rshwndsz commited on
Commit
b5b2e70
·
verified ·
1 Parent(s): acdd2a8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForSequenceClassification"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128001,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 8192,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "max_position_embeddings": 131072,
21
+ "mlp_bias": false,
22
+ "model_type": "llama",
23
+ "num_attention_heads": 24,
24
+ "num_hidden_layers": 28,
25
+ "num_key_value_heads": 8,
26
+ "pad_token_id": 128258,
27
+ "pretraining_tp": 1,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": {
30
+ "factor": 32.0,
31
+ "high_freq_factor": 4.0,
32
+ "low_freq_factor": 1.0,
33
+ "original_max_position_embeddings": 8192,
34
+ "rope_type": "llama3"
35
+ },
36
+ "rope_theta": 500000.0,
37
+ "tie_word_embeddings": true,
38
+ "torch_dtype": "bfloat16",
39
+ "transformers_version": "4.51.3",
40
+ "use_cache": false,
41
+ "vocab_size": 128259
42
+ }
global_step3116/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ed255e363cec9881712bc9abb0f6b53082421e84fe96518c4f942b40f75d961
3
+ size 9638291340
global_step3116/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cdcb48dc48588706394a97a6d5ddc610c675e0fbb488b7511b3c0d12622a0f2
3
+ size 9638291340
global_step3116/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2caf0739331ac82afe7fba74dd98d5eec70c3aae9f94d258323e757ba4c94e9c
3
+ size 9638291340
global_step3116/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:006636f827c58d9e9c0d6096d9b54754477696a75badd28d39b347e8204e59d6
3
+ size 9638291340
global_step3116/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83652c548721ebf150fa3a8f641e1fdf361ad906ae33fdf9314613a2b1c779fa
3
+ size 130513
global_step3116/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6060d530a2f884d0caa940c316eee10f214ec8e94449c937bc435aa215d9316c
3
+ size 130513
global_step3116/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e057b59d908df91b4fd8ce62443251e086b6e0a1b01b21e5a80574cbefeec3bd
3
+ size 130513
global_step3116/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21b4b07c2d31eff9eca2f7f23ec47115c9b09320025333b665be63b7ce81958a
3
+ size 130513
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step3116
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fec9b6da4cbc87ccaf4acda77ab3e510715dc7d84ffe0e5adb9532fb83719e22
3
+ size 4965817528
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:010880aee35ff36621a00c18d927cad5c43de908aa4da5857be6cb1c355432ee
3
+ size 1459736184
model.safetensors.index.json ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6425524224
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
125
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.norm.weight": "model-00002-of-00002.safetensors",
260
+ "score.weight": "model-00002-of-00002.safetensors"
261
+ }
262
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b184f8fc9facd6e4a6513602952b43b9446784300c3ea2da72aefb029f93aac1
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:937f07b3f415f537fbc809c70f15f64b8410cd6a07adbe7d246f5ca7359b3b49
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07e3f7eacec877950b3dad99b106bf80da30203dda6159b06f954c15b7f5d367
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a5087a11a5f0a226f1607ec68740ea6baa2599559138de38da40f89dd666683
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e09dae88f23edd61c89b0e78fb7a2351b628d2ebbd8dea832de49acd6b9ccc3d
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|pad|>"
6
+ ],
7
+ "bos_token": {
8
+ "content": "<|begin_of_text|>",
9
+ "lstrip": false,
10
+ "normalized": false,
11
+ "rstrip": false,
12
+ "single_word": false
13
+ },
14
+ "eos_token": {
15
+ "content": "<|end_of_text|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "pad_token": {
22
+ "content": "<|pad|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ }
28
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d9fd6f8a3b531fcd3641d24db47ac67d512a3ab36abfe835934d19cff30a8d
3
+ size 17210480
tokenizer_config.json ADDED
@@ -0,0 +1,2094 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ },
2051
+ "128256": {
2052
+ "content": "<|im_start|>",
2053
+ "lstrip": false,
2054
+ "normalized": false,
2055
+ "rstrip": false,
2056
+ "single_word": false,
2057
+ "special": true
2058
+ },
2059
+ "128257": {
2060
+ "content": "<|im_end|>",
2061
+ "lstrip": false,
2062
+ "normalized": false,
2063
+ "rstrip": false,
2064
+ "single_word": false,
2065
+ "special": true
2066
+ },
2067
+ "128258": {
2068
+ "content": "<|pad|>",
2069
+ "lstrip": false,
2070
+ "normalized": false,
2071
+ "rstrip": false,
2072
+ "single_word": false,
2073
+ "special": true
2074
+ }
2075
+ },
2076
+ "additional_special_tokens": [
2077
+ "<|im_start|>",
2078
+ "<|im_end|>",
2079
+ "<|pad|>"
2080
+ ],
2081
+ "bos_token": "<|begin_of_text|>",
2082
+ "chat_template": "{% if messages[0]['role'] == 'user' or messages[0]['role'] == 'system' %}{{ '<|begin_of_text|>' }}{% endif %}{% for message in messages %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% elif messages[-1]['role'] == 'assistant' %}{{ '<|end_of_text|>' }}{% endif %}",
2083
+ "clean_up_tokenization_spaces": true,
2084
+ "eos_token": "<|end_of_text|>",
2085
+ "extra_special_tokens": {},
2086
+ "legacy": false,
2087
+ "model_input_names": [
2088
+ "input_ids",
2089
+ "attention_mask"
2090
+ ],
2091
+ "model_max_length": 131072,
2092
+ "pad_token": "<|pad|>",
2093
+ "tokenizer_class": "PreTrainedTokenizer"
2094
+ }
trainer_state.json ADDED
@@ -0,0 +1,2211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9997593647228684,
6
+ "eval_steps": 500,
7
+ "global_step": 3116,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.003208470361755033,
14
+ "grad_norm": 6.442734116834532,
15
+ "learning_rate": 1.9942233632862646e-05,
16
+ "loss": 0.646,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.006416940723510066,
21
+ "grad_norm": 16.670848007363354,
22
+ "learning_rate": 1.9878048780487806e-05,
23
+ "loss": 0.5538,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.0096254110852651,
28
+ "grad_norm": 5.007229537641644,
29
+ "learning_rate": 1.9813863928112966e-05,
30
+ "loss": 0.5532,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.012833881447020133,
35
+ "grad_norm": 6.381096528206163,
36
+ "learning_rate": 1.974967907573813e-05,
37
+ "loss": 0.5403,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.016042351808775165,
42
+ "grad_norm": 3.202143132985174,
43
+ "learning_rate": 1.968549422336329e-05,
44
+ "loss": 0.5484,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.0192508221705302,
49
+ "grad_norm": 5.974056462183794,
50
+ "learning_rate": 1.962130937098845e-05,
51
+ "loss": 0.5738,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.022459292532285232,
56
+ "grad_norm": 8.235054035652611,
57
+ "learning_rate": 1.955712451861361e-05,
58
+ "loss": 0.5311,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.025667762894040266,
63
+ "grad_norm": 8.918082235487985,
64
+ "learning_rate": 1.9492939666238767e-05,
65
+ "loss": 0.5128,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.0288762332557953,
70
+ "grad_norm": 7.299533718731339,
71
+ "learning_rate": 1.942875481386393e-05,
72
+ "loss": 0.5444,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.03208470361755033,
77
+ "grad_norm": 6.793642690075093,
78
+ "learning_rate": 1.936456996148909e-05,
79
+ "loss": 0.4792,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.03529317397930536,
84
+ "grad_norm": 5.35608624427688,
85
+ "learning_rate": 1.930038510911425e-05,
86
+ "loss": 0.4838,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.0385016443410604,
91
+ "grad_norm": 8.214012839502532,
92
+ "learning_rate": 1.923620025673941e-05,
93
+ "loss": 0.4947,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.04171011470281543,
98
+ "grad_norm": 17.30363857344939,
99
+ "learning_rate": 1.9172015404364574e-05,
