary file (25.2 kB). View file
 
fog2/logs/best_target_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 4
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.972
6
+ sidewalk : 0.791
7
+ building : 0.882
8
+ wall : 0.409
9
+ fence : 0.484
10
+ pole : 0.427
11
+ traffic light : 0.440
12
+ traffic sign : 0.585
13
+ vegetation : 0.888
14
+ terrain : 0.558
15
+ sky : 0.919
16
+ person : 0.680
17
+ rider : 0.420
18
+ car : 0.907
19
+ truck : 0.705
20
+ bus : 0.796
21
+ train : 0.703
22
+ motorcycle : 0.485
23
+ bicycle : 0.645
24
+ ---------------------
25
+ Score Average : 0.668
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 4
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.931
32
+ sidewalk : 0.765
33
+ building : 0.749
34
+ wall : 0.442
35
+ fence : 0.361
36
+ pole : 0.327
37
+ traffic light : 0.517
38
+ traffic sign : 0.475
39
+ vegetation : 0.817
40
+ terrain : 0.379
41
+ sky : 0.869
42
+ person : 0.485
43
+ rider : 0.590
44
+ car : 0.793
45
+ truck : 0.608
46
+ bus : 0.761
47
+ train : 0.685
48
+ motorcycle : 0.648
49
+ bicycle : 0.476
50
+ ---------------------
51
+ Score Average : 0.615
52
+ ---------------------
fog2/logs/best_target_confmat_cs.pdf ADDED
Binary file (26 kB). View file
 
fog2/logs/best_target_confmat_target.pdf ADDED
Binary file (25.3 kB). View file
 
fog2/logs/class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 99
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.975
6
+ sidewalk : 0.805
7
+ building : 0.889
8
+ wall : 0.476
9
+ fence : 0.492
10
+ pole : 0.453
11
+ traffic light : 0.474
12
+ traffic sign : 0.613
13
+ vegetation : 0.895
14
+ terrain : 0.562
15
+ sky : 0.931
16
+ person : 0.698
17
+ rider : 0.459
18
+ car : 0.914
19
+ truck : 0.702
20
+ bus : 0.790
21
+ train : 0.690
22
+ motorcycle : 0.503
23
+ bicycle : 0.653
24
+ ---------------------
25
+ Score Average : 0.683
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 99
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.935
32
+ sidewalk : 0.766
33
+ building : 0.739
34
+ wall : 0.439
35
+ fence : 0.337
36
+ pole : 0.317
37
+ traffic light : 0.535
38
+ traffic sign : 0.471
39
+ vegetation : 0.763
40
+ terrain : 0.404
41
+ sky : 0.798
42
+ person : 0.507
43
+ rider : 0.464
44
+ car : 0.789
45
+ truck : 0.662
46
+ bus : 0.750
47
+ train : 0.735
48
+ motorcycle : 0.612
49
+ bicycle : 0.412
50
+ ---------------------
51
+ Score Average : 0.602
52
+ ---------------------
fog2/logs/confmat_cs.pdf ADDED
Binary file (25.2 kB). View file
 
fog2/logs/confmat_target.pdf ADDED
Binary file (25.5 kB). View file
 
fog2/logs/learning_curve.pdf ADDED
Binary file (17.1 kB). View file
 
fog2/logs/log_batch.csv ADDED
The diff for this file is too large to render. See raw diff
 
