Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- chat_template.jinja +89 -0
- config.json +30 -0
- generation_config.json +13 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +450 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +3037 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
88 |
+
{%- endif %}
|
89 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 17408,
|
14 |
+
"max_position_embeddings": 40960,
|
15 |
+
"max_window_layers": 40,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 40,
|
18 |
+
"num_hidden_layers": 40,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.52.4",
|
27 |
+
"use_cache": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.52.4"
|
13 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step428
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68dd19a0a06811b70365c860aa2e0da5d48f6152abc53453f12c2526b5015e2a
|
3 |
+
size 4984780784
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecaeaf1da96587842b538ed8a0e024bdcc144698ccdcd7c38e3f3cd8c00337d0
|
3 |
+
size 4980892048
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f5d1769df0fb4cead2b686f37b4309e76ac58dfd4bb97b12502ed0a5a14ba48
|
3 |
+
size 4928485104
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:445f8cb83634c9e876afbbd7edbea8d75cfadca55fc0db0d65588b48ca9af38c
|
3 |
+
size 4980892112
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9e65afd1dc38ed83186eed0ee9ad1ff2639702b7748b3c3dc962ef9a730e379
|
3 |
+
size 4928485104
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e250a7ca996b5b1959d8175f6fa129f338ba5f39815e33bd9041a394cead461d
|
3 |
+
size 4733130504
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29536614400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
294 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
305 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
316 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
327 |
+
"model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
338 |
+
"model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
343 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
346 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
349 |
+
"model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
354 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
357 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
360 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
361 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
362 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
363 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
364 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
365 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
368 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
369 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
370 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
371 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
372 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
373 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
374 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
375 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
376 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
|
377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
379 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
|
380 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
381 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
382 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
383 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
384 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
385 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
386 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
387 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
390 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
391 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
392 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
393 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
394 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
395 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
396 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
397 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
398 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
|
399 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
400 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
401 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
|
402 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
403 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
404 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
405 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
406 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
407 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
408 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
409 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
410 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
411 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
412 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
413 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
414 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