100
+ "loss": 0.539,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.044918585064570464,
105
+ "grad_norm": 5.2411969812270405,
106
+ "learning_rate": 1.910783055198973e-05,
107
+ "loss": 0.4976,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.0481270554263255,
112
+ "grad_norm": 5.825912105537252,
113
+ "learning_rate": 1.904364569961489e-05,
114
+ "loss": 0.5374,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.05133552578808053,
119
+ "grad_norm": 7.038630553849513,
120
+ "learning_rate": 1.897946084724005e-05,
121
+ "loss": 0.4682,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.054543996149835565,
126
+ "grad_norm": 5.686461374890298,
127
+ "learning_rate": 1.8915275994865214e-05,
128
+ "loss": 0.5205,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.0577524665115906,
133
+ "grad_norm": 5.179564550909498,
134
+ "learning_rate": 1.8851091142490375e-05,
135
+ "loss": 0.491,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.06096093687334563,
140
+ "grad_norm": 8.463629137447528,
141
+ "learning_rate": 1.8786906290115535e-05,
142
+ "loss": 0.5228,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.06416940723510066,
147
+ "grad_norm": 4.011565557460287,
148
+ "learning_rate": 1.8722721437740695e-05,
149
+ "loss": 0.479,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.06737787759685569,
154
+ "grad_norm": 7.7055557079808805,
155
+ "learning_rate": 1.8658536585365855e-05,
156
+ "loss": 0.4687,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.07058634795861073,
161
+ "grad_norm": 6.724744753360089,
162
+ "learning_rate": 1.8594351732991015e-05,
163
+ "loss": 0.4818,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.07379481832036576,
168
+ "grad_norm": 4.678677086919036,
169
+ "learning_rate": 1.8530166880616175e-05,
170
+ "loss": 0.5139,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.0770032886821208,
175
+ "grad_norm": 9.311365908507138,
176
+ "learning_rate": 1.8465982028241335e-05,
177
+ "loss": 0.4747,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 0.08021175904387583,
182
+ "grad_norm": 4.443842779885137,
183
+ "learning_rate": 1.8401797175866495e-05,
184
+ "loss": 0.4891,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 0.08342022940563086,
189
+ "grad_norm": 8.33835692877245,
190
+ "learning_rate": 1.833761232349166e-05,
191
+ "loss": 0.47,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 0.0866286997673859,
196
+ "grad_norm": 6.389873022971522,
197
+ "learning_rate": 1.827342747111682e-05,
198
+ "loss": 0.4484,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 0.08983717012914093,
203
+ "grad_norm": 7.274203538153994,
204
+ "learning_rate": 1.820924261874198e-05,
205
+ "loss": 0.4517,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 0.09304564049089596,
210
+ "grad_norm": 3.978695084684557,
211
+ "learning_rate": 1.814505776636714e-05,
212
+ "loss": 0.4807,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 0.096254110852651,
217
+ "grad_norm": 5.846527325287561,
218
+ "learning_rate": 1.80808729139923e-05,
219
+ "loss": 0.4572,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 0.09946258121440603,
224
+ "grad_norm": 4.899874671814943,
225
+ "learning_rate": 1.801668806161746e-05,
226
+ "loss": 0.4337,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 0.10267105157616106,
231
+ "grad_norm": 7.441397827942358,
232
+ "learning_rate": 1.795250320924262e-05,
233
+ "loss": 0.4794,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 0.1058795219379161,
238
+ "grad_norm": 4.8167626402693,
239
+ "learning_rate": 1.788831835686778e-05,
240
+ "loss": 0.4547,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 0.10908799229967113,
245
+ "grad_norm": 4.830906300715028,
246
+ "learning_rate": 1.7824133504492943e-05,
247
+ "loss": 0.4155,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 0.11229646266142616,
252
+ "grad_norm": 2.783779241391255,
253
+ "learning_rate": 1.7759948652118103e-05,
254
+ "loss": 0.4254,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 0.1155049330231812,
259
+ "grad_norm": 4.482561979814794,
260
+ "learning_rate": 1.7695763799743263e-05,
261
+ "loss": 0.5048,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 0.11871340338493623,
266
+ "grad_norm": 4.736082727818665,
267
+ "learning_rate": 1.763157894736842e-05,
268
+ "loss": 0.4088,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 0.12192187374669126,
273
+ "grad_norm": 3.540097005993698,
274
+ "learning_rate": 1.7567394094993584e-05,
275
+ "loss": 0.5214,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 0.1251303441084463,
280
+ "grad_norm": 4.695488227787937,
281
+ "learning_rate": 1.7503209242618744e-05,
282
+ "loss": 0.4434,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 0.12833881447020132,
287
+ "grad_norm": 3.7024498981669662,
288
+ "learning_rate": 1.7439024390243904e-05,
289
+ "loss": 0.5021,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 0.13154728483195635,
294
+ "grad_norm": 2.707105021471608,
295
+ "learning_rate": 1.7374839537869064e-05,
296
+ "loss": 0.4844,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 0.13475575519371139,
301
+ "grad_norm": 5.70948950157765,
302
+ "learning_rate": 1.7310654685494224e-05,
303
+ "loss": 0.4903,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 0.13796422555546642,
308
+ "grad_norm": 3.696922556933147,
309
+ "learning_rate": 1.7246469833119384e-05,
310
+ "loss": 0.4441,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 0.14117269591722145,
315
+ "grad_norm": 4.483329616797758,
316
+ "learning_rate": 1.7182284980744544e-05,
317
+ "loss": 0.5387,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 0.14438116627897649,
322
+ "grad_norm": 3.394450035525867,
323
+ "learning_rate": 1.7118100128369705e-05,
324
+ "loss": 0.4662,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 0.14758963664073152,
329
+ "grad_norm": 8.726490331816862,
330
+ "learning_rate": 1.7053915275994865e-05,
331
+ "loss": 0.4507,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 0.15079810700248655,
336
+ "grad_norm": 4.353194363650416,
337
+ "learning_rate": 1.6989730423620028e-05,
338
+ "loss": 0.4526,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 0.1540065773642416,
343
+ "grad_norm": 3.950021174504244,
344
+ "learning_rate": 1.692554557124519e-05,
345
+ "loss": 0.4821,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 0.15721504772599662,
350
+ "grad_norm": 3.5715866632711832,
351
+ "learning_rate": 1.686136071887035e-05,
352
+ "loss": 0.4288,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 0.16042351808775165,
357
+ "grad_norm": 3.8300844137879917,
358
+ "learning_rate": 1.679717586649551e-05,
359
+ "loss": 0.5043,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 0.1636319884495067,
364
+ "grad_norm": 3.6133285758576235,
365
+ "learning_rate": 1.673299101412067e-05,
366
+ "loss": 0.4682,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 0.16684045881126172,
371
+ "grad_norm": 6.472583456901733,
372
+ "learning_rate": 1.666880616174583e-05,
373
+ "loss": 0.4002,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 0.17004892917301676,
378
+ "grad_norm": 3.701841978979134,
379
+ "learning_rate": 1.660462130937099e-05,
380
+ "loss": 0.5022,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 0.1732573995347718,
385
+ "grad_norm": 4.773360444080344,
386
+ "learning_rate": 1.654043645699615e-05,
387
+ "loss": 0.5066,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 0.17646586989652682,
392
+ "grad_norm": 13.276543301213977,
393
+ "learning_rate": 1.6476251604621313e-05,
394
+ "loss": 0.4648,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 0.17967434025828186,
399
+ "grad_norm": 8.185811344239216,
400
+ "learning_rate": 1.6412066752246473e-05,
401
+ "loss": 0.4597,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 0.1828828106200369,
406
+ "grad_norm": 3.870551639158725,
407