fog2/logs/log_epoch.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train loss, train source loss, train synth loss, train sim loss, val loss source, train acc, train acc synth, val acc source, test target acc, miou, miou target, learning rate, scale
2
+ 0, 0.47860, 0.26535, 0.21325, 0.00000, 0.18577, 0.91389, 0.92962, 0.93804, 0.89485, 0.66914, 0.59275, 0.00100
3
+ 1, 0.47600, 0.26278, 0.21322, 0.00000, 0.18962, 0.91469, 0.92976, 0.93690, 0.87361, 0.65824, 0.58534, 0.00099
4
+ 2, 0.46914, 0.25802, 0.21112, 0.00000, 0.19855, 0.91601, 0.93019, 0.93387, 0.86212, 0.65918, 0.57476, 0.00098
5
+ 3, 0.46348, 0.25399, 0.20949, 0.00000, 0.18837, 0.91714, 0.93057, 0.93716, 0.85770, 0.66612, 0.58429, 0.00097
6
+ 4, 0.45820, 0.25092, 0.20728, 0.00000, 0.18779, 0.91799, 0.93142, 0.93743, 0.89139, 0.66808, 0.61453, 0.00096
7
+ 5, 0.45717, 0.24933, 0.20783, 0.00000, 0.18758, 0.91846, 0.93127, 0.93776, 0.87855, 0.66381, 0.59846, 0.00095
8
+ 6, 0.45298, 0.24680, 0.20617, 0.00000, 0.19091, 0.91908, 0.93169, 0.93679, 0.83322, 0.66304, 0.57809, 0.00095
9
+ 7, 0.45279, 0.24676, 0.20603, 0.00000, 0.19042, 0.91930, 0.93156, 0.93694, 0.86092, 0.65965, 0.56162, 0.00094
10
+ 8, 0.44968, 0.24519, 0.20450, 0.00000, 0.19087, 0.91922, 0.93214, 0.93600, 0.89198, 0.66090, 0.59506, 0.00093
11
+ 9, 0.45072, 0.24539, 0.20533, 0.00000, 0.18684, 0.91957, 0.93191, 0.93786, 0.88175, 0.66562, 0.59654, 0.00092
12
+ 10, 0.44549, 0.24277, 0.20272, 0.00000, 0.18821, 0.92036, 0.93263, 0.93713, 0.86189, 0.67141, 0.59039, 0.00091
13
+ 11, 0.44609, 0.24359, 0.20250, 0.00000, 0.18608, 0.92010, 0.93279, 0.93807, 0.87082, 0.67109, 0.59183, 0.00090
14
+ 12, 0.44072, 0.23873, 0.20199, 0.00000, 0.18815, 0.92172, 0.93285, 0.93729, 0.86558, 0.66642, 0.57659, 0.00089
15
+ 13, 0.43872, 0.23787, 0.20085, 0.00000, 0.18561, 0.92195, 0.93328, 0.93812, 0.86947, 0.66966, 0.59792, 0.00088
16
+ 14, 0.43662, 0.23699, 0.19962, 0.00000, 0.18694, 0.92217, 0.93360, 0.93780, 0.84101, 0.67187, 0.58277, 0.00087
17
+ 15, 0.43396, 0.23585, 0.19811, 0.00000, 0.18705, 0.92237, 0.93401, 0.93774, 0.87798, 0.66948, 0.60338, 0.00086
18
+ 16, 0.43472, 0.23530, 0.19943, 0.00000, 0.18728, 0.92259, 0.93359, 0.93752, 0.84936, 0.66290, 0.57747, 0.00085
19
+ 17, 0.43405, 0.23533, 0.19872, 0.00000, 0.18761, 0.92237, 0.93388, 0.93760, 0.84073, 0.66023, 0.57101, 0.00085
20
+ 18, 0.43167, 0.23351, 0.19816, 0.00000, 0.18458, 0.92294, 0.93394, 0.93872, 0.87831, 0.66862, 0.59824, 0.00084
21
+ 19, 0.42833, 0.23233, 0.19600, 0.00000, 0.18612, 0.92351, 0.93470, 0.93850, 0.86918, 0.67185, 0.59875, 0.00083
22
+ 20, 0.42707, 0.23034, 0.19673, 0.00000, 0.18545, 0.92389, 0.93460, 0.93866, 0.86547, 0.67208, 0.59176, 0.00082
23
+ 21, 0.42445, 0.22959, 0.19485, 0.00000, 0.18368, 0.92416, 0.93511, 0.93899, 0.85953, 0.67192, 0.59047, 0.00081
24
+ 22, 0.42344, 0.22852, 0.19492, 0.00000, 0.18422, 0.92436, 0.93486, 0.93911, 0.83118, 0.67486, 0.58514, 0.00080
25
+ 23, 0.42344, 0.22903, 0.19440, 0.00000, 0.18311, 0.92445, 0.93524, 0.93916, 0.87359, 0.67559, 0.60616, 0.00079
26
+ 24, 0.42154, 0.22765, 0.19389, 0.00000, 0.18413, 0.92461, 0.93530, 0.93902, 0.86913, 0.67451, 0.60064, 0.00078
27
+ 25, 0.42188, 0.22779, 0.19409, 0.00000, 0.18588, 0.92454, 0.93528, 0.93864, 0.85013, 0.67096, 0.58027, 0.00077
28
+ 26, 0.42110, 0.22721, 0.19389, 0.00000, 0.18747, 0.92507, 0.93538, 0.93808, 0.86996, 0.66909, 0.58182, 0.00076
29
+ 27, 0.41899, 0.22587, 0.19313, 0.00000, 0.18643, 0.92514, 0.93546, 0.93849, 0.87732, 0.67491, 0.58339, 0.00075
30
+ 28, 0.41664, 0.22496, 0.19168, 0.00000, 0.18407, 0.92557, 0.93610, 0.93911, 0.86571, 0.67354, 0.57878, 0.00074
31
+ 29, 0.41564, 0.22442, 0.19121, 0.00000, 0.18345, 0.92581, 0.93606, 0.93893, 0.87249, 0.67514, 0.58757, 0.00073
32
+ 30, 0.41535, 0.22438, 0.19097, 0.00000, 0.18257, 0.92584, 0.93611, 0.93938, 0.87991, 0.67150, 0.60438, 0.00073
33
+ 31, 0.41221, 0.22149, 0.19072, 0.00000, 0.18306, 0.92640, 0.93618, 0.93925, 0.90273, 0.67586, 0.60745, 0.00072
34
+ 32, 0.41469, 0.22428, 0.19041, 0.00000, 0.18390, 0.92577, 0.93626, 0.93937, 0.86409, 0.66868, 0.59158, 0.00071
35
+ 33, 0.41164, 0.22194, 0.18970, 0.00000, 0.18262, 0.92650, 0.93666, 0.93937, 0.88495, 0.67780, 0.60477, 0.00070
36
+ 34, 0.40884, 0.21999, 0.18885, 0.00000, 0.18455, 0.92715, 0.93684, 0.93879, 0.86336, 0.67512, 0.58531, 0.00069
37
+ 35, 0.41045, 0.22080, 0.18965, 0.00000, 0.18328, 0.92690, 0.93653, 0.93951, 0.85643, 0.67643, 0.58311, 0.00068
38
+ 36, 0.40918, 0.22080, 0.18838, 0.00000, 0.18175, 0.92682, 0.93689, 0.93999, 0.85854, 0.67598, 0.58295, 0.00067
39
+ 37, 0.41023, 0.22077, 0.18946, 0.00000, 0.18308, 0.92672, 0.93670, 0.93936, 0.86956, 0.67319, 0.58064, 0.00066
40
+ 38, 0.40801, 0.22006, 0.18795, 0.00000, 0.18304, 0.92703, 0.93706, 0.93929, 0.86098, 0.67400, 0.59185, 0.00065
41
+ 39, 0.40743, 0.21968, 0.18775, 0.00000, 0.18155, 0.92686, 0.93705, 0.94009, 0.87171, 0.67684, 0.58948, 0.00064
42
+ 40, 0.40498, 0.21812, 0.18686, 0.00000, 0.18250, 0.92771, 0.93738, 0.93958, 0.87080, 0.67551, 0.59924, 0.00063
43
+ 41, 0.40395, 0.21682, 0.18712, 0.00000, 0.18447, 0.92793, 0.93725, 0.93977, 0.85394, 0.66982, 0.58330, 0.00062
44
+ 42, 0.40509, 0.21814, 0.18695, 0.00000, 0.18008, 0.92755, 0.93742, 0.94028, 0.87158, 0.67585, 0.59278, 0.00061
45
+ 43, 0.40156, 0.21641, 0.18515, 0.00000, 0.18048, 0.92840, 0.93795, 0.94030, 0.86039, 0.67172, 0.59328, 0.00060
46
+ 44, 0.40054, 0.21522, 0.18532, 0.00000, 0.18139, 0.92852, 0.93800, 0.93991, 0.85819, 0.67444, 0.58120, 0.00059
47
+ 45, 0.39984, 0.21489, 0.18495, 0.00000, 0.18018, 0.92865, 0.93793, 0.94051, 0.86551, 0.67783, 0.58537, 0.00058
48
+ 46, 0.40178, 0.21542, 0.18636, 0.00000, 0.18205, 0.92844, 0.93762, 0.93991, 0.85886, 0.67596, 0.57054, 0.00057
49
+ 47, 0.39825, 0.21347, 0.18478, 0.00000, 0.18105, 0.92891, 0.93790, 0.94001, 0.83657, 0.67489, 0.56313, 0.00056
50
+ 48, 0.39753, 0.21353, 0.18400, 0.00000, 0.17989, 0.92889, 0.93817, 0.94054, 0.86035, 0.67501, 0.59909, 0.00056
51
+ 49, 0.39587, 0.21233, 0.18354, 0.00000, 0.18147, 0.92932, 0.93837, 0.94013, 0.86478, 0.67342, 0.59433, 0.00055
52
+ 50, 0.39657, 0.21328, 0.18328, 0.00000, 0.18105, 0.92915, 0.93853, 0.94050, 0.85730, 0.67389, 0.57656, 0.00054
53
+ 51, 0.39506, 0.21177, 0.18329, 0.00000, 0.18121, 0.92951, 0.93848, 0.94019, 0.86620, 0.67514, 0.59081, 0.00053
54
+ 52, 0.39498, 0.21205, 0.18293, 0.00000, 0.18183, 0.92949, 0.93852, 0.94001, 0.85769, 0.67190, 0.59065, 0.00052
55
+ 53, 0.39484, 0.21217, 0.18267, 0.00000, 0.18026, 0.92942, 0.93864, 0.94046, 0.87286, 0.67558, 0.60169, 0.00051
56