415 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
416 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
417 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
418 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
419 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
420 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
421 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
422 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
423 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
424 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
425 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
426 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
427 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
428 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
429 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
430 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
431 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
432 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
433 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
434 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
435 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
436 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
437 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
438 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
439 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
440 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
441 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
442 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
|
443 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
444 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
445 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
|
446 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
447 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
448 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
449 |
+
}
|
450 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
|
3 |
+
size 15024
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b98b34c8624255c142ef1c289afeb46d84dfd96034098c99fe5529111f5e33f7
|
3 |
+
size 15024
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47949b0df2efc08ab690d6d3675a5d87b18a30a2fb6a1372cc245bf32aa806b4
|
3 |
+
size 15024
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82a0af955ccdfcc8ba1821a24e8c3dee9ef313357c358ff1e60fc2c2be21e5a4
|
3 |
+
size 15024
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf3256237cabc84ea9fffa73e0da6d748f96838812078792b22874b902e4bf73
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39a860bb18ec0809d2beed844f22fd57e57b50458132796070d6fbbf3893e1cc
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3037 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 3.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 429,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.006996064713598601,
|
14 |
+
"grad_norm": 5.937824249267578,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 1.7117,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.013992129427197202,
|
21 |
+
"grad_norm": 6.1023173332214355,
|
22 |
+
"learning_rate": 2.3255813953488374e-07,
|
23 |
+
"loss": 1.7574,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.020988194140795804,
|
28 |
+
"grad_norm": 5.9199066162109375,
|
29 |
+
"learning_rate": 4.651162790697675e-07,
|
30 |
+
"loss": 1.7173,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.027984258854394404,
|
35 |
+
"grad_norm": 6.086047649383545,
|
36 |
+
"learning_rate": 6.976744186046513e-07,
|
37 |
+
"loss": 1.7361,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.034980323567993,
|
42 |
+
"grad_norm": 5.97832727432251,
|
43 |
+
"learning_rate": 9.30232558139535e-07,
|
44 |
+
"loss": 1.7116,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04197638828159161,
|
49 |
+
"grad_norm": 5.771295547485352,
|
50 |
+
"learning_rate": 1.1627906976744188e-06,
|
51 |
+
"loss": 1.7151,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.04897245299519021,
|
56 |
+
"grad_norm": 5.788296222686768,
|
57 |
+
"learning_rate": 1.3953488372093025e-06,
|
58 |
+
"loss": 1.7371,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.05596851770878881,
|
63 |
+
"grad_norm": 5.347567081451416,
|
64 |
+
"learning_rate": 1.6279069767441862e-06,
|
65 |
+
"loss": 1.7255,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.06296458242238741,
|
70 |
+
"grad_norm": 5.00020170211792,
|
71 |
+
"learning_rate": 1.86046511627907e-06,
|
72 |
+
"loss": 1.6789,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.069960647135986,
|
77 |
+
"grad_norm": 3.755484104156494,
|
78 |
+
"learning_rate": 2.0930232558139536e-06,
|
79 |
+
"loss": 1.6309,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.07695671184958461,
|
84 |
+
"grad_norm": 3.554680347442627,
|
85 |
+
"learning_rate": 2.3255813953488376e-06,
|
86 |
+
"loss": 1.5802,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.08395277656318322,
|
91 |
+
"grad_norm": 3.4229071140289307,
|
92 |
+
"learning_rate": 2.558139534883721e-06,
|
93 |
+
"loss": 1.6369,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.09094884127678181,
|
98 |
+
