Add zipnn text
Browse files
README.md
CHANGED
@@ -2,10 +2,60 @@
|
|
2 |
tags:
|
3 |
- vision
|
4 |
widget:
|
5 |
-
- src:
|
|
|
6 |
candidate_labels: playing music, playing sports
|
7 |
example_title: Cat & Dog
|
|
|
|
|
|
|
8 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Model Card: CLIP
|
10 |
Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md).
|
11 |
|
@@ -34,8 +84,12 @@ The original implementation had two variants: one using a ResNet image encoder a
|
|
34 |
from PIL import Image
|
35 |
import requests
|
36 |
from transformers import CLIPProcessor, CLIPModel
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
40 |
image = Image.open(requests.get(url, stream=True).raw)
|
41 |
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
@@ -123,4 +177,4 @@ We also tested the performance of CLIP on gender, race and age classification us
|
|
123 |
|
124 |
|
125 |
### Where to send questions or comments about the model
|
126 |
-
Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
|
|
|
2 |
tags:
|
3 |
- vision
|
4 |
widget:
|
5 |
+
- src: >-
|
6 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
|
7 |
candidate_labels: playing music, playing sports
|
8 |
example_title: Cat & Dog
|
9 |
+
license: mit
|
10 |
+
base_model:
|
11 |
+
- openai/clip-vit-base-patch16
|
12 |
---
|
13 |
+
# Disclaimer and Requirements
|
14 |
+
|
15 |
+
This model is a clone of [**openai/clip-vit-base-patch32**](https://huggingface.co/openai/clip-vit-base-patch32) compressed using ZipNN. Compressed losslessly to 60% its original size, ZipNN saved ~0.3GB in storage and potentially ~9PB in data transfer **monthly**.
|
16 |
+
|
17 |
+
### Requirement
|
18 |
+
|
19 |
+
In order to use the model, ZipNN is necessary:
|
20 |
+
```bash
|
21 |
+
pip install zipnn
|
22 |
+
```
|
23 |
+
### Use This Model
|
24 |
+
```python
|
25 |
+
# Use a pipeline as a high-level helper
|
26 |
+
from transformers import pipeline
|
27 |
+
from zipnn import zipnn_hf
|
28 |
+
|
29 |
+
zipnn_hf()
|
30 |
+
|
31 |
+
|
32 |
+
pipe = pipeline("zero-shot-image-classification", model="royleibov/clip-vit-base-patch16-ZipNN-Compressed")
|
33 |
+
```
|
34 |
+
```python
|
35 |
+
# Load model directly
|
36 |
+
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
|
37 |
+
from zipnn import zipnn_hf
|
38 |
+
|
39 |
+
zipnn_hf()
|
40 |
+
|
41 |
+
processor = AutoProcessor.from_pretrained("royleibov/clip-vit-base-patch16-ZipNN-Compressed")
|
42 |
+
model = AutoModelForZeroShotImageClassification.from_pretrained("royleibov/clip-vit-base-patch16-ZipNN-Compressed")
|
43 |
+
```
|
44 |
+
### ZipNN
|
45 |
+
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
|
46 |
+
|
47 |
+
To compress the cached model, simply run:
|
48 |
+
```bash
|
49 |
+
python zipnn_compress_path.py bin --model royleibov/clip-vit-base-patch16-ZipNN-Compressed --hf_cache
|
50 |
+
```
|
51 |
+
|
52 |
+
The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
|
53 |
+
|
54 |
+
To decompress manualy, simply run:
|
55 |
+
```bash
|
56 |
+
python zipnn_decompress_path.py --model royleibov/clip-vit-base-patch16-ZipNN-Compressed --hf_cache
|
57 |
+
```
|
58 |
+
|
59 |
# Model Card: CLIP
|
60 |
Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md).
|
61 |
|
|
|
84 |
from PIL import Image
|
85 |
import requests
|
86 |
from transformers import CLIPProcessor, CLIPModel
|
87 |
+
from zipnn import zipnn_hf
|
88 |
+
|
89 |
+
zipnn_hf()
|
90 |
+
|
91 |
+
model = CLIPModel.from_pretrained("royleibov/clip-vit-base-patch16-ZipNN-Compressed")
|
92 |
+
processor = CLIPProcessor.from_pretrained("royleibov/clip-vit-base-patch16-ZipNN-Compressed")
|
93 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
94 |
image = Image.open(requests.get(url, stream=True).raw)
|
95 |
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
|
|
177 |
|
178 |
|
179 |
### Where to send questions or comments about the model
|
180 |
+
Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
|