+ "learning_rate": 1.6347881899871633e-05,
408
+ "loss": 0.4644,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 0.18609128098179192,
413
+ "grad_norm": 2.9435165160063628,
414
+ "learning_rate": 1.6283697047496793e-05,
415
+ "loss": 0.4996,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 0.18929975134354696,
420
+ "grad_norm": 5.242572609854114,
421
+ "learning_rate": 1.6219512195121953e-05,
422
+ "loss": 0.4465,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 0.192508221705302,
427
+ "grad_norm": 3.296578668491081,
428
+ "learning_rate": 1.6155327342747113e-05,
429
+ "loss": 0.404,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 0.19571669206705702,
434
+ "grad_norm": 5.090117348527818,
435
+ "learning_rate": 1.6091142490372273e-05,
436
+ "loss": 0.4277,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 0.19892516242881206,
441
+ "grad_norm": 2.888476032144689,
442
+ "learning_rate": 1.6026957637997433e-05,
443
+ "loss": 0.4783,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 0.2021336327905671,
448
+ "grad_norm": 4.135431165940949,
449
+ "learning_rate": 1.5962772785622594e-05,
450
+ "loss": 0.4236,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 0.20534210315232213,
455
+ "grad_norm": 4.833487869831366,
456
+ "learning_rate": 1.5898587933247757e-05,
457
+ "loss": 0.504,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 0.20855057351407716,
462
+ "grad_norm": 4.282352689606544,
463
+ "learning_rate": 1.5834403080872917e-05,
464
+ "loss": 0.4277,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 0.2117590438758322,
469
+ "grad_norm": 6.760216642975651,
470
+ "learning_rate": 1.5770218228498074e-05,
471
+ "loss": 0.4916,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 0.21496751423758723,
476
+ "grad_norm": 4.349450853536778,
477
+ "learning_rate": 1.5706033376123234e-05,
478
+ "loss": 0.4863,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 0.21817598459934226,
483
+ "grad_norm": 8.907091580804641,
484
+ "learning_rate": 1.5641848523748397e-05,
485
+ "loss": 0.4454,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 0.2213844549610973,
490
+ "grad_norm": 12.495791509691397,
491
+ "learning_rate": 1.5577663671373558e-05,
492
+ "loss": 0.4374,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 0.22459292532285233,
497
+ "grad_norm": 4.162195469033971,
498
+ "learning_rate": 1.5513478818998718e-05,
499
+ "loss": 0.398,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 0.22780139568460736,
504
+ "grad_norm": 4.9440877367494585,
505
+ "learning_rate": 1.5449293966623878e-05,
506
+ "loss": 0.4386,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 0.2310098660463624,
511
+ "grad_norm": 3.3193418621579194,
512
+ "learning_rate": 1.5385109114249038e-05,
513
+ "loss": 0.3993,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 0.23421833640811743,
518
+ "grad_norm": 3.388886050375809,
519
+ "learning_rate": 1.5320924261874198e-05,
520
+ "loss": 0.3915,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 0.23742680676987246,
525
+ "grad_norm": 3.758493220998932,
526
+ "learning_rate": 1.525673940949936e-05,
527
+ "loss": 0.4452,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 0.2406352771316275,
532
+ "grad_norm": 5.132628959411491,
533
+ "learning_rate": 1.519255455712452e-05,
534
+ "loss": 0.3703,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 0.24384374749338253,
539
+ "grad_norm": 6.2691579411030025,
540
+ "learning_rate": 1.5128369704749682e-05,
541
+ "loss": 0.4158,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 0.24705221785513756,
546
+ "grad_norm": 4.103316818662405,
547
+ "learning_rate": 1.5064184852374842e-05,
548
+ "loss": 0.4233,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 0.2502606882168926,
553
+ "grad_norm": 6.0422539237827975,
554
+ "learning_rate": 1.5000000000000002e-05,
555
+ "loss": 0.4278,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 0.2534691585786476,
560
+ "grad_norm": 2.7653877942568954,
561
+ "learning_rate": 1.493581514762516e-05,
562
+ "loss": 0.4095,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 0.25667762894040264,
567
+ "grad_norm": 4.114902146610447,
568
+ "learning_rate": 1.487163029525032e-05,
569
+ "loss": 0.4584,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 0.25988609930215767,
574
+ "grad_norm": 5.28663521958676,
575
+ "learning_rate": 1.4807445442875482e-05,
576
+ "loss": 0.4368,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 0.2630945696639127,
581
+ "grad_norm": 3.8311121578946303,
582
+ "learning_rate": 1.4743260590500643e-05,
583
+ "loss": 0.4107,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 0.26630304002566774,
588
+ "grad_norm": 3.318670161966376,
589
+ "learning_rate": 1.4679075738125803e-05,
590
+ "loss": 0.4245,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 0.26951151038742277,
595
+ "grad_norm": 4.755364543588735,
596
+ "learning_rate": 1.4614890885750963e-05,
597
+ "loss": 0.4787,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 0.2727199807491778,
602
+ "grad_norm": 2.786479482223897,
603
+ "learning_rate": 1.4550706033376125e-05,
604
+ "loss": 0.4336,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 0.27592845111093284,
609
+ "grad_norm": 4.070784873347869,
610
+ "learning_rate": 1.4486521181001285e-05,
611
+ "loss": 0.4123,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 0.27913692147268787,
616
+ "grad_norm": 5.342176013467221,
617
+ "learning_rate": 1.4422336328626445e-05,
618
+ "loss": 0.4497,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 0.2823453918344429,
623
+ "grad_norm": 2.881520241461501,
624
+ "learning_rate": 1.4358151476251605e-05,
625
+ "loss": 0.4872,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 0.28555386219619794,
630
+ "grad_norm": 4.478805078448799,
631
+ "learning_rate": 1.4293966623876767e-05,
632
+ "loss": 0.3984,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 0.28876233255795297,
637
+ "grad_norm": 6.101899594897867,
638
+ "learning_rate": 1.4229781771501927e-05,
639
+ "loss": 0.4628,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 0.291970802919708,
644
+ "grad_norm": 3.0826453501277715,
645
+ "learning_rate": 1.4165596919127087e-05,
646
+ "loss": 0.4432,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 0.29517927328146304,
651
+ "grad_norm": 2.4770273632891953,
652
+ "learning_rate": 1.4101412066752247e-05,
653
+ "loss": 0.506,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 0.2983877436432181,
658
+ "grad_norm": 3.422572341295809,
659
+ "learning_rate": 1.4037227214377409e-05,
660
+ "loss": 0.3826,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 0.3015962140049731,
665
+ "grad_norm": 6.410925492330843,
666
+ "learning_rate": 1.3973042362002569e-05,
667
+ "loss": 0.4976,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 0.30480468436672814,
672
+ "grad_norm": 3.702470810813249,
673
+ "learning_rate": 1.390885750962773e-05,
674
+ "loss": 0.3977,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 0.3080131547284832,
679
+ "grad_norm": 4.496582483074578,
680
+ "learning_rate": 1.384467265725289e-05,
681
+ "loss": 0.3427,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 0.3112216250902382,
686
+ "grad_norm": 5.771712327672755,
687
+ "learning_rate": 1.378048780487805e-05,
688
+ "loss": 0.4011,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 0.31443009545199324,
693
+ "grad_norm": 6.116944263448949,
694
+ "learning_rate": 1.3716302952503211e-05,
695
+ "loss": 0.3832,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 0.3176385658137483,
700
+ "grad_norm": 5.217590349147242,
701
+ "learning_rate": 1.3652118100128371e-05,
702
+ "loss": 0.4484,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 0.3208470361755033,
707
+ "grad_norm": 6.326859919098317,
708
+ "learning_rate": 1.3587933247753531e-05,
709
+ "loss": 0.4238,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 0.32405550653725834,