"grad_norm": 2.332273244857788,
|
99 |
+
"learning_rate": 2.790697674418605e-06,
|
100 |
+
"loss": 1.5343,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.09794490599038042,
|
105 |
+
"grad_norm": 2.1997501850128174,
|
106 |
+
"learning_rate": 3.0232558139534885e-06,
|
107 |
+
"loss": 1.5487,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.10494097070397901,
|
112 |
+
"grad_norm": 2.141204595565796,
|
113 |
+
"learning_rate": 3.2558139534883724e-06,
|
114 |
+
"loss": 1.5495,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.11193703541757762,
|
119 |
+
"grad_norm": 1.8256744146347046,
|
120 |
+
"learning_rate": 3.4883720930232564e-06,
|
121 |
+
"loss": 1.5049,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.11893310013117621,
|
126 |
+
"grad_norm": 1.7434165477752686,
|
127 |
+
"learning_rate": 3.72093023255814e-06,
|
128 |
+
"loss": 1.5033,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.12592916484477482,
|
133 |
+
"grad_norm": 1.5808353424072266,
|
134 |
+
"learning_rate": 3.953488372093024e-06,
|
135 |
+
"loss": 1.4646,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.1329252295583734,
|
140 |
+
"grad_norm": 1.8995134830474854,
|
141 |
+
"learning_rate": 4.186046511627907e-06,
|
142 |
+
"loss": 1.4568,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.139921294271972,
|
147 |
+
"grad_norm": 1.8199081420898438,
|
148 |
+
"learning_rate": 4.418604651162791e-06,
|
149 |
+
"loss": 1.4273,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.14691735898557062,
|
154 |
+
"grad_norm": 1.699924111366272,
|
155 |
+
"learning_rate": 4.651162790697675e-06,
|
156 |
+
"loss": 1.436,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.15391342369916922,
|
161 |
+
"grad_norm": 1.4117141962051392,
|
162 |
+
"learning_rate": 4.883720930232559e-06,
|
163 |
+
"loss": 1.3895,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.1609094884127678,
|
168 |
+
"grad_norm": 1.1737254858016968,
|
169 |
+
"learning_rate": 5.116279069767442e-06,
|
170 |
+
"loss": 1.4017,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.16790555312636643,
|
175 |
+
"grad_norm": 0.8299681544303894,
|
176 |
+
"learning_rate": 5.348837209302326e-06,
|
177 |
+
"loss": 1.3541,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.17490161783996502,
|
182 |
+
"grad_norm": 0.9315920472145081,
|
183 |
+
"learning_rate": 5.58139534883721e-06,
|
184 |
+
"loss": 1.3462,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.18189768255356362,
|
189 |
+
"grad_norm": 1.1129711866378784,
|
190 |
+
"learning_rate": 5.8139534883720935e-06,
|
191 |
+
"loss": 1.3078,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.1888937472671622,
|
196 |
+
"grad_norm": 1.073608160018921,
|
197 |
+
"learning_rate": 6.046511627906977e-06,
|
198 |
+
"loss": 1.3173,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.19588981198076083,
|
203 |
+
"grad_norm": 0.9064130783081055,
|
204 |
+
"learning_rate": 6.279069767441861e-06,
|
205 |
+
"loss": 1.2973,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.20288587669435942,
|
210 |
+
"grad_norm": 0.7085795402526855,
|
211 |
+
"learning_rate": 6.511627906976745e-06,
|
212 |
+
"loss": 1.2819,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.20988194140795802,
|
217 |
+
"grad_norm": 0.625628650188446,
|
218 |
+
"learning_rate": 6.744186046511628e-06,
|
219 |
+
"loss": 1.2715,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.21687800612155664,
|
224 |
+
"grad_norm": 0.6054685115814209,
|
225 |
+
"learning_rate": 6.976744186046513e-06,
|
226 |
+
"loss": 1.2858,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.22387407083515523,
|
231 |
+
"grad_norm": 0.6722832322120667,
|
232 |
+
"learning_rate": 7.209302325581395e-06,
|
233 |
+
"loss": 1.2616,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.23087013554875382,
|
238 |
+
"grad_norm": 0.6375171542167664,
|
239 |
+
"learning_rate": 7.44186046511628e-06,
|
240 |
+
"loss": 1.2479,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.23786620026235242,
|
245 |
+
"grad_norm": 0.5648869872093201,
|
246 |
+
"learning_rate": 7.674418604651164e-06,
|
247 |
+
"loss": 1.2181,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.24486226497595104,
|
252 |
+
"grad_norm": 0.5544123649597168,
|
253 |
+
"learning_rate": 7.906976744186048e-06,
|
254 |
+
"loss": 1.2149,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.25185832968954963,
|
259 |
+
"grad_norm": 0.5275465846061707,
|
260 |
+
"learning_rate": 8.139534883720931e-06,
|
261 |
+
"loss": 1.215,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.2588543944031482,
|
266 |
+
"grad_norm": 0.5007346868515015,
|
267 |
+
"learning_rate": 8.372093023255815e-06,
|
268 |
+
"loss": 1.2235,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.2658504591167468,
|
273 |
+
"grad_norm": 0.4550033509731293,
|
274 |
+
"learning_rate": 8.604651162790698e-06,
|
275 |
+
"loss": 1.2284,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.2728465238303454,
|
280 |
+
"grad_norm": 0.4190613031387329,
|
281 |
+
"learning_rate": 8.837209302325582e-06,
|
282 |
+
"loss": 1.225,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.279842588543944,
|
287 |
+
"grad_norm": 0.41906407475471497,
|
288 |
+
"learning_rate": 9.069767441860465e-06,
|
289 |
+