+ 54, 0.39368, 0.21095, 0.18273, 0.00000, 0.18165, 0.92974, 0.93872, 0.94013, 0.87913, 0.66953, 0.60060, 0.00050
57
+ 55, 0.39273, 0.21009, 0.18264, 0.00000, 0.18230, 0.93007, 0.93864, 0.94013, 0.87498, 0.66900, 0.59977, 0.00049
58
+ 56, 0.39321, 0.21084, 0.18238, 0.00000, 0.18102, 0.92972, 0.93865, 0.94006, 0.86043, 0.67442, 0.59464, 0.00048
59
+ 57, 0.39127, 0.20902, 0.18225, 0.00000, 0.18293, 0.93037, 0.93869, 0.94038, 0.88069, 0.67413, 0.59622, 0.00047
60
+ 58, 0.39148, 0.20986, 0.18162, 0.00000, 0.17944, 0.93016, 0.93899, 0.94059, 0.87413, 0.67600, 0.60259, 0.00046
61
+ 59, 0.38792, 0.20736, 0.18056, 0.00000, 0.18068, 0.93099, 0.93928, 0.94024, 0.85492, 0.67455, 0.57992, 0.00045
62
+ 60, 0.38850, 0.20796, 0.18054, 0.00000, 0.18135, 0.93065, 0.93933, 0.94035, 0.88353, 0.67543, 0.60865, 0.00044
63
+ 61, 0.38960, 0.20825, 0.18135, 0.00000, 0.18388, 0.93059, 0.93907, 0.93970, 0.86642, 0.66897, 0.59318, 0.00043
64
+ 62, 0.38809, 0.20677, 0.18132, 0.00000, 0.17926, 0.93119, 0.93907, 0.94109, 0.87365, 0.68002, 0.60406, 0.00042
65
+ 63, 0.38790, 0.20767, 0.18023, 0.00000, 0.18038, 0.93068, 0.93940, 0.94059, 0.87699, 0.67581, 0.60985, 0.00041
66
+ 64, 0.38744, 0.20713, 0.18030, 0.00000, 0.17935, 0.93075, 0.93938, 0.94097, 0.88003, 0.67998, 0.59846, 0.00040
67
+ 65, 0.38727, 0.20715, 0.18011, 0.00000, 0.18257, 0.93106, 0.93935, 0.94036, 0.87738, 0.67453, 0.59581, 0.00039
68
+ 66, 0.38606, 0.20681, 0.17925, 0.00000, 0.18012, 0.93110, 0.93957, 0.94057, 0.87626, 0.67956, 0.60791, 0.00038
69
+ 67, 0.38636, 0.20648, 0.17989, 0.00000, 0.18224, 0.93121, 0.93940, 0.94016, 0.87790, 0.67647, 0.58523, 0.00037
70
+ 68, 0.38474, 0.20518, 0.17956, 0.00000, 0.17936, 0.93163, 0.93955, 0.94102, 0.87402, 0.68207, 0.60430, 0.00036
71
+ 69, 0.38501, 0.20531, 0.17970, 0.00000, 0.17834, 0.93154, 0.93953, 0.94120, 0.87139, 0.68292, 0.60774, 0.00035
72
+ 70, 0.38438, 0.20559, 0.17879, 0.00000, 0.17961, 0.93135, 0.93977, 0.94118, 0.86768, 0.67500, 0.59822, 0.00034
73
+ 71, 0.38320, 0.20405, 0.17916, 0.00000, 0.18011, 0.93193, 0.93968, 0.94069, 0.86822, 0.67688, 0.58747, 0.00033
74
+ 72, 0.38207, 0.20432, 0.17775, 0.00000, 0.17995, 0.93180, 0.94002, 0.94071, 0.86368, 0.67688, 0.58444, 0.00032
75
+ 73, 0.38376, 0.20493, 0.17884, 0.00000, 0.17908, 0.93135, 0.93969, 0.94096, 0.85978, 0.67754, 0.60385, 0.00031
76
+ 74, 0.38251, 0.20423, 0.17828, 0.00000, 0.17882, 0.93170, 0.94006, 0.94101, 0.87405, 0.67625, 0.60557, 0.00030
77
+ 75, 0.38324, 0.20459, 0.17865, 0.00000, 0.17967, 0.93167, 0.93997, 0.94096, 0.86792, 0.67584, 0.59835, 0.00029
78
+ 76, 0.38342, 0.20457, 0.17885, 0.00000, 0.17979, 0.93185, 0.93969, 0.94062, 0.87802, 0.67491, 0.58739, 0.00028
79
+ 77, 0.38033, 0.20308, 0.17725, 0.00000, 0.17961, 0.93214, 0.94034, 0.94076, 0.87386, 0.67722, 0.57902, 0.00027
80
+ 78, 0.38123, 0.20320, 0.17804, 0.00000, 0.17994, 0.93212, 0.93984, 0.94082, 0.86430, 0.67714, 0.57384, 0.00026
81
+ 79, 0.38178, 0.20380, 0.17798, 0.00000, 0.17851, 0.93194, 0.94012, 0.94109, 0.87057, 0.67676, 0.60354, 0.00025
82
+ 80, 0.38059, 0.20277, 0.17782, 0.00000, 0.17901, 0.93223, 0.94016, 0.94080, 0.87881, 0.67489, 0.60263, 0.00023
83
+ 81, 0.37907, 0.20206, 0.17701, 0.00000, 0.18040, 0.93255, 0.94036, 0.94102, 0.86264, 0.67672, 0.57829, 0.00022
84
+ 82, 0.38092, 0.20285, 0.17807, 0.00000, 0.17867, 0.93240, 0.94011, 0.94105, 0.86576, 0.67962, 0.59706, 0.00021
85
+ 83, 0.37948, 0.20210, 0.17738, 0.00000, 0.17795, 0.93255, 0.94018, 0.94147, 0.83180, 0.68341, 0.57852, 0.00020
86
+ 84, 0.38087, 0.20382, 0.17705, 0.00000, 0.17904, 0.93195, 0.94038, 0.94122, 0.86398, 0.67784, 0.58942, 0.00019
87
+ 85, 0.37926, 0.20213, 0.17714, 0.00000, 0.18043, 0.93256, 0.94037, 0.94091, 0.87901, 0.67547, 0.58925, 0.00018
88
+ 86, 0.38043, 0.20272, 0.17771, 0.00000, 0.17925, 0.93213, 0.94007, 0.94107, 0.88814, 0.67653, 0.60097, 0.00017
89
+ 87, 0.37738, 0.20143, 0.17596, 0.00000, 0.17847, 0.93259, 0.94073, 0.94153, 0.86368, 0.68106, 0.59145, 0.00016
90
+ 88, 0.37705, 0.20063, 0.17642, 0.00000, 0.17918, 0.93288, 0.94055, 0.94119, 0.87545, 0.68189, 0.58553, 0.00015
91
+ 89, 0.37861, 0.20170, 0.17691, 0.00000, 0.17967, 0.93263, 0.94042, 0.94075, 0.85885, 0.67961, 0.58636, 0.00014
92
+ 90, 0.37729, 0.20107, 0.17622, 0.00000, 0.17888, 0.93271, 0.94064, 0.94143, 0.85468, 0.68040, 0.59163, 0.00013
93
+ 91, 0.37801, 0.20170, 0.17631, 0.00000, 0.17808, 0.93274, 0.94052, 0.94146, 0.86190, 0.68245, 0.59350, 0.00011
94
+ 92, 0.37649, 0.20020, 0.17629, 0.00000, 0.18003, 0.93304, 0.94048, 0.94073, 0.85648, 0.67371, 0.57969, 0.00010
95
+ 93, 0.37815, 0.20094, 0.17721, 0.00000, 0.17841, 0.93286, 0.94028, 0.94133, 0.87046, 0.68255, 0.59970, 0.00009
96
+ 94, 0.37677, 0.20067, 0.17610, 0.00000, 0.17766, 0.93299, 0.94072, 0.94152, 0.86400, 0.68113, 0.59259, 0.00008
97
+ 95, 0.37808, 0.20167, 0.17641, 0.00000, 0.17767, 0.93251, 0.94048, 0.94163, 0.85854, 0.68195, 0.58914, 0.00007
98
+ 96, 0.37629, 0.20009, 0.17620, 0.00000, 0.17974, 0.93317, 0.94064, 0.94091, 0.86335, 0.68068, 0.59827, 0.00006
99
+ 97, 0.37910, 0.20193, 0.17717, 0.00000, 0.17913, 0.93256, 0.94028, 0.94092, 0.85852, 0.67857, 0.58898, 0.00004
100
+ 98, 0.37814, 0.20118, 0.17697, 0.00000, 0.17804, 0.93259, 0.94022, 0.94132, 0.86896, 0.68226, 0.60344, 0.00003
101
+ 99, 0.37698, 0.20082, 0.17616, 0.00000, 0.17749, 0.93287, 0.94062, 0.94158, 0.86999, 0.68284, 0.60186, 0.00002
fog2/logs/target_class_iou_65.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 64
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.975
6
+ sidewalk : 0.801
7
+ building : 0.887
8
+ wall : 0.455
9
+ fence : 0.493
10
+ pole : 0.446
11
+ traffic light : 0.469
12
+ traffic sign : 0.609
13
+ vegetation : 0.893
14
+ terrain : 0.558
15
+ sky : 0.931
16
+ person : 0.693
17
+ rider : 0.454
18
+ car : 0.915
19
+ truck : 0.710
20
+ bus : 0.794
21
+ train : 0.710
22
+ motorcycle : 0.491
23
+ bicycle : 0.637
24
+ ---------------------
25
+ Score Average : 0.680
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 64
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.943
32
+ sidewalk : 0.773
33
+ building : 0.754
34
+ wall : 0.420
35
+ fence : 0.366
36
+ pole : 0.310
37
+ traffic light : 0.526
38
+ traffic sign : 0.481
39
+ vegetation : 0.774
40
+ terrain : 0.435
41
+ sky : 0.824
42
+ person : 0.506
43
+ rider : 0.414
44
+ car : 0.809
45
+ truck : 0.611
46
+ bus : 0.713
47
+ train : 0.756
48
+ motorcycle : 0.639
49
+ bicycle : 0.316
50
+ ---------------------
51
+ Score Average : 0.598
52
+ ---------------------
fog2/logs/target_confmat_cs_65.pdf ADDED
Binary file (25.4 kB). View file
 