714
+ "grad_norm": 3.6100683655298518,
715
+ "learning_rate": 1.3523748395378692e-05,
716
+ "loss": 0.4521,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 0.3272639768990134,
721
+ "grad_norm": 8.35582852568852,
722
+ "learning_rate": 1.3459563543003853e-05,
723
+ "loss": 0.4277,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 0.3304724472607684,
728
+ "grad_norm": 6.127881803928465,
729
+ "learning_rate": 1.3395378690629014e-05,
730
+ "loss": 0.3845,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 0.33368091762252344,
735
+ "grad_norm": 5.346412016792554,
736
+ "learning_rate": 1.3331193838254172e-05,
737
+ "loss": 0.3598,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 0.3368893879842785,
742
+ "grad_norm": 5.518712653284187,
743
+ "learning_rate": 1.3267008985879332e-05,
744
+ "loss": 0.4684,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 0.3400978583460335,
749
+ "grad_norm": 3.0171159430683647,
750
+ "learning_rate": 1.3202824133504496e-05,
751
+ "loss": 0.402,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 0.34330632870778854,
756
+ "grad_norm": 3.4525267211589585,
757
+ "learning_rate": 1.3138639281129654e-05,
758
+ "loss": 0.4587,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 0.3465147990695436,
763
+ "grad_norm": 4.923842642383016,
764
+ "learning_rate": 1.3074454428754814e-05,
765
+ "loss": 0.4231,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 0.3497232694312986,
770
+ "grad_norm": 3.982906316656253,
771
+ "learning_rate": 1.3010269576379974e-05,
772
+ "loss": 0.419,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 0.35293173979305364,
777
+ "grad_norm": 3.9801555228114998,
778
+ "learning_rate": 1.2946084724005136e-05,
779
+ "loss": 0.3668,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 0.3561402101548087,
784
+ "grad_norm": 4.030778915107762,
785
+ "learning_rate": 1.2881899871630296e-05,
786
+ "loss": 0.3739,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 0.3593486805165637,
791
+ "grad_norm": 6.386525169017585,
792
+ "learning_rate": 1.2817715019255456e-05,
793
+ "loss": 0.4972,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 0.36255715087831875,
798
+ "grad_norm": 4.20862662435033,
799
+ "learning_rate": 1.2753530166880616e-05,
800
+ "loss": 0.4154,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 0.3657656212400738,
805
+ "grad_norm": 4.858924338028923,
806
+ "learning_rate": 1.2689345314505778e-05,
807
+ "loss": 0.4478,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 0.3689740916018288,
812
+ "grad_norm": 5.608430455111102,
813
+ "learning_rate": 1.2625160462130938e-05,
814
+ "loss": 0.4599,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 0.37218256196358385,
819
+ "grad_norm": 5.911587578207529,
820
+ "learning_rate": 1.2560975609756098e-05,
821
+ "loss": 0.3869,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 0.3753910323253389,
826
+ "grad_norm": 4.283524740830092,
827
+ "learning_rate": 1.2496790757381259e-05,
828
+ "loss": 0.3837,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 0.3785995026870939,
833
+ "grad_norm": 6.821302089832709,
834
+ "learning_rate": 1.2432605905006419e-05,
835
+ "loss": 0.442,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 0.38180797304884895,
840
+ "grad_norm": 5.085358904961751,
841
+ "learning_rate": 1.236842105263158e-05,
842
+ "loss": 0.3264,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 0.385016443410604,
847
+ "grad_norm": 4.605248058627308,
848
+ "learning_rate": 1.230423620025674e-05,
849
+ "loss": 0.3895,
850
+ "step": 1200
851
+ },
852
+ {
853
+ "epoch": 0.388224913772359,
854
+ "grad_norm": 3.477144602759826,
855
+ "learning_rate": 1.22400513478819e-05,
856
+ "loss": 0.4405,
857
+ "step": 1210
858
+ },
859
+ {
860
+ "epoch": 0.39143338413411405,
861
+ "grad_norm": 4.706693999402434,
862
+ "learning_rate": 1.2175866495507061e-05,
863
+ "loss": 0.4102,
864
+ "step": 1220
865
+ },
866
+ {
867
+ "epoch": 0.3946418544958691,
868
+ "grad_norm": 3.204192427462165,
869
+ "learning_rate": 1.2111681643132223e-05,
870
+ "loss": 0.4244,
871
+ "step": 1230
872
+ },
873
+ {
874
+ "epoch": 0.3978503248576241,
875
+ "grad_norm": 5.415400158823864,
876
+ "learning_rate": 1.2047496790757383e-05,
877
+ "loss": 0.389,
878
+ "step": 1240
879
+ },
880
+ {
881
+ "epoch": 0.40105879521937915,
882
+ "grad_norm": 4.1016299695920555,
883
+ "learning_rate": 1.1983311938382543e-05,
884
+ "loss": 0.4348,
885
+ "step": 1250
886
+ },
887
+ {
888
+ "epoch": 0.4042672655811342,
889
+ "grad_norm": 5.0119293140447265,
890
+ "learning_rate": 1.1919127086007703e-05,
891
+ "loss": 0.4076,
892
+ "step": 1260
893
+ },
894
+ {
895
+ "epoch": 0.4074757359428892,
896
+ "grad_norm": 3.1843597604004144,
897
+ "learning_rate": 1.1854942233632865e-05,
898
+ "loss": 0.4093,
899
+ "step": 1270
900
+ },
901
+ {
902
+ "epoch": 0.41068420630464425,
903
+ "grad_norm": 3.243310369644707,
904
+ "learning_rate": 1.1790757381258025e-05,
905
+ "loss": 0.3996,
906
+ "step": 1280
907
+ },
908
+ {
909
+ "epoch": 0.4138926766663993,
910
+ "grad_norm": 6.5805185922112654,
911
+ "learning_rate": 1.1726572528883185e-05,
912
+ "loss": 0.4443,
913
+ "step": 1290
914
+ },
915
+ {
916
+ "epoch": 0.4171011470281543,
917
+ "grad_norm": 3.5901965588799833,
918
+ "learning_rate": 1.1662387676508344e-05,
919
+ "loss": 0.4222,
920
+ "step": 1300
921
+ },
922
+ {
923
+ "epoch": 0.42030961738990935,
924
+ "grad_norm": 3.5975503587085513,
925
+ "learning_rate": 1.1598202824133507e-05,
926
+ "loss": 0.3803,
927
+ "step": 1310
928
+ },
929
+ {
930
+ "epoch": 0.4235180877516644,
931
+ "grad_norm": 3.8370137218295612,
932
+ "learning_rate": 1.1534017971758667e-05,
933
+ "loss": 0.377,
934
+ "step": 1320
935
+ },
936
+ {
937
+ "epoch": 0.4267265581134194,
938
+ "grad_norm": 6.055162453845242,
939
+ "learning_rate": 1.1469833119383826e-05,
940
+ "loss": 0.4371,
941
+ "step": 1330
942
+ },
943
+ {
944
+ "epoch": 0.42993502847517445,
945
+ "grad_norm": 4.303475483832273,
946
+ "learning_rate": 1.1405648267008986e-05,
947
+ "loss": 0.3991,
948
+ "step": 1340
949
+ },
950
+ {
951
+ "epoch": 0.4331434988369295,
952
+ "grad_norm": 3.481300920221893,
953
+ "learning_rate": 1.1341463414634146e-05,
954
+ "loss": 0.408,
955
+ "step": 1350
956
+ },
957
+ {
958
+ "epoch": 0.4363519691986845,
959
+ "grad_norm": 2.70794769803311,
960
+ "learning_rate": 1.1277278562259308e-05,
961
+ "loss": 0.4105,
962
+ "step": 1360
963
+ },
964
+ {
965
+ "epoch": 0.43956043956043955,
966
+ "grad_norm": 4.540637646839311,
967
+ "learning_rate": 1.1213093709884468e-05,
968
+ "loss": 0.3762,
969
+ "step": 1370
970
+ },
971
+ {
972
+ "epoch": 0.4427689099221946,
973
+ "grad_norm": 3.240923093729635,
974
+ "learning_rate": 1.1148908857509628e-05,
975
+ "loss": 0.3198,
976
+ "step": 1380
977
+ },
978
+ {
979
+ "epoch": 0.4459773802839496,
980
+ "grad_norm": 4.079516203900489,
981
+ "learning_rate": 1.1084724005134788e-05,
982
+ "loss": 0.4255,
983
+ "step": 1390
984
+ },
985
+ {
986
+ "epoch": 0.44918585064570465,
987
+ "grad_norm": 4.424913833083467,
988
+ "learning_rate": 1.102053915275995e-05,
989
+ "loss": 0.422,
990
+ "step": 1400
991
+ },
992
+ {
993
+ "epoch": 0.4523943210074597,
994
+ "grad_norm": 4.215968513158678,
995
+ "learning_rate": 1.095635430038511e-05,
996
+ "loss": 0.3717,
997
+ "step": 1410
998
+ },
999
+ {
1000
+ "epoch": 0.4556027913692147,
1001
+ "grad_norm": 7.080680051130726,
1002
+ "learning_rate": 1.089216944801027e-05,
1003
+ "loss": 0.4167,
1004
+ "step": 1420
1005
+ },
1006
+ {
1007
+ "epoch": 0.45881126173096975,
1008
+ "grad_norm": 54.87405885391659,
1009
+ "learning_rate": 1.082798459563543e-05,
1010
+ "loss": 0.3701,
1011
+ "step": 1430
1012
+ },
1013
+ {
1014
+ "epoch": 0.4620197320927248,
1015
+ "grad_norm": 4.745370324575341,
1016
+ "learning_rate": 1.0763799743260592e-05,
1017
+ "loss": 0.4192,
1018
+ "step": 1440
1019
+ },