"loss": 1.1983,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.28683865325754265,
|
294 |
+
"grad_norm": 0.42890453338623047,
|
295 |
+
"learning_rate": 9.30232558139535e-06,
|
296 |
+
"loss": 1.198,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.29383471797114125,
|
301 |
+
"grad_norm": 0.4086310863494873,
|
302 |
+
"learning_rate": 9.534883720930234e-06,
|
303 |
+
"loss": 1.1938,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.30083078268473984,
|
308 |
+
"grad_norm": 0.3552049696445465,
|
309 |
+
"learning_rate": 9.767441860465117e-06,
|
310 |
+
"loss": 1.184,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.30782684739833843,
|
315 |
+
"grad_norm": 0.3367118835449219,
|
316 |
+
"learning_rate": 1e-05,
|
317 |
+
"loss": 1.2141,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.314822912111937,
|
322 |
+
"grad_norm": 0.33877724409103394,
|
323 |
+
"learning_rate": 9.999834399079165e-06,
|
324 |
+
"loss": 1.1908,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.3218189768255356,
|
329 |
+
"grad_norm": 0.33725035190582275,
|
330 |
+
"learning_rate": 9.99933760728612e-06,
|
331 |
+
"loss": 1.1937,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.3288150415391342,
|
336 |
+
"grad_norm": 0.3173794746398926,
|
337 |
+
"learning_rate": 9.998509657528542e-06,
|
338 |
+
"loss": 1.1806,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.33581110625273286,
|
343 |
+
"grad_norm": 0.29912763833999634,
|
344 |
+
"learning_rate": 9.997350604650123e-06,
|
345 |
+
"loss": 1.1903,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.34280717096633145,
|
350 |
+
"grad_norm": 0.3210199773311615,
|
351 |
+
"learning_rate": 9.995860525426954e-06,
|
352 |
+
"loss": 1.1714,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.34980323567993005,
|
357 |
+
"grad_norm": 0.28884193301200867,
|
358 |
+
"learning_rate": 9.994039518562433e-06,
|
359 |
+
"loss": 1.17,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.35679930039352864,
|
364 |
+
"grad_norm": 0.25813987851142883,
|
365 |
+
"learning_rate": 9.991887704680723e-06,
|
366 |
+
"loss": 1.1642,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.36379536510712723,
|
371 |
+
"grad_norm": 0.2741638422012329,
|
372 |
+
"learning_rate": 9.989405226318772e-06,
|
373 |
+
"loss": 1.1198,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.3707914298207258,
|
378 |
+
"grad_norm": 0.3083779513835907,
|
379 |
+
"learning_rate": 9.986592247916859e-06,
|
380 |
+
"loss": 1.1353,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.3777874945343244,
|
385 |
+
"grad_norm": 0.2932995855808258,
|
386 |
+
"learning_rate": 9.983448955807708e-06,
|
387 |
+
"loss": 1.211,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.38478355924792307,
|
392 |
+
"grad_norm": 0.23885010182857513,
|
393 |
+
"learning_rate": 9.979975558204147e-06,
|
394 |
+
"loss": 1.1439,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.39177962396152166,
|
399 |
+
"grad_norm": 0.2579386830329895,
|
400 |
+
"learning_rate": 9.976172285185315e-06,
|
401 |
+
"loss": 1.1625,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.39877568867512025,
|
406 |
+
"grad_norm": 0.27125871181488037,
|
407 |
+
"learning_rate": 9.972039388681414e-06,
|
408 |
+
"loss": 1.1102,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.40577175338871885,
|
413 |
+
"grad_norm": 0.2614425718784332,
|
414 |
+
"learning_rate": 9.967577142457031e-06,
|
415 |
+
"loss": 1.1594,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.41276781810231744,
|
420 |
+
"grad_norm": 0.2357616126537323,
|
421 |
+
"learning_rate": 9.962785842093003e-06,
|
422 |
+
"loss": 1.1342,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.41976388281591603,
|
427 |
+
"grad_norm": 0.22918762266635895,
|
428 |
+
"learning_rate": 9.95766580496683e-06,
|
429 |
+
"loss": 1.1322,
|
430 |
+
"step": 60
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.4267599475295146,
|
434 |
+
"grad_norm": 0.25597265362739563,
|
435 |
+
"learning_rate": 9.952217370231655e-06,
|
436 |
+
"loss": 1.1187,
|
437 |
+
"step": 61
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.4337560122431133,
|
441 |
+
"grad_norm": 0.2547328770160675,
|
442 |
+
"learning_rate": 9.9464408987938e-06,
|
443 |
+
"loss": 1.1426,
|
444 |
+
"step": 62
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.44075207695671187,
|
448 |
+
"grad_norm": 0.2541535794734955,
|
449 |
+
"learning_rate": 9.940336773288865e-06,
|
450 |
+
"loss": 1.1567,
|
451 |
+
"step": 63
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.44774814167031046,
|
455 |
+
"grad_norm": 0.23748283088207245,
|
456 |
+
"learning_rate": 9.933905398056371e-06,
|
457 |
+
"loss": 1.1432,
|
458 |
+
"step": 64
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.45474420638390906,
|
462 |
+
"grad_norm": 0.24227821826934814,
|
463 |
+
"learning_rate": 9.92714719911298e-06,
|
464 |
+
"loss": 1.114,
|
465 |
+
"step": 65
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.46174027109750765,
|
469 |
+
"grad_norm": 0.23363572359085083,
|
470 |
+
"learning_rate": 9.920062624124282e-06,
|
471 |
+
"loss": 1.1264,
|
472 |
+
"step": 66
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.46873633581110624,
|
476 |
+
"grad_norm": 0.2382754236459732,
|
477 |
+