fog2/logs/target_confmat_target_65.pdf ADDED
Binary file (25.3 kB). View file
 
fog2/weights/best_weights.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf746748ebc9001bb586694138b82b7522a8dd68e9ad95df51537da233ca60e4
3
+ size 159407526
fog2/weights/best_weights_target.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7328fdd63fb6fe2991e7c186f54a9218b16d1388b1ef4067b5a7bf4b9d6ff3d0
3
+ size 159410194
fog2/weights/checkpoint.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f35a7018a9ecaa20c57a39a708e82ea746eea1b81fb72ff4b6407503bb4dc906
3
+ size 318638251
fog2/weights/weights_65.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecf2d914a95e00d6485e7ddcf3b2658f140caca707601dd8fdbfad3c7eda6c7a
3
+ size 159406782
game1/exp_args.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Args:
2
+ synth_path = '/data/shared/luojun/game_intermediate/leftImg8bit/train/'
3
+ source_path = '/data/shared/luojun/cityscapes/'
4
+ target_type = 'gta5'
5
+ target_path = '/data/shared/luojun/GTA5'
6
+ experiment_name = '/data/shared/luojun/runs/game1'
7
+ stop_epoch = 0
8
+ debug = False
9
+ load = None
10
+ resume = None
11
+ epochs = 100
12
+ seed = 42
13
+ sim_weight = 0.0
14
+ model = 'resnet-50'
15
+ ssl = 'sim'
16
+ optimizer = 'sgd'
17
+ momentum = 0.9
18
+ wd = 0.0001
19
+ schedular = 'poly'
20
+ batch_size = 4
21
+ lr_head = 0.001
22
+ lr = 0.001
23
+ target_size = (512, 1024)
24
+ crop = 'both_random'
25
+ crop_size = (384, 768)
26
+ blur = False
27
+ cutout = False
28
+ jitter = 0.5
29
+ scale = 0.0
30
+ xs = False
31
+ workers = 4
game1/log.txt ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Model pushed to 1 GPU(s), type NVIDIA GeForce RTX 3090.
2
+ --- Training ---
3
+ Epoch 0 train loss: 1.5200, acc: 0.7868
4
+ --- Validation - Source ---
5
+ * Acc 0.875
6
+ --- Validation - Target ---
7
+ * Acc 0.757
8
+ mIoU improved from 0.0000 to 0.2504.
9
+ mIoU improved from 0.0000 to 0.3533.
10
+ --- Training ---
11
+ Epoch 1 train loss: 0.9484, acc: 0.8577
12
+ --- Validation - Source ---
13
+ * Acc 0.892
14
+ --- Validation - Target ---
15
+ * Acc 0.767
16
+ mIoU improved from 0.2504 to 0.3103.
17
+ mIoU improved from 0.3533 to 0.4474.
18
+ --- Training ---
19
+ Epoch 2 train loss: 0.8383, acc: 0.8724
20
+ --- Validation - Source ---
21
+ * Acc 0.901
22
+ --- Validation - Target ---
23
+ * Acc 0.781
24
+ mIoU improved from 0.3103 to 0.3469.
25
+ mIoU improved from 0.4474 to 0.4868.
26
+ --- Training ---
27
+ Epoch 3 train loss: 0.7685, acc: 0.8820
28
+ --- Validation - Source ---
29
+ * Acc 0.903
30
+ --- Validation - Target ---
31
+ * Acc 0.784
32
+ mIoU improved from 0.3469 to 0.3595.
33
+ mIoU improved from 0.4868 to 0.5127.
34
+ --- Training ---
35
+ Epoch 4 train loss: 0.7200, acc: 0.8890
36
+ --- Validation - Source ---
37
+ * Acc 0.910
38
+ --- Validation - Target ---
39
+ * Acc 0.787
40
+ mIoU improved from 0.3595 to 0.3651.
41
+ mIoU improved from 0.5127 to 0.5264.
42
+ --- Training ---
43
+ Epoch 5 train loss: 0.6844, acc: 0.8944
44
+ --- Validation - Source ---
45
+ * Acc 0.913
46
+ --- Validation - Target ---
47
+ * Acc 0.796
48
+ mIoU improved from 0.3651 to 0.3788.
49
+ mIoU improved from 0.5264 to 0.5408.
50
+ --- Training ---
51
+ Epoch 6 train loss: 0.6579, acc: 0.8982
52
+ --- Validation - Source ---
53
+ * Acc 0.914
54
+ --- Validation - Target ---
55
+ * Acc 0.796
56
+ mIoU improved from 0.3788 to 0.3839.
57
+ mIoU improved from 0.5408 to 0.5522.
58
+ --- Training ---
59
+ Epoch 7 train loss: 0.6304, acc: 0.9018
60
+ --- Validation - Source ---
61
+ * Acc 0.914
62
+ --- Validation - Target ---
63
+ * Acc 0.789
64
+ --- Training ---
65
+ Epoch 8 train loss: 0.6128, acc: 0.9042
66
+ --- Validation - Source ---
67
+ * Acc 0.916
68
+ --- Validation - Target ---
69
+ * Acc 0.799
70
+ mIoU improved from 0.3839 to 0.3853.
71
+ mIoU improved from 0.5522 to 0.5619.
72
+ --- Training ---
73
+ Epoch 9 train loss: 0.6024, acc: 0.9064
74
+ --- Validation - Source ---
75
+ * Acc 0.918
76
+ --- Validation - Target ---
77
+ * Acc 0.791
78
+ mIoU improved from 0.3853 to 0.3906.
79
+ mIoU improved from 0.5619 to 0.5683.
80
+ --- Training ---
81
+ Epoch 10 train loss: 0.5814, acc: 0.9092
82
+ --- Validation - Source ---
83
+ * Acc 0.919
84
+ --- Validation - Target ---
85
+ * Acc 0.801
86
+ mIoU improved from 0.3906 to 0.4018.
87
+ mIoU improved from 0.5683 to 0.5830.
88
+ --- Training ---
89
+ Epoch 11 train loss: 0.5728, acc: 0.9103
90
+ --- Validation - Source ---
91
+ * Acc 0.921
92
+ --- Validation - Target ---
93
+ * Acc 0.798
94
+ --- Training ---
95
+ Epoch 12 train loss: 0.5575, acc: 0.9129
96
+ --- Validation - Source ---
97
+ * Acc 0.921
98
+ --- Validation - Target ---
99
+ * Acc 0.791
100
+ mIoU improved from 0.5830 to 0.5876.
101
+ --- Training ---
102
+ Epoch 13 train loss: 0.5468, acc: 0.9144
103
+ --- Validation - Source ---
104
+ * Acc 0.921
105
+ --- Validation - Target ---
106
+ * Acc 0.800
107
+ --- Training ---
108
+ Epoch 14 train loss: 0.5379, acc: 0.9159
109
+ --- Validation - Source ---
110
+ * Acc 0.921
111
+ --- Validation - Target ---
112
+ * Acc 0.801
113
+ mIoU improved from 0.5876 to 0.5963.
114
+ --- Training ---
115
+ Epoch 15 train loss: 0.5325, acc: 0.9167
116
+ --- Validation - Source ---
117
+ * Acc 0.923
118
+ --- Validation - Target ---
119
+ * Acc 0.803
120
+ --- Training ---
121
+ Epoch 16 train loss: 0.5242, acc: 0.9179
122
+ --- Validation - Source ---
123
+ * Acc 0.925
124
+ --- Validation - Target ---
125
+ * Acc 0.797
126
+ mIoU improved from 0.5963 to 0.6015.
127
+ --- Training ---
128
+ Epoch 17 train loss: 0.5184, acc: 0.9184
129
+ --- Validation - Source ---
130
+ * Acc 0.924
131
+ --- Validation - Target ---
132
+ * Acc 0.801
133