1020
+ {
1021
+ "epoch": 0.4652282024544798,
1022
+ "grad_norm": 4.072739876459792,
1023
+ "learning_rate": 1.0699614890885752e-05,
1024
+ "loss": 0.3648,
1025
+ "step": 1450
1026
+ },
1027
+ {
1028
+ "epoch": 0.46843667281623486,
1029
+ "grad_norm": 5.361505931287111,
1030
+ "learning_rate": 1.0635430038510912e-05,
1031
+ "loss": 0.3908,
1032
+ "step": 1460
1033
+ },
1034
+ {
1035
+ "epoch": 0.4716451431779899,
1036
+ "grad_norm": 6.609039672159613,
1037
+ "learning_rate": 1.0571245186136072e-05,
1038
+ "loss": 0.3927,
1039
+ "step": 1470
1040
+ },
1041
+ {
1042
+ "epoch": 0.4748536135397449,
1043
+ "grad_norm": 5.257109634802722,
1044
+ "learning_rate": 1.0507060333761234e-05,
1045
+ "loss": 0.3901,
1046
+ "step": 1480
1047
+ },
1048
+ {
1049
+ "epoch": 0.47806208390149996,
1050
+ "grad_norm": 2.959492453957149,
1051
+ "learning_rate": 1.0442875481386394e-05,
1052
+ "loss": 0.3616,
1053
+ "step": 1490
1054
+ },
1055
+ {
1056
+ "epoch": 0.481270554263255,
1057
+ "grad_norm": 4.53017762648938,
1058
+ "learning_rate": 1.0378690629011554e-05,
1059
+ "loss": 0.4099,
1060
+ "step": 1500
1061
+ },
1062
+ {
1063
+ "epoch": 0.48447902462501,
1064
+ "grad_norm": 5.632280418736274,
1065
+ "learning_rate": 1.0314505776636715e-05,
1066
+ "loss": 0.4176,
1067
+ "step": 1510
1068
+ },
1069
+ {
1070
+ "epoch": 0.48768749498676506,
1071
+ "grad_norm": 3.4384598745003627,
1072
+ "learning_rate": 1.0250320924261875e-05,
1073
+ "loss": 0.3586,
1074
+ "step": 1520
1075
+ },
1076
+ {
1077
+ "epoch": 0.4908959653485201,
1078
+ "grad_norm": 3.024437029724823,
1079
+ "learning_rate": 1.0186136071887036e-05,
1080
+ "loss": 0.4255,
1081
+ "step": 1530
1082
+ },
1083
+ {
1084
+ "epoch": 0.4941044357102751,
1085
+ "grad_norm": 2.378291269172342,
1086
+ "learning_rate": 1.0121951219512197e-05,
1087
+ "loss": 0.3958,
1088
+ "step": 1540
1089
+ },
1090
+ {
1091
+ "epoch": 0.49731290607203016,
1092
+ "grad_norm": 4.62474422398616,
1093
+ "learning_rate": 1.0057766367137357e-05,
1094
+ "loss": 0.4006,
1095
+ "step": 1550
1096
+ },
1097
+ {
1098
+ "epoch": 0.5005213764337852,
1099
+ "grad_norm": 3.6745219934625144,
1100
+ "learning_rate": 9.993581514762517e-06,
1101
+ "loss": 0.3682,
1102
+ "step": 1560
1103
+ },
1104
+ {
1105
+ "epoch": 0.5037298467955402,
1106
+ "grad_norm": 4.448848307155705,
1107
+ "learning_rate": 9.929396662387677e-06,
1108
+ "loss": 0.4272,
1109
+ "step": 1570
1110
+ },
1111
+ {
1112
+ "epoch": 0.5069383171572952,
1113
+ "grad_norm": 3.8894278011874235,
1114
+ "learning_rate": 9.865211810012839e-06,
1115
+ "loss": 0.3569,
1116
+ "step": 1580
1117
+ },
1118
+ {
1119
+ "epoch": 0.5101467875190503,
1120
+ "grad_norm": 4.774303748597002,
1121
+ "learning_rate": 9.801026957637997e-06,
1122
+ "loss": 0.3933,
1123
+ "step": 1590
1124
+ },
1125
+ {
1126
+ "epoch": 0.5133552578808053,
1127
+ "grad_norm": 5.045270496853991,
1128
+ "learning_rate": 9.736842105263159e-06,
1129
+ "loss": 0.3719,
1130
+ "step": 1600
1131
+ },
1132
+ {
1133
+ "epoch": 0.5165637282425604,
1134
+ "grad_norm": 4.740584901110403,
1135
+ "learning_rate": 9.672657252888319e-06,
1136
+ "loss": 0.4254,
1137
+ "step": 1610
1138
+ },
1139
+ {
1140
+ "epoch": 0.5197721986043153,
1141
+ "grad_norm": 5.884473992854898,
1142
+ "learning_rate": 9.60847240051348e-06,
1143
+ "loss": 0.4251,
1144
+ "step": 1620
1145
+ },
1146
+ {
1147
+ "epoch": 0.5229806689660704,
1148
+ "grad_norm": 3.4560812191487233,
1149
+ "learning_rate": 9.54428754813864e-06,
1150
+ "loss": 0.3884,
1151
+ "step": 1630
1152
+ },
1153
+ {
1154
+ "epoch": 0.5261891393278254,
1155
+ "grad_norm": 4.436488938480811,
1156
+ "learning_rate": 9.480102695763801e-06,
1157
+ "loss": 0.3791,
1158
+ "step": 1640
1159
+ },
1160
+ {
1161
+ "epoch": 0.5293976096895805,
1162
+ "grad_norm": 5.122741798151655,
1163
+ "learning_rate": 9.415917843388961e-06,
1164
+ "loss": 0.4109,
1165
+ "step": 1650
1166
+ },
1167
+ {
1168
+ "epoch": 0.5326060800513355,
1169
+ "grad_norm": 2.8268137365317694,
1170
+ "learning_rate": 9.351732991014121e-06,
1171
+ "loss": 0.4002,
1172
+ "step": 1660
1173
+ },
1174
+ {
1175
+ "epoch": 0.5358145504130906,
1176
+ "grad_norm": 4.961028503814302,
1177
+ "learning_rate": 9.287548138639282e-06,
1178
+ "loss": 0.4117,
1179
+ "step": 1670
1180
+ },
1181
+ {
1182
+ "epoch": 0.5390230207748455,
1183
+ "grad_norm": 5.913940405056516,
1184
+ "learning_rate": 9.223363286264443e-06,
1185
+ "loss": 0.3837,
1186
+ "step": 1680
1187
+ },
1188
+ {
1189
+ "epoch": 0.5422314911366006,
1190
+ "grad_norm": 4.981120773191797,
1191
+ "learning_rate": 9.159178433889603e-06,
1192
+ "loss": 0.4258,
1193
+ "step": 1690
1194
+ },
1195
+ {
1196
+ "epoch": 0.5454399614983556,
1197
+ "grad_norm": 5.444655853775516,
1198
+ "learning_rate": 9.094993581514764e-06,
1199
+ "loss": 0.4301,
1200
+ "step": 1700
1201
+ },
1202
+ {
1203
+ "epoch": 0.5486484318601107,
1204
+ "grad_norm": 3.848013181214462,
1205
+ "learning_rate": 9.030808729139924e-06,
1206
+ "loss": 0.4004,
1207
+ "step": 1710
1208
+ },
1209
+ {
1210
+ "epoch": 0.5518569022218657,
1211
+ "grad_norm": 2.7256377363961692,
1212
+ "learning_rate": 8.966623876765084e-06,
1213
+ "loss": 0.4199,
1214
+ "step": 1720
1215
+ },
1216
+ {
1217
+ "epoch": 0.5550653725836208,
1218
+ "grad_norm": 3.9591345977979278,
1219
+ "learning_rate": 8.902439024390244e-06,
1220
+ "loss": 0.3923,
1221
+ "step": 1730
1222
+ },
1223
+ {
1224
+ "epoch": 0.5582738429453757,
1225
+ "grad_norm": 3.694097683677857,
1226
+ "learning_rate": 8.838254172015404e-06,
1227
+ "loss": 0.4245,
1228
+ "step": 1740
1229
+ },
1230
+ {
1231
+ "epoch": 0.5614823133071308,
1232
+ "grad_norm": 4.752754487463968,
1233
+ "learning_rate": 8.774069319640566e-06,
1234
+ "loss": 0.3623,
1235
+ "step": 1750
1236
+ },
1237
+ {
1238
+ "epoch": 0.5646907836688858,
1239
+ "grad_norm": 4.933398001346964,
1240
+ "learning_rate": 8.709884467265726e-06,
1241
+ "loss": 0.3529,
1242
+ "step": 1760
1243
+ },
1244
+ {
1245
+ "epoch": 0.5678992540306409,
1246
+ "grad_norm": 4.10267822290099,
1247
+ "learning_rate": 8.645699614890886e-06,
1248
+ "loss": 0.3903,
1249
+ "step": 1770
1250
+ },
1251
+ {
1252
+ "epoch": 0.5711077243923959,
1253
+ "grad_norm": 5.948577818513,
1254
+ "learning_rate": 8.581514762516046e-06,
1255
+ "loss": 0.3923,
1256
+ "step": 1780
1257
+ },
1258
+ {
1259
+ "epoch": 0.574316194754151,
1260
+ "grad_norm": 4.32270415025434,
1261
+ "learning_rate": 8.517329910141208e-06,
1262
+ "loss": 0.4162,
1263
+ "step": 1790
1264
+ },
1265
+ {
1266
+ "epoch": 0.5775246651159059,
1267
+ "grad_norm": 4.186201731866516,
1268
+ "learning_rate": 8.453145057766368e-06,
1269
+ "loss": 0.4006,
1270
+ "step": 1800
1271
+ },
1272
+ {
1273
+ "epoch": 0.580733135477661,
1274
+ "grad_norm": 4.818472247869851,
1275
+ "learning_rate": 8.388960205391528e-06,
1276
+ "loss": 0.3841,
1277
+ "step": 1810
1278
+ },
1279
+ {
1280
+ "epoch": 0.583941605839416,
1281
+ "grad_norm": 3.722377675945526,
1282
+ "learning_rate": 8.324775353016688e-06,
1283
+ "loss": 0.4015,
1284
+ "step": 1820
1285
+ },
1286
+ {
1287
+ "epoch": 0.5871500762011711,
1288
+ "grad_norm": 3.581092339067193,
1289
+ "learning_rate": 8.26059050064185e-06,
1290
+ "loss": 0.4194,
1291
+ "step": 1830
1292
+ },
1293
+ {
1294
+ "epoch": 0.5903585465629261,
1295
+ "grad_norm": 3.8711833078388134,
1296
+ "learning_rate": 8.19640564826701e-06,
1297
+ "loss": 0.5039,
1298
+ "step": 1840
1299
+ },
1300
+ {
1301
+ "epoch": 0.5935670169246812,
1302
+ "grad_norm": 5.312406861505809,
1303
+ "learning_rate": 8.13222079589217e-06,
1304
+ "loss": 0.3954,
1305
+ "step": 1850
1306
+ },
1307
+ {
1308
+ "epoch": 0.5967754872864361,
1309
+ "grad_norm": 5.128909473296003,
1310
+ "learning_rate": 8.06803594351733e-06,
1311
+ "loss": 0.3476,
1312
+ "step": 1860
1313
+ },
1314
+ {
1315
+ "epoch": 0.5999839576481912,
1316
+ "grad_norm": 6.225968269360909,
1317
+ "learning_rate": 8.00385109114249e-06,
1318
+ "loss": 0.3918,