"learning_rate": 9.912652142375132e-06,
|
478 |
+
"loss": 1.1231,
|
479 |
+
"step": 67
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.47573240052470483,
|
483 |
+
"grad_norm": 0.23080326616764069,
|
484 |
+
"learning_rate": 9.904916244738572e-06,
|
485 |
+
"loss": 1.1208,
|
486 |
+
"step": 68
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.48272846523830343,
|
490 |
+
"grad_norm": 0.23944209516048431,
|
491 |
+
"learning_rate": 9.896855443643307e-06,
|
492 |
+
"loss": 1.1334,
|
493 |
+
"step": 69
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.4897245299519021,
|
497 |
+
"grad_norm": 0.22721773386001587,
|
498 |
+
"learning_rate": 9.888470273039776e-06,
|
499 |
+
"loss": 1.1437,
|
500 |
+
"step": 70
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.49672059466550067,
|
504 |
+
"grad_norm": 0.22420594096183777,
|
505 |
+
"learning_rate": 9.879761288364767e-06,
|
506 |
+
"loss": 1.1297,
|
507 |
+
"step": 71
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.5037166593790993,
|
511 |
+
"grad_norm": 0.23493662476539612,
|
512 |
+
"learning_rate": 9.870729066504629e-06,
|
513 |
+
"loss": 1.1463,
|
514 |
+
"step": 72
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.5107127240926979,
|
518 |
+
"grad_norm": 0.23642633855342865,
|
519 |
+
"learning_rate": 9.861374205757068e-06,
|
520 |
+
"loss": 1.1529,
|
521 |
+
"step": 73
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.5177087888062964,
|
525 |
+
"grad_norm": 0.2463693767786026,
|
526 |
+
"learning_rate": 9.851697325791505e-06,
|
527 |
+
"loss": 1.1322,
|
528 |
+
"step": 74
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.524704853519895,
|
532 |
+
"grad_norm": 0.226633682847023,
|
533 |
+
"learning_rate": 9.841699067608034e-06,
|
534 |
+
"loss": 1.1109,
|
535 |
+
"step": 75
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.5317009182334936,
|
539 |
+
"grad_norm": 0.22586405277252197,
|
540 |
+
"learning_rate": 9.831380093494957e-06,
|
541 |
+
"loss": 1.1295,
|
542 |
+
"step": 76
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.5386969829470922,
|
546 |
+
"grad_norm": 0.24850787222385406,
|
547 |
+
"learning_rate": 9.820741086984925e-06,
|
548 |
+
"loss": 1.1173,
|
549 |
+
"step": 77
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.5456930476606908,
|
553 |
+
"grad_norm": 0.21549104154109955,
|
554 |
+
"learning_rate": 9.809782752809644e-06,
|
555 |
+
"loss": 1.1105,
|
556 |
+
"step": 78
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.5526891123742894,
|
560 |
+
"grad_norm": 0.2411831021308899,
|
561 |
+
"learning_rate": 9.798505816853207e-06,
|
562 |
+
"loss": 1.1275,
|
563 |
+
"step": 79
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.559685177087888,
|
567 |
+
"grad_norm": 0.22199593484401703,
|
568 |
+
"learning_rate": 9.786911026104007e-06,
|
569 |
+
"loss": 1.144,
|
570 |
+
"step": 80
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.5666812418014867,
|
574 |
+
"grad_norm": 0.23231951892375946,
|
575 |
+
"learning_rate": 9.77499914860525e-06,
|
576 |
+
"loss": 1.1094,
|
577 |
+
"step": 81
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.5736773065150853,
|
581 |
+
"grad_norm": 0.21762272715568542,
|
582 |
+
"learning_rate": 9.762770973404094e-06,
|
583 |
+
"loss": 1.1342,
|
584 |
+
"step": 82
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.5806733712286839,
|
588 |
+
"grad_norm": 0.24040056765079498,
|
589 |
+
"learning_rate": 9.750227310499365e-06,
|
590 |
+
"loss": 1.1249,
|
591 |
+
"step": 83
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.5876694359422825,
|
595 |
+
"grad_norm": 0.2038600593805313,
|
596 |
+
"learning_rate": 9.737368990787917e-06,
|
597 |
+
"loss": 1.1101,
|
598 |
+
"step": 84
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.5946655006558811,
|
602 |
+
"grad_norm": 0.21895648539066315,
|
603 |
+
"learning_rate": 9.72419686600958e-06,
|
604 |
+
"loss": 1.14,
|
605 |
+
"step": 85
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.6016615653694797,
|
609 |
+
"grad_norm": 0.2130373865365982,
|
610 |
+
"learning_rate": 9.710711808690754e-06,
|
611 |
+
"loss": 1.1365,
|
612 |
+
"step": 86
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.6086576300830783,
|
616 |
+
"grad_norm": 0.21359188854694366,
|
617 |
+
"learning_rate": 9.696914712086603e-06,
|
618 |
+
"loss": 1.1131,
|
619 |
+
"step": 87
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.6156536947966769,
|
623 |
+
"grad_norm": 0.20822754502296448,
|
624 |
+
"learning_rate": 9.682806490121886e-06,
|
625 |
+
"loss": 1.0983,
|
626 |
+
"step": 88
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.6226497595102755,
|
630 |
+
"grad_norm": 0.2118270844221115,
|
631 |
+
"learning_rate": 9.668388077330421e-06,
|
632 |
+
"loss": 1.1303,
|
633 |
+
"step": 89
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.629645824223874,
|
637 |
+
"grad_norm": 0.2127324342727661,
|
638 |
+
"learning_rate": 9.653660428793188e-06,
|
639 |
+
"loss": 1.123,
|
640 |
+
"step": 90
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.6366418889374726,
|
644 |
+
"grad_norm": 0.2167566865682602,
|
645 |
+
"learning_rate": 9.638624520075047e-06,
|
646 |
+
"loss": 1.0954,
|
647 |
+
"step": 91
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.6436379536510712,