+ mIoU improved from 0.4018 to 0.4021.
134
+ mIoU improved from 0.6015 to 0.6067.
135
+ --- Training ---
136
+ Epoch 18 train loss: 0.5084, acc: 0.9199
137
+ --- Validation - Source ---
138
+ * Acc 0.926
139
+ --- Validation - Target ---
140
+ * Acc 0.800
141
+ mIoU improved from 0.6067 to 0.6100.
142
+ --- Training ---
143
+ Epoch 19 train loss: 0.5024, acc: 0.9208
144
+ --- Validation - Source ---
145
+ * Acc 0.925
146
+ --- Validation - Target ---
147
+ * Acc 0.803
148
+ mIoU improved from 0.4021 to 0.4051.
149
+ mIoU improved from 0.6100 to 0.6133.
150
+ --- Training ---
151
+ Epoch 20 train loss: 0.4986, acc: 0.9213
152
+ --- Validation - Source ---
153
+ * Acc 0.928
154
+ --- Validation - Target ---
155
+ * Acc 0.806
156
+ mIoU improved from 0.4051 to 0.4121.
157
+ mIoU improved from 0.6133 to 0.6199.
158
+ --- Training ---
159
+ Epoch 21 train loss: 0.4911, acc: 0.9227
160
+ --- Validation - Source ---
161
+ * Acc 0.927
162
+ --- Validation - Target ---
163
+ * Acc 0.805
164
+ --- Training ---
165
+ Epoch 22 train loss: 0.4875, acc: 0.9228
166
+ --- Validation - Source ---
167
+ * Acc 0.929
168
+ --- Validation - Target ---
169
+ * Acc 0.807
170
+ mIoU improved from 0.4121 to 0.4132.
171
+ mIoU improved from 0.6199 to 0.6277.
172
+ --- Training ---
173
+ Epoch 23 train loss: 0.4814, acc: 0.9242
174
+ --- Validation - Source ---
175
+ * Acc 0.928
176
+ --- Validation - Target ---
177
+ * Acc 0.808
178
+ --- Training ---
179
+ Epoch 24 train loss: 0.4786, acc: 0.9245
180
+ --- Validation - Source ---
181
+ * Acc 0.927
182
+ --- Validation - Target ---
183
+ * Acc 0.797
184
+ --- Training ---
185
+ Epoch 25 train loss: 0.4762, acc: 0.9247
186
+ --- Validation - Source ---
187
+ * Acc 0.929
188
+ --- Validation - Target ---
189
+ * Acc 0.804
190
+ --- Training ---
191
+ Epoch 26 train loss: 0.4721, acc: 0.9255
192
+ --- Validation - Source ---
193
+ * Acc 0.929
194
+ --- Validation - Target ---
195
+ * Acc 0.804
196
+ --- Training ---
197
+ Epoch 27 train loss: 0.4659, acc: 0.9263
198
+ --- Validation - Source ---
199
+ * Acc 0.929
200
+ --- Validation - Target ---
201
+ * Acc 0.804
202
+ mIoU improved from 0.6277 to 0.6303.
203
+ --- Training ---
204
+ Epoch 28 train loss: 0.4605, acc: 0.9271
205
+ --- Validation - Source ---
206
+ * Acc 0.929
207
+ --- Validation - Target ---
208
+ * Acc 0.804
209
+ --- Training ---
210
+ Epoch 29 train loss: 0.4602, acc: 0.9272
211
+ --- Validation - Source ---
212
+ * Acc 0.929
213
+ --- Validation - Target ---
214
+ * Acc 0.796
215
+ mIoU improved from 0.6303 to 0.6324.
216
+ --- Training ---
217
+ Epoch 30 train loss: 0.4554, acc: 0.9277
218
+ --- Validation - Source ---
219
+ * Acc 0.931
220
+ --- Validation - Target ---
221
+ * Acc 0.806
222
+ mIoU improved from 0.6324 to 0.6327.
223
+ --- Training ---
224
+ Epoch 31 train loss: 0.4535, acc: 0.9282
225
+ --- Validation - Source ---
226
+ * Acc 0.930
227
+ --- Validation - Target ---
228
+ * Acc 0.808
229
+ mIoU improved from 0.6327 to 0.6356.
230
+ --- Training ---
231
+ Epoch 32 train loss: 0.4504, acc: 0.9283
232
+ --- Validation - Source ---
233
+ * Acc 0.930
234
+ --- Validation - Target ---
235
+ * Acc 0.802
236
+ mIoU improved from 0.4132 to 0.4160.
237
+ --- Training ---
238
+ Epoch 33 train loss: 0.4459, acc: 0.9292
239
+ --- Validation - Source ---
240
+ * Acc 0.931
241
+ --- Validation - Target ---
242
+ * Acc 0.806
243
+ mIoU improved from 0.4160 to 0.4173.
244
+ mIoU improved from 0.6356 to 0.6406.
245
+ --- Training ---
246
+ Epoch 34 train loss: 0.4439, acc: 0.9297
247
+ --- Validation - Source ---
248
+ * Acc 0.931
249
+ --- Validation - Target ---
250
+ * Acc 0.800
251
+ --- Training ---
252
+ Epoch 35 train loss: 0.4425, acc: 0.9297
253
+ --- Validation - Source ---
254
+ * Acc 0.931
255
+ --- Validation - Target ---
256
+ * Acc 0.804
257
+ --- Training ---
258
+ Epoch 36 train loss: 0.4397, acc: 0.9301
259
+ --- Validation - Source ---
260
+ * Acc 0.931
261
+ --- Validation - Target ---
262
+ * Acc 0.795
263
+ --- Training ---
264
+ Epoch 37 train loss: 0.4415, acc: 0.9302
265
+ --- Validation - Source ---
266
+ * Acc 0.932
267
+ --- Validation - Target ---
268
+ * Acc 0.807
269
+ mIoU improved from 0.6406 to 0.6423.
270
+ --- Training ---
271
+ Epoch 38 train loss: 0.4354, acc: 0.9304
272
+ --- Validation - Source ---
273
+ * Acc 0.932
274
+ --- Validation - Target ---
275
+ * Acc 0.803
276
+ --- Training ---
277
+ Epoch 39 train loss: 0.4349, acc: 0.9307
278
+ --- Validation - Source ---
279
+ * Acc 0.934
280
+ --- Validation - Target ---
281
+ * Acc 0.808
282
+ mIoU improved from 0.6423 to 0.6473.
283
+ --- Training ---
284
+ Epoch 40 train loss: 0.4304, acc: 0.9316
285
+ --- Validation - Source ---
286
+ * Acc 0.932
287
+ --- Validation - Target ---
288
+ * Acc 0.798
289
+ --- Training ---
290
+ Epoch 41 train loss: 0.4273, acc: 0.9318
291
+ --- Validation - Source ---
292
+ * Acc 0.933
293
+ --- Validation - Target ---
294
+ * Acc 0.810
295
+ --- Training ---
296
+ Epoch 42 train loss: 0.4275, acc: 0.9322
297
+ --- Validation - Source ---
298
+ * Acc 0.933
299
+ --- Validation - Target ---
300
+ * Acc 0.803
301
+ --- Training ---
302
+ Epoch 43 train loss: 0.4224, acc: 0.9327
303
+ --- Validation - Source ---
304
+ * Acc 0.934
305
+ --- Validation - Target ---
306
+ * Acc 0.806
307
+ mIoU improved from 0.4173 to 0.4206.
308
+ --- Training ---
309
+ Epoch 44 train loss: 0.4208, acc: 0.9329
310
+ --- Validation - Source ---
311
+ * Acc 0.934
312
+ --- Validation - Target ---
313
+ * Acc 0.805
314
+ --- Training ---
315
+ Epoch 45 train loss: 0.4195, acc: 0.9333
316
+ --- Validation - Source ---
317
+ * Acc 0.934
318
+ --- Validation - Target ---
319
+ * Acc 0.808
320
+ mIoU improved from 0.4206 to 0.4212.