1319
+ "step": 1870
1320
+ },
1321
+ {
1322
+ "epoch": 0.6031924280099462,
1323
+ "grad_norm": 4.660989653248528,
1324
+ "learning_rate": 7.93966623876765e-06,
1325
+ "loss": 0.4013,
1326
+ "step": 1880
1327
+ },
1328
+ {
1329
+ "epoch": 0.6064008983717013,
1330
+ "grad_norm": 4.299519878675749,
1331
+ "learning_rate": 7.875481386392811e-06,
1332
+ "loss": 0.3775,
1333
+ "step": 1890
1334
+ },
1335
+ {
1336
+ "epoch": 0.6096093687334563,
1337
+ "grad_norm": 4.680629637314835,
1338
+ "learning_rate": 7.811296534017973e-06,
1339
+ "loss": 0.3612,
1340
+ "step": 1900
1341
+ },
1342
+ {
1343
+ "epoch": 0.6128178390952114,
1344
+ "grad_norm": 4.152954271805758,
1345
+ "learning_rate": 7.747111681643133e-06,
1346
+ "loss": 0.3806,
1347
+ "step": 1910
1348
+ },
1349
+ {
1350
+ "epoch": 0.6160263094569663,
1351
+ "grad_norm": 4.6801179801552415,
1352
+ "learning_rate": 7.682926829268293e-06,
1353
+ "loss": 0.3506,
1354
+ "step": 1920
1355
+ },
1356
+ {
1357
+ "epoch": 0.6192347798187214,
1358
+ "grad_norm": 4.251504275426107,
1359
+ "learning_rate": 7.618741976893453e-06,
1360
+ "loss": 0.3589,
1361
+ "step": 1930
1362
+ },
1363
+ {
1364
+ "epoch": 0.6224432501804764,
1365
+ "grad_norm": 6.009730313403801,
1366
+ "learning_rate": 7.554557124518614e-06,
1367
+ "loss": 0.3968,
1368
+ "step": 1940
1369
+ },
1370
+ {
1371
+ "epoch": 0.6256517205422315,
1372
+ "grad_norm": 3.2723481829787464,
1373
+ "learning_rate": 7.490372272143774e-06,
1374
+ "loss": 0.3936,
1375
+ "step": 1950
1376
+ },
1377
+ {
1378
+ "epoch": 0.6288601909039865,
1379
+ "grad_norm": 4.097990240581078,
1380
+ "learning_rate": 7.426187419768935e-06,
1381
+ "loss": 0.4144,
1382
+ "step": 1960
1383
+ },
1384
+ {
1385
+ "epoch": 0.6320686612657416,
1386
+ "grad_norm": 2.7191742984555995,
1387
+ "learning_rate": 7.362002567394095e-06,
1388
+ "loss": 0.409,
1389
+ "step": 1970
1390
+ },
1391
+ {
1392
+ "epoch": 0.6352771316274965,
1393
+ "grad_norm": 4.40050340710905,
1394
+ "learning_rate": 7.297817715019256e-06,
1395
+ "loss": 0.3526,
1396
+ "step": 1980
1397
+ },
1398
+ {
1399
+ "epoch": 0.6384856019892516,
1400
+ "grad_norm": 3.5711401894801194,
1401
+ "learning_rate": 7.233632862644416e-06,
1402
+ "loss": 0.3865,
1403
+ "step": 1990
1404
+ },
1405
+ {
1406
+ "epoch": 0.6416940723510066,
1407
+ "grad_norm": 5.155189378251862,
1408
+ "learning_rate": 7.169448010269577e-06,
1409
+ "loss": 0.4037,
1410
+ "step": 2000
1411
+ },
1412
+ {
1413
+ "epoch": 0.6449025427127617,
1414
+ "grad_norm": 5.764606055822457,
1415
+ "learning_rate": 7.1052631578947375e-06,
1416
+ "loss": 0.3806,
1417
+ "step": 2010
1418
+ },
1419
+ {
1420
+ "epoch": 0.6481110130745167,
1421
+ "grad_norm": 3.3930437034797585,
1422
+ "learning_rate": 7.0410783055198984e-06,
1423
+ "loss": 0.3951,
1424
+ "step": 2020
1425
+ },
1426
+ {
1427
+ "epoch": 0.6513194834362718,
1428
+ "grad_norm": 4.922727726376936,
1429
+ "learning_rate": 6.9768934531450586e-06,
1430
+ "loss": 0.3847,
1431
+ "step": 2030
1432
+ },
1433
+ {
1434
+ "epoch": 0.6545279537980268,
1435
+ "grad_norm": 2.7890174522963367,
1436
+ "learning_rate": 6.9127086007702195e-06,
1437
+ "loss": 0.3479,
1438
+ "step": 2040
1439
+ },
1440
+ {
1441
+ "epoch": 0.6577364241597818,
1442
+ "grad_norm": 4.412823863289807,
1443
+ "learning_rate": 6.84852374839538e-06,
1444
+ "loss": 0.4173,
1445
+ "step": 2050
1446
+ },
1447
+ {
1448
+ "epoch": 0.6609448945215368,
1449
+ "grad_norm": 5.417820507568683,
1450
+ "learning_rate": 6.784338896020539e-06,
1451
+ "loss": 0.381,
1452
+ "step": 2060
1453
+ },
1454
+ {
1455
+ "epoch": 0.6641533648832919,
1456
+ "grad_norm": 3.8506255680933528,
1457
+ "learning_rate": 6.7201540436457e-06,
1458
+ "loss": 0.3693,
1459
+ "step": 2070
1460
+ },
1461
+ {
1462
+ "epoch": 0.6673618352450469,
1463
+ "grad_norm": 3.5416828656888786,
1464
+ "learning_rate": 6.65596919127086e-06,
1465
+ "loss": 0.358,
1466
+ "step": 2080
1467
+ },
1468
+ {
1469
+ "epoch": 0.670570305606802,
1470
+ "grad_norm": 3.5323170162835775,
1471
+ "learning_rate": 6.591784338896021e-06,
1472
+ "loss": 0.3237,
1473
+ "step": 2090
1474
+ },
1475
+ {
1476
+ "epoch": 0.673778775968557,
1477
+ "grad_norm": 6.128726604158042,
1478
+ "learning_rate": 6.527599486521181e-06,
1479
+ "loss": 0.3859,
1480
+ "step": 2100
1481
+ },
1482
+ {
1483
+ "epoch": 0.676987246330312,
1484
+ "grad_norm": 4.891887980181221,
1485
+ "learning_rate": 6.463414634146342e-06,
1486
+ "loss": 0.3223,
1487
+ "step": 2110
1488
+ },
1489
+ {
1490
+ "epoch": 0.680195716692067,
1491
+ "grad_norm": 3.565557213786112,
1492
+ "learning_rate": 6.399229781771502e-06,
1493
+ "loss": 0.363,
1494
+ "step": 2120
1495
+ },
1496
+ {
1497
+ "epoch": 0.6834041870538221,
1498
+ "grad_norm": 3.4294258572573337,
1499
+ "learning_rate": 6.335044929396663e-06,
1500
+ "loss": 0.3781,
1501
+ "step": 2130
1502
+ },
1503
+ {
1504
+ "epoch": 0.6866126574155771,
1505
+ "grad_norm": 4.518476500237087,
1506
+ "learning_rate": 6.270860077021823e-06,
1507
+ "loss": 0.4325,
1508
+ "step": 2140
1509
+ },
1510
+ {
1511
+ "epoch": 0.6898211277773322,
1512
+ "grad_norm": 4.743599740115472,
1513
+ "learning_rate": 6.206675224646984e-06,
1514
+ "loss": 0.411,
1515
+ "step": 2150
1516
+ },
1517
+ {
1518
+ "epoch": 0.6930295981390872,
1519
+ "grad_norm": 2.5630593956213015,
1520
+ "learning_rate": 6.142490372272144e-06,
1521
+ "loss": 0.3717,
1522
+ "step": 2160
1523
+ },
1524
+ {
1525
+ "epoch": 0.6962380685008422,
1526
+ "grad_norm": 6.2586555195558,
1527
+ "learning_rate": 6.078305519897305e-06,
1528
+ "loss": 0.3561,
1529
+ "step": 2170
1530
+ },
1531
+ {
1532
+ "epoch": 0.6994465388625972,
1533
+ "grad_norm": 4.894715427924892,
1534
+ "learning_rate": 6.0141206675224654e-06,
1535
+ "loss": 0.4164,
1536
+ "step": 2180
1537
+ },
1538
+ {
1539
+ "epoch": 0.7026550092243523,
1540
+ "grad_norm": 3.5252148379990573,
1541
+ "learning_rate": 5.949935815147626e-06,
1542
+ "loss": 0.3209,
1543
+ "step": 2190
1544
+ },
1545
+ {
1546
+ "epoch": 0.7058634795861073,
1547
+ "grad_norm": 3.256470353538883,
1548
+ "learning_rate": 5.885750962772786e-06,
1549
+ "loss": 0.3893,
1550
+ "step": 2200
1551
+ },
1552
+ {
1553
+ "epoch": 0.7090719499478624,
1554
+ "grad_norm": 3.4671867719647573,
1555
+ "learning_rate": 5.821566110397947e-06,
1556
+ "loss": 0.3836,
1557
+ "step": 2210
1558
+ },
1559
+ {
1560
+ "epoch": 0.7122804203096174,
1561
+ "grad_norm": 3.6300469654014806,
1562
+ "learning_rate": 5.757381258023107e-06,
1563
+ "loss": 0.3604,
1564
+ "step": 2220
1565
+ },
1566
+ {
1567
+ "epoch": 0.7154888906713724,
1568
+ "grad_norm": 4.8222353267885545,
1569
+ "learning_rate": 5.693196405648267e-06,
1570
+ "loss": 0.3402,
1571
+ "step": 2230
1572
+ },
1573
+ {
1574
+ "epoch": 0.7186973610331274,
1575
+ "grad_norm": 3.088736996240411,
1576
+ "learning_rate": 5.629011553273428e-06,
1577
+ "loss": 0.3571,
1578
+ "step": 2240
1579
+ },
1580
+ {
1581
+ "epoch": 0.7219058313948825,
1582
+ "grad_norm": 6.468377008869226,
1583
+ "learning_rate": 5.564826700898588e-06,
1584
+ "loss": 0.3857,
1585
+ "step": 2250
1586
+ },
1587
+ {
1588
+ "epoch": 0.7251143017566375,
1589
+ "grad_norm": 4.976006702523603,
1590
+ "learning_rate": 5.500641848523749e-06,
1591
+ "loss": 0.328,
1592
+ "step": 2260
1593
+ },
1594
+ {
1595
+ "epoch": 0.7283227721183926,
1596
+ "grad_norm": 7.44768864343581,
1597
+ "learning_rate": 5.436456996148909e-06,
1598
+ "loss": 0.3415,
1599
+ "step": 2270
1600
+ },
1601
+ {
1602
+ "epoch": 0.7315312424801476,
1603
+ "grad_norm": 6.342940977120239,
1604
+ "learning_rate": 5.37227214377407e-06,
1605
+ "loss": 0.3452,
1606
+ "step": 2280
1607
+ },
1608
+ {
1609
+ "epoch": 0.7347397128419026,
1610
+ "grad_norm": 4.281955030745344,
1611
+ "learning_rate": 5.30808729139923e-06,
1612
+ "loss": 0.4647,
1613
+ "step": 2290
1614
+ },
1615
+ {
1616
+ "epoch": 0.7379481832036576,
1617
+ "grad_norm": 3.678790025410135,
1618
+ "learning_rate": 5.243902439024391e-06,