|
651 |
+
"grad_norm": 0.21658548712730408,
|
652 |
+
"learning_rate": 9.623281347160129e-06,
|
653 |
+
"loss": 1.1189,
|
654 |
+
"step": 92
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.6506340183646698,
|
658 |
+
"grad_norm": 0.2170240879058838,
|
659 |
+
"learning_rate": 9.60763192638586e-06,
|
660 |
+
"loss": 1.1422,
|
661 |
+
"step": 93
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.6576300830782684,
|
665 |
+
"grad_norm": 0.2205752283334732,
|
666 |
+
"learning_rate": 9.591677294375637e-06,
|
667 |
+
"loss": 1.1389,
|
668 |
+
"step": 94
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.6646261477918671,
|
672 |
+
"grad_norm": 0.22668494284152985,
|
673 |
+
"learning_rate": 9.57541850797016e-06,
|
674 |
+
"loss": 1.1174,
|
675 |
+
"step": 95
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.6716222125054657,
|
679 |
+
"grad_norm": 0.2228441834449768,
|
680 |
+
"learning_rate": 9.558856644157432e-06,
|
681 |
+
"loss": 1.0944,
|
682 |
+
"step": 96
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.6786182772190643,
|
686 |
+
"grad_norm": 0.23455341160297394,
|
687 |
+
"learning_rate": 9.54199280000141e-06,
|
688 |
+
"loss": 1.1025,
|
689 |
+
"step": 97
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.6856143419326629,
|
693 |
+
"grad_norm": 0.24054673314094543,
|
694 |
+
"learning_rate": 9.52482809256934e-06,
|
695 |
+
"loss": 1.081,
|
696 |
+
"step": 98
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.6926104066462615,
|
700 |
+
"grad_norm": 0.22918441891670227,
|
701 |
+
"learning_rate": 9.507363658857768e-06,
|
702 |
+
"loss": 1.0966,
|
703 |
+
"step": 99
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.6996064713598601,
|
707 |
+
"grad_norm": 0.21981216967105865,
|
708 |
+
"learning_rate": 9.489600655717217e-06,
|
709 |
+
"loss": 1.1064,
|
710 |
+
"step": 100
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.7066025360734587,
|
714 |
+
"grad_norm": 0.2228814661502838,
|
715 |
+
"learning_rate": 9.471540259775554e-06,
|
716 |
+
"loss": 1.1163,
|
717 |
+
"step": 101
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.7135986007870573,
|
721 |
+
"grad_norm": 0.2345104068517685,
|
722 |
+
"learning_rate": 9.453183667360062e-06,
|
723 |
+
"loss": 1.1049,
|
724 |
+
"step": 102
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.7205946655006559,
|
728 |
+
"grad_norm": 0.22801828384399414,
|
729 |
+
"learning_rate": 9.43453209441818e-06,
|
730 |
+
"loss": 1.1351,
|
731 |
+
"step": 103
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.7275907302142545,
|
735 |
+
"grad_norm": 0.2263229787349701,
|
736 |
+
"learning_rate": 9.415586776436973e-06,
|
737 |
+
"loss": 1.1206,
|
738 |
+
"step": 104
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.7345867949278531,
|
742 |
+
"grad_norm": 0.2334379404783249,
|
743 |
+
"learning_rate": 9.396348968361282e-06,
|
744 |
+
"loss": 1.109,
|
745 |
+
"step": 105
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.7415828596414517,
|
749 |
+
"grad_norm": 0.2365368753671646,
|
750 |
+
"learning_rate": 9.376819944510598e-06,
|
751 |
+
"loss": 1.1303,
|
752 |
+
"step": 106
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.7485789243550502,
|
756 |
+
"grad_norm": 0.21456782519817352,
|
757 |
+
"learning_rate": 9.357000998494656e-06,
|
758 |
+
"loss": 1.134,
|
759 |
+
"step": 107
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.7555749890686488,
|
763 |
+
"grad_norm": 0.23137013614177704,
|
764 |
+
"learning_rate": 9.336893443127739e-06,
|
765 |
+
"loss": 1.1111,
|
766 |
+
"step": 108
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.7625710537822474,
|
770 |
+
"grad_norm": 0.24741332232952118,
|
771 |
+
"learning_rate": 9.31649861034172e-06,
|
772 |
+
"loss": 1.1274,
|
773 |
+
"step": 109
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.7695671184958461,
|
777 |
+
"grad_norm": 0.2252303510904312,
|
778 |
+
"learning_rate": 9.295817851097836e-06,
|
779 |
+
"loss": 1.1148,
|
780 |
+
"step": 110
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.7765631832094447,
|
784 |
+
"grad_norm": 0.2318602055311203,
|
785 |
+
"learning_rate": 9.274852535297198e-06,
|
786 |
+
"loss": 1.0909,
|
787 |
+
"step": 111
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.7835592479230433,
|
791 |
+
"grad_norm": 0.2182338833808899,
|
792 |
+
"learning_rate": 9.253604051690047e-06,
|
793 |
+
"loss": 1.1083,
|
794 |
+
"step": 112
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.7905553126366419,
|
798 |
+
"grad_norm": 0.21458062529563904,
|
799 |
+
"learning_rate": 9.232073807783758e-06,
|
800 |
+
"loss": 1.0834,
|
801 |
+
"step": 113
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.7975513773502405,
|
805 |
+
"grad_norm": 0.23873740434646606,
|
806 |
+
"learning_rate": 9.210263229749626e-06,
|
807 |
+
"loss": 1.1112,
|
808 |
+
"step": 114
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.8045474420638391,
|
812 |
+
"grad_norm": 0.21488192677497864,
|
813 |
+
"learning_rate": 9.188173762328367e-06,
|
814 |
+
"loss": 1.1006,
|
815 |
+
"step": 115
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.8115435067774377,
|
819 |
+
"grad_norm": 0.21982012689113617,
|
820 |
+
"learning_rate": 9.165806868734444e-06,
|