321
+ mIoU improved from 0.6473 to 0.6476.
322
+ --- Training ---
323
+ Epoch 46 train loss: 0.4211, acc: 0.9328
324
+ --- Validation - Source ---
325
+ * Acc 0.934
326
+ --- Validation - Target ---
327
+ * Acc 0.803
328
+ mIoU improved from 0.6476 to 0.6486.
329
+ --- Training ---
330
+ Epoch 47 train loss: 0.4182, acc: 0.9333
331
+ --- Validation - Source ---
332
+ * Acc 0.934
333
+ --- Validation - Target ---
334
+ * Acc 0.807
335
+ mIoU improved from 0.6486 to 0.6488.
336
+ --- Training ---
337
+ Epoch 48 train loss: 0.4168, acc: 0.9334
338
+ --- Validation - Source ---
339
+ * Acc 0.935
340
+ --- Validation - Target ---
341
+ * Acc 0.807
342
+ mIoU improved from 0.6488 to 0.6501.
343
+ --- Training ---
344
+ Epoch 49 train loss: 0.4129, acc: 0.9342
345
+ --- Validation - Source ---
346
+ * Acc 0.933
347
+ --- Validation - Target ---
348
+ * Acc 0.799
349
+ --- Training ---
350
+ Epoch 50 train loss: 0.4126, acc: 0.9341
351
+ --- Validation - Source ---
352
+ * Acc 0.934
353
+ --- Validation - Target ---
354
+ * Acc 0.800
355
+ mIoU improved from 0.6501 to 0.6517.
356
+ --- Training ---
357
+ Epoch 51 train loss: 0.4093, acc: 0.9346
358
+ --- Validation - Source ---
359
+ * Acc 0.935
360
+ --- Validation - Target ---
361
+ * Acc 0.811
362
+ mIoU improved from 0.6517 to 0.6580.
363
+ --- Training ---
364
+ Epoch 52 train loss: 0.4086, acc: 0.9348
365
+ --- Validation - Source ---
366
+ * Acc 0.935
367
+ --- Validation - Target ---
368
+ * Acc 0.804
369
+ --- Training ---
370
+ Epoch 53 train loss: 0.4099, acc: 0.9347
371
+ --- Validation - Source ---
372
+ * Acc 0.935
373
+ --- Validation - Target ---
374
+ * Acc 0.809
375
+ mIoU improved from 0.4212 to 0.4224.
376
+ --- Training ---
377
+ Epoch 54 train loss: 0.4068, acc: 0.9349
378
+ --- Validation - Source ---
379
+ * Acc 0.935
380
+ --- Validation - Target ---
381
+ * Acc 0.807
382
+ --- Training ---
383
+ Epoch 55 train loss: 0.4057, acc: 0.9353
384
+ --- Validation - Source ---
385
+ * Acc 0.935
386
+ --- Validation - Target ---
387
+ * Acc 0.813
388
+ --- Training ---
389
+ Epoch 56 train loss: 0.4057, acc: 0.9349
390
+ --- Validation - Source ---
391
+ * Acc 0.935
392
+ --- Validation - Target ---
393
+ * Acc 0.810
394
+ mIoU improved from 0.4224 to 0.4285.
395
+ --- Training ---
396
+ Epoch 57 train loss: 0.4042, acc: 0.9352
397
+ --- Validation - Source ---
398
+ * Acc 0.935
399
+ --- Validation - Target ---
400
+ * Acc 0.812
401
+ --- Training ---
402
+ Epoch 58 train loss: 0.4028, acc: 0.9356
403
+ --- Validation - Source ---
404
+ * Acc 0.935
405
+ --- Validation - Target ---
406
+ * Acc 0.810
407
+ --- Training ---
408
+ Epoch 59 train loss: 0.3997, acc: 0.9359
409
+ --- Validation - Source ---
410
+ * Acc 0.936
411
+ --- Validation - Target ---
412
+ * Acc 0.807
413
+ --- Training ---
414
+ Epoch 60 train loss: 0.3982, acc: 0.9364
415
+ --- Validation - Source ---
416
+ * Acc 0.935
417
+ --- Validation - Target ---
418
+ * Acc 0.807
419
+ --- Training ---
420
+ Epoch 61 train loss: 0.3996, acc: 0.9361
421
+ --- Validation - Source ---
422
+ * Acc 0.936
423
+ --- Validation - Target ---
424
+ * Acc 0.806
425
+ --- Training ---
426
+ Epoch 62 train loss: 0.3995, acc: 0.9362
427
+ --- Validation - Source ---
428
+ * Acc 0.937
429
+ --- Validation - Target ---
430
+ * Acc 0.810
431
+ mIoU improved from 0.4285 to 0.4310.
432
+ mIoU improved from 0.6580 to 0.6600.
433
+ --- Training ---
434
+ Epoch 63 train loss: 0.3963, acc: 0.9364
435
+ --- Validation - Source ---
436
+ * Acc 0.936
437
+ --- Validation - Target ---
438
+ * Acc 0.813
439
+ --- Training ---
440
+ Epoch 64 train loss: 0.3969, acc: 0.9363
441
+ --- Validation - Source ---
442
+ * Acc 0.937
443
+ --- Validation - Target ---
444
+ * Acc 0.814
445
+ mIoU improved from 0.6600 to 0.6608.
446
+ --- Training ---
447
+ Epoch 65 train loss: 0.3956, acc: 0.9367
448
+ --- Validation - Source ---
449
+ * Acc 0.935
450
+ --- Validation - Target ---
451
+ * Acc 0.802
452
+ --- Training ---
453
+ Epoch 66 train loss: 0.3934, acc: 0.9369
454
+ --- Validation - Source ---
455
+ * Acc 0.936
456
+ --- Validation - Target ---
457
+ * Acc 0.801
458
+ --- Training ---
459
+ Epoch 67 train loss: 0.3925, acc: 0.9373
460
+ --- Validation - Source ---
461
+ * Acc 0.935
462
+ --- Validation - Target ---
463
+ * Acc 0.804
464
+ --- Training ---
465
+ Epoch 68 train loss: 0.3912, acc: 0.9374
466
+ --- Validation - Source ---
467
+ * Acc 0.937
468
+ --- Validation - Target ---
469
+ * Acc 0.809
470
+ mIoU improved from 0.6608 to 0.6633.
471
+ --- Training ---
472
+ Epoch 69 train loss: 0.3915, acc: 0.9372
473
+ --- Validation - Source ---
474
+ * Acc 0.937
475
+ --- Validation - Target ---
476
+ * Acc 0.809
477
+ --- Training ---
478
+ Epoch 70 train loss: 0.3910, acc: 0.9372
479
+ --- Validation - Source ---
480
+ * Acc 0.937
481
+ --- Validation - Target ---
482
+ * Acc 0.811
483
+ --- Training ---
484
+ Epoch 71 train loss: 0.3914, acc: 0.9373
485
+ --- Validation - Source ---
486
+ * Acc 0.936
487
+ --- Validation - Target ---
488
+ * Acc 0.809
489
+ --- Training ---
490
+ Epoch 72 train loss: 0.3879, acc: 0.9377
491
+ --- Validation - Source ---
492
+ * Acc 0.936
493
+ --- Validation - Target ---
494
+ * Acc 0.808
495
+ --- Training ---
496
+ Epoch 73 train loss: 0.3885, acc: 0.9377
497
+ --- Validation - Source ---
498
+ * Acc 0.936
499
+ --- Validation - Target ---
500
+ * Acc 0.806
501
+ --- Training ---
502
+ Epoch 74 train loss: 0.3883, acc: 0.9377
503
+ --- Validation - Source ---
504
+ * Acc 0.937
505
+ --- Validation - Target ---
506
+ * Acc 0.807
507
+ mIoU improved from 0.4310 to 0.4317.
508
+ --- Training ---
509
+ Epoch 75 train loss: 0.3876, acc: 0.9378
510