1619
+ "loss": 0.3742,
1620
+ "step": 2300
1621
+ },
1622
+ {
1623
+ "epoch": 0.7411566535654127,
1624
+ "grad_norm": 3.3547281464794096,
1625
+ "learning_rate": 5.179717586649551e-06,
1626
+ "loss": 0.3835,
1627
+ "step": 2310
1628
+ },
1629
+ {
1630
+ "epoch": 0.7443651239271677,
1631
+ "grad_norm": 5.13222360440861,
1632
+ "learning_rate": 5.115532734274712e-06,
1633
+ "loss": 0.3859,
1634
+ "step": 2320
1635
+ },
1636
+ {
1637
+ "epoch": 0.7475735942889228,
1638
+ "grad_norm": 3.972710625172556,
1639
+ "learning_rate": 5.0513478818998715e-06,
1640
+ "loss": 0.3537,
1641
+ "step": 2330
1642
+ },
1643
+ {
1644
+ "epoch": 0.7507820646506778,
1645
+ "grad_norm": 3.2744384458301687,
1646
+ "learning_rate": 4.9871630295250324e-06,
1647
+ "loss": 0.3793,
1648
+ "step": 2340
1649
+ },
1650
+ {
1651
+ "epoch": 0.7539905350124328,
1652
+ "grad_norm": 3.8532031308587396,
1653
+ "learning_rate": 4.9229781771501926e-06,
1654
+ "loss": 0.3245,
1655
+ "step": 2350
1656
+ },
1657
+ {
1658
+ "epoch": 0.7571990053741878,
1659
+ "grad_norm": 6.097220741982411,
1660
+ "learning_rate": 4.8587933247753535e-06,
1661
+ "loss": 0.4381,
1662
+ "step": 2360
1663
+ },
1664
+ {
1665
+ "epoch": 0.7604074757359429,
1666
+ "grad_norm": 3.6161720053467743,
1667
+ "learning_rate": 4.794608472400514e-06,
1668
+ "loss": 0.3904,
1669
+ "step": 2370
1670
+ },
1671
+ {
1672
+ "epoch": 0.7636159460976979,
1673
+ "grad_norm": 3.2126570713513196,
1674
+ "learning_rate": 4.730423620025675e-06,
1675
+ "loss": 0.3698,
1676
+ "step": 2380
1677
+ },
1678
+ {
1679
+ "epoch": 0.766824416459453,
1680
+ "grad_norm": 4.440937942880446,
1681
+ "learning_rate": 4.666238767650835e-06,
1682
+ "loss": 0.3672,
1683
+ "step": 2390
1684
+ },
1685
+ {
1686
+ "epoch": 0.770032886821208,
1687
+ "grad_norm": 4.034010642616632,
1688
+ "learning_rate": 4.602053915275995e-06,
1689
+ "loss": 0.3453,
1690
+ "step": 2400
1691
+ },
1692
+ {
1693
+ "epoch": 0.773241357182963,
1694
+ "grad_norm": 4.320673481292839,
1695
+ "learning_rate": 4.537869062901156e-06,
1696
+ "loss": 0.3874,
1697
+ "step": 2410
1698
+ },
1699
+ {
1700
+ "epoch": 0.776449827544718,
1701
+ "grad_norm": 5.721110452311635,
1702
+ "learning_rate": 4.473684210526316e-06,
1703
+ "loss": 0.3361,
1704
+ "step": 2420
1705
+ },
1706
+ {
1707
+ "epoch": 0.7796582979064731,
1708
+ "grad_norm": 5.553593669289626,
1709
+ "learning_rate": 4.409499358151477e-06,
1710
+ "loss": 0.3761,
1711
+ "step": 2430
1712
+ },
1713
+ {
1714
+ "epoch": 0.7828667682682281,
1715
+ "grad_norm": 3.5931839661915506,
1716
+ "learning_rate": 4.345314505776637e-06,
1717
+ "loss": 0.3303,
1718
+ "step": 2440
1719
+ },
1720
+ {
1721
+ "epoch": 0.7860752386299832,
1722
+ "grad_norm": 3.191917593220325,
1723
+ "learning_rate": 4.281129653401798e-06,
1724
+ "loss": 0.4581,
1725
+ "step": 2450
1726
+ },
1727
+ {
1728
+ "epoch": 0.7892837089917382,
1729
+ "grad_norm": 2.071662511958508,
1730
+ "learning_rate": 4.216944801026958e-06,
1731
+ "loss": 0.3602,
1732
+ "step": 2460
1733
+ },
1734
+ {
1735
+ "epoch": 0.7924921793534933,
1736
+ "grad_norm": 4.1098396579418015,
1737
+ "learning_rate": 4.152759948652118e-06,
1738
+ "loss": 0.3658,
1739
+ "step": 2470
1740
+ },
1741
+ {
1742
+ "epoch": 0.7957006497152482,
1743
+ "grad_norm": 3.342343894793557,
1744
+ "learning_rate": 4.088575096277279e-06,
1745
+ "loss": 0.3533,
1746
+ "step": 2480
1747
+ },
1748
+ {
1749
+ "epoch": 0.7989091200770033,
1750
+ "grad_norm": 3.501852515883717,
1751
+ "learning_rate": 4.024390243902439e-06,
1752
+ "loss": 0.3086,
1753
+ "step": 2490
1754
+ },
1755
+ {
1756
+ "epoch": 0.8021175904387583,
1757
+ "grad_norm": 5.6740246031343275,
1758
+ "learning_rate": 3.9602053915276e-06,
1759
+ "loss": 0.3619,
1760
+ "step": 2500
1761
+ },
1762
+ {
1763
+ "epoch": 0.8053260608005134,
1764
+ "grad_norm": 3.6625993713157867,
1765
+ "learning_rate": 3.89602053915276e-06,
1766
+ "loss": 0.3536,
1767
+ "step": 2510
1768
+ },
1769
+ {
1770
+ "epoch": 0.8085345311622684,
1771
+ "grad_norm": 4.12817611506417,
1772
+ "learning_rate": 3.8318356867779205e-06,
1773
+ "loss": 0.3552,
1774
+ "step": 2520
1775
+ },
1776
+ {
1777
+ "epoch": 0.8117430015240235,
1778
+ "grad_norm": 6.752665333536269,
1779
+ "learning_rate": 3.767650834403081e-06,
1780
+ "loss": 0.3906,
1781
+ "step": 2530
1782
+ },
1783
+ {
1784
+ "epoch": 0.8149514718857784,
1785
+ "grad_norm": 4.0698833515045765,
1786
+ "learning_rate": 3.7034659820282416e-06,
1787
+ "loss": 0.369,
1788
+ "step": 2540
1789
+ },
1790
+ {
1791
+ "epoch": 0.8181599422475335,
1792
+ "grad_norm": 3.8061893249692167,
1793
+ "learning_rate": 3.639281129653402e-06,
1794
+ "loss": 0.391,
1795
+ "step": 2550
1796
+ },
1797
+ {
1798
+ "epoch": 0.8213684126092885,
1799
+ "grad_norm": 4.2054055524032075,
1800
+ "learning_rate": 3.5750962772785623e-06,
1801
+ "loss": 0.3781,
1802
+ "step": 2560
1803
+ },
1804
+ {
1805
+ "epoch": 0.8245768829710436,
1806
+ "grad_norm": 3.1509974167473294,
1807
+ "learning_rate": 3.510911424903723e-06,
1808
+ "loss": 0.4246,
1809
+ "step": 2570
1810
+ },
1811
+ {
1812
+ "epoch": 0.8277853533327986,
1813
+ "grad_norm": 3.344075353049933,
1814
+ "learning_rate": 3.4467265725288834e-06,
1815
+ "loss": 0.3839,
1816
+ "step": 2580
1817
+ },
1818
+ {
1819
+ "epoch": 0.8309938236945537,
1820
+ "grad_norm": 4.3862748314587625,
1821
+ "learning_rate": 3.382541720154044e-06,
1822
+ "loss": 0.3243,
1823
+ "step": 2590
1824
+ },
1825
+ {
1826
+ "epoch": 0.8342022940563086,
1827
+ "grad_norm": 4.430571971071977,
1828
+ "learning_rate": 3.3183568677792044e-06,
1829
+ "loss": 0.4219,
1830
+ "step": 2600
1831
+ },
1832
+ {
1833
+ "epoch": 0.8374107644180637,
1834
+ "grad_norm": 4.216572691360644,
1835
+ "learning_rate": 3.254172015404365e-06,
1836
+ "loss": 0.3453,
1837
+ "step": 2610
1838
+ },
1839
+ {
1840
+ "epoch": 0.8406192347798187,
1841
+ "grad_norm": 5.730663867597084,
1842
+ "learning_rate": 3.1899871630295255e-06,
1843
+ "loss": 0.3652,
1844
+ "step": 2620
1845
+ },
1846
+ {
1847
+ "epoch": 0.8438277051415738,
1848
+ "grad_norm": 3.152373466591917,
1849
+ "learning_rate": 3.125802310654686e-06,
1850
+ "loss": 0.3761,
1851
+ "step": 2630
1852
+ },
1853
+ {
1854
+ "epoch": 0.8470361755033288,
1855
+ "grad_norm": 4.049903812572876,
1856
+ "learning_rate": 3.061617458279846e-06,
1857
+ "loss": 0.4274,
1858
+ "step": 2640
1859
+ },
1860
+ {
1861
+ "epoch": 0.8502446458650839,
1862
+ "grad_norm": 3.7109620908295002,
1863
+ "learning_rate": 2.9974326059050067e-06,
1864
+ "loss": 0.3575,
1865
+ "step": 2650
1866
+ },
1867
+ {
1868
+ "epoch": 0.8534531162268388,
1869
+ "grad_norm": 6.151962412156622,
1870
+ "learning_rate": 2.9332477535301673e-06,
1871
+ "loss": 0.3935,
1872
+ "step": 2660
1873
+ },
1874
+ {
1875
+ "epoch": 0.8566615865885939,
1876
+ "grad_norm": 2.8483008748019474,
1877
+ "learning_rate": 2.869062901155328e-06,
1878
+ "loss": 0.3327,
1879
+ "step": 2670
1880
+ },
1881
+ {
1882
+ "epoch": 0.8598700569503489,
1883
+ "grad_norm": 3.884150141973327,
1884
+ "learning_rate": 2.8048780487804884e-06,
1885
+ "loss": 0.3222,
1886
+ "step": 2680
1887
+ },
1888
+ {
1889
+ "epoch": 0.863078527312104,
1890
+ "grad_norm": 5.091883011304281,
1891
+ "learning_rate": 2.740693196405648e-06,
1892
+ "loss": 0.4241,
1893
+ "step": 2690
1894
+ },
1895
+ {
1896
+ "epoch": 0.866286997673859,
1897
+ "grad_norm": 6.256322006655992,
1898
+ "learning_rate": 2.6765083440308086e-06,
1899
+ "loss": 0.3896,
1900
+ "step": 2700
1901
+ },
1902
+ {
1903
+ "epoch": 0.8694954680356141,
1904
+ "grad_norm": 3.185423190731702,
1905
+ "learning_rate": 2.612323491655969e-06,
1906
+ "loss": 0.3503,
1907
+ "step": 2710
1908
+ },
1909
+ {
1910
+ "epoch": 0.872703938397369,
1911
+ "grad_norm": 2.501677043437045,
1912
+ "learning_rate": 2.5481386392811297e-06,
1913
+ "loss": 0.308,
1914
+ "step": 2720
1915
+ },
1916
+ {
1917
+ "epoch": 0.8759124087591241,
1918