821 |
+
"loss": 1.0976,
|
822 |
+
"step": 116
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.8185395714910363,
|
826 |
+
"grad_norm": 0.21686458587646484,
|
827 |
+
"learning_rate": 9.143164030559122e-06,
|
828 |
+
"loss": 1.107,
|
829 |
+
"step": 117
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.8255356362046349,
|
833 |
+
"grad_norm": 0.263600617647171,
|
834 |
+
"learning_rate": 9.120246747672347e-06,
|
835 |
+
"loss": 1.1212,
|
836 |
+
"step": 118
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.8325317009182335,
|
840 |
+
"grad_norm": 0.28033727407455444,
|
841 |
+
"learning_rate": 9.097056538123376e-06,
|
842 |
+
"loss": 1.1081,
|
843 |
+
"step": 119
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.8395277656318321,
|
847 |
+
"grad_norm": 0.24289295077323914,
|
848 |
+
"learning_rate": 9.073594938040231e-06,
|
849 |
+
"loss": 1.0847,
|
850 |
+
"step": 120
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.8465238303454307,
|
854 |
+
"grad_norm": 0.22813363373279572,
|
855 |
+
"learning_rate": 9.049863501527947e-06,
|
856 |
+
"loss": 1.0969,
|
857 |
+
"step": 121
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.8535198950590293,
|
861 |
+
"grad_norm": 0.2539902329444885,
|
862 |
+
"learning_rate": 9.025863800565614e-06,
|
863 |
+
"loss": 1.0889,
|
864 |
+
"step": 122
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.8605159597726278,
|
868 |
+
"grad_norm": 0.2315206080675125,
|
869 |
+
"learning_rate": 9.001597424902266e-06,
|
870 |
+
"loss": 1.097,
|
871 |
+
"step": 123
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.8675120244862266,
|
875 |
+
"grad_norm": 0.24084997177124023,
|
876 |
+
"learning_rate": 8.977065981951567e-06,
|
877 |
+
"loss": 1.1,
|
878 |
+
"step": 124
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.8745080891998251,
|
882 |
+
"grad_norm": 0.2634861469268799,
|
883 |
+
"learning_rate": 8.952271096685333e-06,
|
884 |
+
"loss": 1.0959,
|
885 |
+
"step": 125
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.8815041539134237,
|
889 |
+
"grad_norm": 0.25653111934661865,
|
890 |
+
"learning_rate": 8.927214411525895e-06,
|
891 |
+
"loss": 1.0794,
|
892 |
+
"step": 126
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.8885002186270223,
|
896 |
+
"grad_norm": 0.25337570905685425,
|
897 |
+
"learning_rate": 8.901897586237309e-06,
|
898 |
+
"loss": 1.1036,
|
899 |
+
"step": 127
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.8954962833406209,
|
903 |
+
"grad_norm": 0.26657527685165405,
|
904 |
+
"learning_rate": 8.876322297815406e-06,
|
905 |
+
"loss": 1.0841,
|
906 |
+
"step": 128
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.9024923480542195,
|
910 |
+
"grad_norm": 0.2519988715648651,
|
911 |
+
"learning_rate": 8.85049024037671e-06,
|
912 |
+
"loss": 1.0646,
|
913 |
+
"step": 129
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.9094884127678181,
|
917 |
+
"grad_norm": 0.24986772239208221,
|
918 |
+
"learning_rate": 8.824403125046225e-06,
|
919 |
+
"loss": 1.0926,
|
920 |
+
"step": 130
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.9164844774814167,
|
924 |
+
"grad_norm": 0.24577908217906952,
|
925 |
+
"learning_rate": 8.798062679844077e-06,
|
926 |
+
"loss": 1.1129,
|
927 |
+
"step": 131
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.9234805421950153,
|
931 |
+
"grad_norm": 0.23117944598197937,
|
932 |
+
"learning_rate": 8.771470649571056e-06,
|
933 |
+
"loss": 1.0917,
|
934 |
+
"step": 132
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.9304766069086139,
|
938 |
+
"grad_norm": 0.2600792348384857,
|
939 |
+
"learning_rate": 8.744628795693046e-06,
|
940 |
+
"loss": 1.088,
|
941 |
+
"step": 133
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.9374726716222125,
|
945 |
+
"grad_norm": 0.23922646045684814,
|
946 |
+
"learning_rate": 8.717538896224333e-06,
|
947 |
+
"loss": 1.0707,
|
948 |
+
"step": 134
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.9444687363358111,
|
952 |
+
"grad_norm": 0.2643781006336212,
|
953 |
+
"learning_rate": 8.690202745609834e-06,
|
954 |
+
"loss": 1.0909,
|
955 |
+
"step": 135
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.9514648010494097,
|
959 |
+
"grad_norm": 0.23887589573860168,
|
960 |
+
"learning_rate": 8.662622154606238e-06,
|
961 |
+
"loss": 1.1139,
|
962 |
+
"step": 136
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.9584608657630083,
|
966 |
+
"grad_norm": 0.2613793909549713,
|
967 |
+
"learning_rate": 8.634798950162048e-06,
|
968 |
+
"loss": 1.124,
|
969 |
+
"step": 137
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.9654569304766069,
|
973 |
+
"grad_norm": 0.24978399276733398,
|
974 |
+
"learning_rate": 8.606734975296578e-06,
|
975 |
+
"loss": 1.0895,
|
976 |
+
"step": 138
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.9724529951902056,
|
980 |
+
"grad_norm": 0.2559661567211151,
|
981 |
+
"learning_rate": 8.57843208897786e-06,
|
982 |
+
"loss": 1.0957,
|
983 |
+
"step": 139
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.9794490599038042,
|
987 |
+
"grad_norm": 0.2543698251247406,
|
988 |
+
"learning_rate": 8.549892165999505e-06,
|
989 |
+
"loss": 1.0915,
|
990 |
+
"step": 140
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.9864451246174027,