+ --- Validation - Source ---
511
+ * Acc 0.937
512
+ --- Validation - Target ---
513
+ * Acc 0.808
514
+ mIoU improved from 0.6633 to 0.6637.
515
+ --- Training ---
516
+ Epoch 76 train loss: 0.3889, acc: 0.9376
517
+ --- Validation - Source ---
518
+ * Acc 0.936
519
+ --- Validation - Target ---
520
+ * Acc 0.804
521
+ --- Training ---
522
+ Epoch 77 train loss: 0.3834, acc: 0.9385
523
+ --- Validation - Source ---
524
+ * Acc 0.937
525
+ --- Validation - Target ---
526
+ * Acc 0.806
527
+ --- Training ---
528
+ Epoch 78 train loss: 0.3865, acc: 0.9379
529
+ --- Validation - Source ---
530
+ * Acc 0.937
531
+ --- Validation - Target ---
532
+ * Acc 0.812
533
+ --- Training ---
534
+ Epoch 79 train loss: 0.3868, acc: 0.9378
535
+ --- Validation - Source ---
536
+ * Acc 0.937
537
+ --- Validation - Target ---
538
+ * Acc 0.806
539
+ --- Training ---
540
+ Epoch 80 train loss: 0.3853, acc: 0.9382
541
+ --- Validation - Source ---
542
+ * Acc 0.938
543
+ --- Validation - Target ---
544
+ * Acc 0.806
545
+ --- Training ---
546
+ Epoch 81 train loss: 0.3808, acc: 0.9387
547
+ --- Validation - Source ---
548
+ * Acc 0.937
549
+ --- Validation - Target ---
550
+ * Acc 0.805
551
+ --- Training ---
552
+ Epoch 82 train loss: 0.3850, acc: 0.9384
553
+ --- Validation - Source ---
554
+ * Acc 0.937
555
+ --- Validation - Target ---
556
+ * Acc 0.810
557
+ mIoU improved from 0.6637 to 0.6653.
558
+ --- Training ---
559
+ Epoch 83 train loss: 0.3827, acc: 0.9387
560
+ --- Validation - Source ---
561
+ * Acc 0.938
562
+ --- Validation - Target ---
563
+ * Acc 0.804
564
+ mIoU improved from 0.6653 to 0.6659.
565
+ --- Training ---
566
+ Epoch 84 train loss: 0.3833, acc: 0.9385
567
+ --- Validation - Source ---
568
+ * Acc 0.937
569
+ --- Validation - Target ---
570
+ * Acc 0.809
571
+ --- Training ---
572
+ Epoch 85 train loss: 0.3831, acc: 0.9386
573
+ --- Validation - Source ---
574
+ * Acc 0.937
575
+ --- Validation - Target ---
576
+ * Acc 0.810
577
+ --- Training ---
578
+ Epoch 86 train loss: 0.3812, acc: 0.9387
579
+ --- Validation - Source ---
580
+ * Acc 0.937
581
+ --- Validation - Target ---
582
+ * Acc 0.810
583
+ --- Training ---
584
+ Epoch 87 train loss: 0.3797, acc: 0.9391
585
+ --- Validation - Source ---
586
+ * Acc 0.938
587
+ --- Validation - Target ---
588
+ * Acc 0.810
589
+ --- Training ---
590
+ Epoch 88 train loss: 0.3801, acc: 0.9390
591
+ --- Validation - Source ---
592
+ * Acc 0.937
593
+ --- Validation - Target ---
594
+ * Acc 0.808
595
+ --- Training ---
596
+ Epoch 89 train loss: 0.3806, acc: 0.9390
597
+ --- Validation - Source ---
598
+ * Acc 0.937
599
+ --- Validation - Target ---
600
+ * Acc 0.808
601
+ --- Training ---
602
+ Epoch 90 train loss: 0.3808, acc: 0.9388
603
+ --- Validation - Source ---
604
+ * Acc 0.938
605
+ --- Validation - Target ---
606
+ * Acc 0.813
607
+ mIoU improved from 0.6659 to 0.6685.
608
+ --- Training ---
609
+ Epoch 91 train loss: 0.3791, acc: 0.9391
610
+ --- Validation - Source ---
611
+ * Acc 0.937
612
+ --- Validation - Target ---
613
+ * Acc 0.808
614
+ --- Training ---
615
+ Epoch 92 train loss: 0.3796, acc: 0.9390
616
+ --- Validation - Source ---
617
+ * Acc 0.937
618
+ --- Validation - Target ---
619
+ * Acc 0.808
620
+ --- Training ---
621
+ Epoch 93 train loss: 0.3803, acc: 0.9390
622
+ --- Validation - Source ---
623
+ * Acc 0.938
624
+ --- Validation - Target ---
625
+ * Acc 0.806
626
+ --- Training ---
627
+ Epoch 94 train loss: 0.3775, acc: 0.9392
628
+ --- Validation - Source ---
629
+ * Acc 0.938
630
+ --- Validation - Target ---
631
+ * Acc 0.812
632
+ --- Training ---
633
+ Epoch 95 train loss: 0.3789, acc: 0.9391
634
+ --- Validation - Source ---
635
+ * Acc 0.938
636
+ --- Validation - Target ---
637
+ * Acc 0.812
638
+ --- Training ---
639
+ Epoch 96 train loss: 0.3768, acc: 0.9395
640
+ --- Validation - Source ---
641
+ * Acc 0.937
642
+ --- Validation - Target ---
643
+ * Acc 0.803
644
+ --- Training ---
645
+ Epoch 97 train loss: 0.3809, acc: 0.9388
646
+ --- Validation - Source ---
647
+ * Acc 0.937
648
+ --- Validation - Target ---
649
+ * Acc 0.809
650
+ --- Training ---
651
+ Epoch 98 train loss: 0.3805, acc: 0.9387
652
+ --- Validation - Source ---
653
+ * Acc 0.938
654
+ --- Validation - Target ---
655
+ * Acc 0.809
656
+ --- Training ---
657
+ Epoch 99 train loss: 0.3776, acc: 0.9393
658
+ --- Validation - Source ---
659
+ * Acc 0.938
660
+ --- Validation - Target ---
661
+ * Acc 0.811
662
+ Training complete in 736m 51s
663
+ Best mIoU target: 0.431737
game1/logs/best_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 90
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.971
6
+ sidewalk : 0.786
7
+ building : 0.883
8
+ wall : 0.407
9
+ fence : 0.476
10
+ pole : 0.404
11
+ traffic light : 0.442
12
+ traffic sign : 0.577
13
+ vegetation : 0.892
14
+ terrain : 0.558
15
+ sky : 0.923
16
+ person : 0.685
17
+ rider : 0.440
18
+ car : 0.912
19
+ truck : 0.727
20
+ bus : 0.782
21
+ train : 0.675
22
+ motorcycle : 0.508
23
+ bicycle : 0.655
24
+ ---------------------
25
+ Score Average : 0.669
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 90
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.768
32
+ sidewalk : 0.249
33
+ building : 0.800
34
+ wall : 0.374
35
+ fence : 0.144
36
+ pole : 0.314
37
+ traffic light : 0.333
38
+ traffic sign : 0.129
39
+ vegetation : 0.704
40
+ terrain : 0.301
41
+ sky : 0.869
42
+ person : 0.631
43
+ rider : 0.287
44
+ car : 0.736
45
+ truck : 0.568
46
+ bus : 0.298
47
+ train : 0.000
48
+ motorcycle : 0.436
49
+ bicycle : 0.231
50
+ ---------------------
51
+ Score Average : 0.430
52
+ ---------------------
game1/logs/best_confmat_cs.pdf ADDED
Binary file (25.6 kB). View file
 