+ "grad_norm": 3.994307293016134,
1919
+ "learning_rate": 2.4839537869062902e-06,
1920
+ "loss": 0.3146,
1921
+ "step": 2730
1922
+ },
1923
+ {
1924
+ "epoch": 0.8791208791208791,
1925
+ "grad_norm": 6.3218538833338185,
1926
+ "learning_rate": 2.4197689345314508e-06,
1927
+ "loss": 0.3861,
1928
+ "step": 2740
1929
+ },
1930
+ {
1931
+ "epoch": 0.8823293494826342,
1932
+ "grad_norm": 4.2929895131508875,
1933
+ "learning_rate": 2.3555840821566113e-06,
1934
+ "loss": 0.3514,
1935
+ "step": 2750
1936
+ },
1937
+ {
1938
+ "epoch": 0.8855378198443892,
1939
+ "grad_norm": 5.013441973517175,
1940
+ "learning_rate": 2.2913992297817714e-06,
1941
+ "loss": 0.3394,
1942
+ "step": 2760
1943
+ },
1944
+ {
1945
+ "epoch": 0.8887462902061443,
1946
+ "grad_norm": 4.942588457664286,
1947
+ "learning_rate": 2.227214377406932e-06,
1948
+ "loss": 0.3916,
1949
+ "step": 2770
1950
+ },
1951
+ {
1952
+ "epoch": 0.8919547605678992,
1953
+ "grad_norm": 4.093044885114057,
1954
+ "learning_rate": 2.1630295250320925e-06,
1955
+ "loss": 0.3316,
1956
+ "step": 2780
1957
+ },
1958
+ {
1959
+ "epoch": 0.8951632309296543,
1960
+ "grad_norm": 3.6241454294578044,
1961
+ "learning_rate": 2.098844672657253e-06,
1962
+ "loss": 0.328,
1963
+ "step": 2790
1964
+ },
1965
+ {
1966
+ "epoch": 0.8983717012914093,
1967
+ "grad_norm": 3.7585099242216105,
1968
+ "learning_rate": 2.0346598202824136e-06,
1969
+ "loss": 0.313,
1970
+ "step": 2800
1971
+ },
1972
+ {
1973
+ "epoch": 0.9015801716531644,
1974
+ "grad_norm": 3.092191111039683,
1975
+ "learning_rate": 1.970474967907574e-06,
1976
+ "loss": 0.3207,
1977
+ "step": 2810
1978
+ },
1979
+ {
1980
+ "epoch": 0.9047886420149194,
1981
+ "grad_norm": 7.126196821569378,
1982
+ "learning_rate": 1.9062901155327343e-06,
1983
+ "loss": 0.339,
1984
+ "step": 2820
1985
+ },
1986
+ {
1987
+ "epoch": 0.9079971123766745,
1988
+ "grad_norm": 3.98517835436473,
1989
+ "learning_rate": 1.8421052631578948e-06,
1990
+ "loss": 0.3119,
1991
+ "step": 2830
1992
+ },
1993
+ {
1994
+ "epoch": 0.9112055827384294,
1995
+ "grad_norm": 5.155996828725616,
1996
+ "learning_rate": 1.7779204107830554e-06,
1997
+ "loss": 0.3524,
1998
+ "step": 2840
1999
+ },
2000
+ {
2001
+ "epoch": 0.9144140531001845,
2002
+ "grad_norm": 6.2418873185093116,
2003
+ "learning_rate": 1.7137355584082157e-06,
2004
+ "loss": 0.3697,
2005
+ "step": 2850
2006
+ },
2007
+ {
2008
+ "epoch": 0.9176225234619395,
2009
+ "grad_norm": 4.93642870905445,
2010
+ "learning_rate": 1.6495507060333762e-06,
2011
+ "loss": 0.3567,
2012
+ "step": 2860
2013
+ },
2014
+ {
2015
+ "epoch": 0.9208309938236946,
2016
+ "grad_norm": 3.4661449590899815,
2017
+ "learning_rate": 1.5853658536585368e-06,
2018
+ "loss": 0.3049,
2019
+ "step": 2870
2020
+ },
2021
+ {
2022
+ "epoch": 0.9240394641854496,
2023
+ "grad_norm": 3.9858026943112046,
2024
+ "learning_rate": 1.5211810012836973e-06,
2025
+ "loss": 0.342,
2026
+ "step": 2880
2027
+ },
2028
+ {
2029
+ "epoch": 0.9272479345472047,
2030
+ "grad_norm": 5.747224506777868,
2031
+ "learning_rate": 1.4569961489088577e-06,
2032
+ "loss": 0.3786,
2033
+ "step": 2890
2034
+ },
2035
+ {
2036
+ "epoch": 0.9304564049089596,
2037
+ "grad_norm": 4.2756510193950135,
2038
+ "learning_rate": 1.3928112965340182e-06,
2039
+ "loss": 0.345,
2040
+ "step": 2900
2041
+ },
2042
+ {
2043
+ "epoch": 0.9336648752707147,
2044
+ "grad_norm": 5.737301674162469,
2045
+ "learning_rate": 1.3286264441591783e-06,
2046
+ "loss": 0.3048,
2047
+ "step": 2910
2048
+ },
2049
+ {
2050
+ "epoch": 0.9368733456324697,
2051
+ "grad_norm": 4.5368921290576125,
2052
+ "learning_rate": 1.2644415917843389e-06,
2053
+ "loss": 0.3373,
2054
+ "step": 2920
2055
+ },
2056
+ {
2057
+ "epoch": 0.9400818159942248,
2058
+ "grad_norm": 6.281727114562743,
2059
+ "learning_rate": 1.2002567394094996e-06,
2060
+ "loss": 0.3713,
2061
+ "step": 2930
2062
+ },
2063
+ {
2064
+ "epoch": 0.9432902863559798,
2065
+ "grad_norm": 4.613863643534097,
2066
+ "learning_rate": 1.13607188703466e-06,
2067
+ "loss": 0.3115,
2068
+ "step": 2940
2069
+ },
2070
+ {
2071
+ "epoch": 0.9464987567177349,
2072
+ "grad_norm": 4.4955128133503415,
2073
+ "learning_rate": 1.0718870346598203e-06,
2074
+ "loss": 0.3544,
2075
+ "step": 2950
2076
+ },
2077
+ {
2078
+ "epoch": 0.9497072270794898,
2079
+ "grad_norm": 6.144202111803078,
2080
+ "learning_rate": 1.0077021822849808e-06,
2081
+ "loss": 0.3419,
2082
+ "step": 2960
2083
+ },
2084
+ {
2085
+ "epoch": 0.9529156974412449,
2086
+ "grad_norm": 3.416734695378003,
2087
+ "learning_rate": 9.435173299101414e-07,
2088
+ "loss": 0.3866,
2089
+ "step": 2970
2090
+ },
2091
+ {
2092
+ "epoch": 0.9561241678029999,
2093
+ "grad_norm": 2.9130051363163507,
2094
+ "learning_rate": 8.793324775353017e-07,
2095
+ "loss": 0.3294,
2096
+ "step": 2980
2097
+ },
2098
+ {
2099
+ "epoch": 0.959332638164755,
2100
+ "grad_norm": 4.1544972260670345,
2101
+ "learning_rate": 8.151476251604621e-07,
2102
+ "loss": 0.337,
2103
+ "step": 2990
2104
+ },
2105
+ {
2106
+ "epoch": 0.96254110852651,
2107
+ "grad_norm": 5.333751729311107,
2108
+ "learning_rate": 7.509627727856227e-07,
2109
+ "loss": 0.3707,
2110
+ "step": 3000
2111
+ },
2112
+ {
2113
+ "epoch": 0.9657495788882651,
2114
+ "grad_norm": 4.224378334244017,
2115
+ "learning_rate": 6.867779204107831e-07,
2116
+ "loss": 0.3266,
2117
+ "step": 3010
2118
+ },
2119
+ {
2120
+ "epoch": 0.96895804925002,
2121
+ "grad_norm": 4.68085662929714,
2122
+ "learning_rate": 6.225930680359436e-07,
2123
+ "loss": 0.3228,
2124
+ "step": 3020
2125
+ },
2126
+ {
2127
+ "epoch": 0.9721665196117751,
2128
+ "grad_norm": 2.44350959307893,
2129
+ "learning_rate": 5.584082156611041e-07,
2130
+ "loss": 0.3038,
2131
+ "step": 3030
2132
+ },
2133
+ {
2134
+ "epoch": 0.9753749899735301,
2135
+ "grad_norm": 5.5263577593599225,
2136
+ "learning_rate": 4.942233632862644e-07,
2137
+ "loss": 0.3073,
2138
+ "step": 3040
2139
+ },
2140
+ {
2141
+ "epoch": 0.9785834603352852,
2142
+ "grad_norm": 5.517219216862406,
2143
+ "learning_rate": 4.30038510911425e-07,
2144
+ "loss": 0.4016,
2145
+ "step": 3050
2146
+ },
2147
+ {
2148
+ "epoch": 0.9817919306970402,
2149
+ "grad_norm": 3.559703237499543,
2150
+ "learning_rate": 3.6585365853658536e-07,
2151
+ "loss": 0.4128,
2152
+ "step": 3060
2153
+ },
2154
+ {
2155
+ "epoch": 0.9850004010587953,
2156
+ "grad_norm": 3.2825888661809057,
2157
+ "learning_rate": 3.0166880616174585e-07,
2158
+ "loss": 0.2873,
2159
+ "step": 3070
2160
+ },
2161
+ {
2162
+ "epoch": 0.9882088714205502,
2163
+ "grad_norm": 3.755613548892917,
2164
+ "learning_rate": 2.374839537869063e-07,
2165
+ "loss": 0.3854,
2166
+ "step": 3080
2167
+ },
2168
+ {
2169
+ "epoch": 0.9914173417823053,
2170
+ "grad_norm": 4.172412303358024,
2171
+ "learning_rate": 1.7329910141206678e-07,
2172
+ "loss": 0.328,
2173
+ "step": 3090
2174
+ },
2175
+ {
2176
+ "epoch": 0.9946258121440603,
2177
+ "grad_norm": 6.547343932529505,
2178
+ "learning_rate": 1.0911424903722721e-07,
2179
+ "loss": 0.3947,
2180
+ "step": 3100
2181
+ },
2182
+ {
2183
+ "epoch": 0.9978342825058154,
2184
+ "grad_norm": 4.624930868093504,
2185
+ "learning_rate": 4.4929396662387685e-08,
2186
+ "loss": 0.3312,
2187
+ "step": 3110
2188
+ }
2189
+ ],
2190
+ "logging_steps": 10,
2191
+ "max_steps": 3116,
2192
+ "num_input_tokens_seen": 0,
2193
+ "num_train_epochs": 1,
2194
+ "save_steps": 500,
2195
+ "stateful_callbacks": {
2196
+ "TrainerControl": {
2197
+ "args": {
2198
+ "should_epoch_stop": false,
2199
+ "should_evaluate": false,
2200
+ "should_log": false,
2201
+ "should_save": true,
2202
+ "should_training_stop": true
2203
+ },
2204
+ "attributes": {}
2205
+ }
2206
+ },
2207
+ "total_flos": 0.0,
2208
+ "train_batch_size": 2,
2209
+ "trial_name": null,
2210
+ "trial_params": null
2211
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8140295d10baf1d60a18e7be6b9151e7a6f81aa9521c1dc606c2fdf01b6ad32
3
+ size 6904
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)