game1/logs/best_confmat_target.pdf ADDED
Binary file (25.9 kB). View file
 
game1/logs/best_target_class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 74
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.970
6
+ sidewalk : 0.781
7
+ building : 0.883
8
+ wall : 0.433
9
+ fence : 0.482
10
+ pole : 0.420
11
+ traffic light : 0.435
12
+ traffic sign : 0.577
13
+ vegetation : 0.889
14
+ terrain : 0.539
15
+ sky : 0.923
16
+ person : 0.681
17
+ rider : 0.424
18
+ car : 0.909
19
+ truck : 0.705
20
+ bus : 0.749
21
+ train : 0.568
22
+ motorcycle : 0.506
23
+ bicycle : 0.649
24
+ ---------------------
25
+ Score Average : 0.659
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 74
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.762
32
+ sidewalk : 0.248
33
+ building : 0.791
34
+ wall : 0.393
35
+ fence : 0.137
36
+ pole : 0.334
37
+ traffic light : 0.332
38
+ traffic sign : 0.111
39
+ vegetation : 0.702
40
+ terrain : 0.284
41
+ sky : 0.879
42
+ person : 0.642
43
+ rider : 0.285
44
+ car : 0.747
45
+ truck : 0.547
46
+ bus : 0.346
47
+ train : 0.000
48
+ motorcycle : 0.421
49
+ bicycle : 0.243
50
+ ---------------------
51
+ Score Average : 0.432
52
+ ---------------------
game1/logs/best_target_confmat_cs.pdf ADDED
Binary file (25.3 kB). View file
 
game1/logs/best_target_confmat_target.pdf ADDED
Binary file (25.4 kB). View file
 
game1/logs/class_iou.txt ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---------------------
2
+ Epoch 99
3
+ classes IoU
4
+ ---------------------
5
+ road : 0.970
6
+ sidewalk : 0.783
7
+ building : 0.885
8
+ wall : 0.450
9
+ fence : 0.493
10
+ pole : 0.423
11
+ traffic light : 0.448
12
+ traffic sign : 0.585
13
+ vegetation : 0.892
14
+ terrain : 0.551
15
+ sky : 0.923
16
+ person : 0.684
17
+ rider : 0.435
18
+ car : 0.911
19
+ truck : 0.706
20
+ bus : 0.772
21
+ train : 0.608
22
+ motorcycle : 0.500
23
+ bicycle : 0.650
24
+ ---------------------
25
+ Score Average : 0.667
26
+ ---------------------
27
+ ---------------------
28
+ Epoch 99
29
+ classes IoU
30
+ ---------------------
31
+ road : 0.766
32
+ sidewalk : 0.265
33
+ building : 0.795
34
+ wall : 0.384
35
+ fence : 0.152
36
+ pole : 0.335
37
+ traffic light : 0.345
38
+ traffic sign : 0.106
39
+ vegetation : 0.698
40
+ terrain : 0.296
41
+ sky : 0.871
42
+ person : 0.623
43
+ rider : 0.262
44
+ car : 0.739
45
+ truck : 0.549
46
+ bus : 0.328
47
+ train : 0.000
48
+ motorcycle : 0.409
49
+ bicycle : 0.213
50
+ ---------------------
51
+ Score Average : 0.428
52
+ ---------------------
game1/logs/confmat_cs.pdf ADDED
Binary file (25.2 kB). View file
 
game1/logs/confmat_target.pdf ADDED
Binary file (25.8 kB). View file
 
game1/logs/learning_curve.pdf ADDED
Binary file (17.7 kB). View file