|
994 |
+
"grad_norm": 0.24577634036540985,
|
995 |
+
"learning_rate": 8.521117096856529e-06,
|
996 |
+
"loss": 1.062,
|
997 |
+
"step": 141
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.9934411893310013,
|
1001 |
+
"grad_norm": 0.2525068521499634,
|
1002 |
+
"learning_rate": 8.492108787620106e-06,
|
1003 |
+
"loss": 1.0943,
|
1004 |
+
"step": 142
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 1.0,
|
1008 |
+
"grad_norm": 0.2525068521499634,
|
1009 |
+
"learning_rate": 8.462869159811326e-06,
|
1010 |
+
"loss": 1.1121,
|
1011 |
+
"step": 143
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 1.0069960647135987,
|
1015 |
+
"grad_norm": 0.2555246353149414,
|
1016 |
+
"learning_rate": 8.433400150273907e-06,
|
1017 |
+
"loss": 1.0907,
|
1018 |
+
"step": 144
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 1.0139921294271972,
|
1022 |
+
"grad_norm": 0.24802914261817932,
|
1023 |
+
"learning_rate": 8.403703711045892e-06,
|
1024 |
+
"loss": 1.0606,
|
1025 |
+
"step": 145
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 1.020988194140796,
|
1029 |
+
"grad_norm": 0.2563156187534332,
|
1030 |
+
"learning_rate": 8.373781809230355e-06,
|
1031 |
+
"loss": 1.077,
|
1032 |
+
"step": 146
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 1.0279842588543944,
|
1036 |
+
"grad_norm": 0.2540357708930969,
|
1037 |
+
"learning_rate": 8.343636426865096e-06,
|
1038 |
+
"loss": 1.0391,
|
1039 |
+
"step": 147
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 1.034980323567993,
|
1043 |
+
"grad_norm": 0.2662995159626007,
|
1044 |
+
"learning_rate": 8.313269560791343e-06,
|
1045 |
+
"loss": 1.0696,
|
1046 |
+
"step": 148
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 1.0419763882815916,
|
1050 |
+
"grad_norm": 0.2547081410884857,
|
1051 |
+
"learning_rate": 8.282683222521491e-06,
|
1052 |
+
"loss": 1.0688,
|
1053 |
+
"step": 149
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 1.0489724529951903,
|
1057 |
+
"grad_norm": 0.2514967918395996,
|
1058 |
+
"learning_rate": 8.251879438105854e-06,
|
1059 |
+
"loss": 1.1046,
|
1060 |
+
"step": 150
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 1.0559685177087887,
|
1064 |
+
"grad_norm": 0.27139806747436523,
|
1065 |
+
"learning_rate": 8.220860247998455e-06,
|
1066 |
+
"loss": 1.0759,
|
1067 |
+
"step": 151
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 1.0629645824223874,
|
1071 |
+
"grad_norm": 0.24396289885044098,
|
1072 |
+
"learning_rate": 8.189627706921876e-06,
|
1073 |
+
"loss": 1.0824,
|
1074 |
+
"step": 152
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 1.069960647135986,
|
1078 |
+
"grad_norm": 0.24899303913116455,
|
1079 |
+
"learning_rate": 8.15818388373114e-06,
|
1080 |
+
"loss": 1.0773,
|
1081 |
+
"step": 153
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 1.0769567118495846,
|
1085 |
+
"grad_norm": 0.2431674599647522,
|
1086 |
+
"learning_rate": 8.126530861276677e-06,
|
1087 |
+
"loss": 1.0472,
|
1088 |
+
"step": 154
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 1.0839527765631831,
|
1092 |
+
"grad_norm": 0.25614264607429504,
|
1093 |
+
"learning_rate": 8.094670736266352e-06,
|
1094 |
+
"loss": 1.0477,
|
1095 |
+
"step": 155
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 1.0909488412767818,
|
1099 |
+
"grad_norm": 0.256788969039917,
|
1100 |
+
"learning_rate": 8.062605619126585e-06,
|
1101 |
+
"loss": 1.0631,
|
1102 |
+
"step": 156
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 1.0979449059903805,
|
1106 |
+
"grad_norm": 0.25251755118370056,
|
1107 |
+
"learning_rate": 8.030337633862542e-06,
|
1108 |
+
"loss": 1.0779,
|
1109 |
+
"step": 157
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 1.104940970703979,
|
1113 |
+
"grad_norm": 0.25813043117523193,
|
1114 |
+
"learning_rate": 7.997868917917453e-06,
|
1115 |
+
"loss": 1.0479,
|
1116 |
+
"step": 158
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 1.1119370354175777,
|
1120 |
+
"grad_norm": 0.2598208487033844,
|
1121 |
+
"learning_rate": 7.96520162203102e-06,
|
1122 |
+
"loss": 1.0432,
|
1123 |
+
"step": 159
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 1.1189331001311762,
|
1127 |
+
"grad_norm": 0.22656458616256714,
|
1128 |
+
"learning_rate": 7.93233791009696e-06,
|
1129 |
+
"loss": 1.0574,
|
1130 |
+
"step": 160
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.125929164844775,
|
1134 |
+
"grad_norm": 0.27121832966804504,
|
1135 |
+
"learning_rate": 7.899279959019654e-06,
|
1136 |
+
"loss": 1.0614,
|
1137 |
+
"step": 161
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.1329252295583734,
|
1141 |
+
"grad_norm": 0.24976760149002075,
|
1142 |
+
"learning_rate": 7.866029958569956e-06,
|
1143 |
+
"loss": 1.0609,
|
1144 |
+
"step": 162
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 1.139921294271972,
|
1148 |
+
"grad_norm": 0.26583290100097656,
|
1149 |
+
"learning_rate": 7.832590111240145e-06,
|
1150 |
+
"loss": 1.0751,
|
1151 |
+
"step": 163
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 1.1469173589855706,
|
1155 |
+
"grad_norm": 0.2444482296705246,
|
1156 |
+
"learning_rate": 7.798962632098024e-06,
|
1157 |
+
"loss": 1.0486,
|
1158 |
+
"step": 164
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 1.1539134236991693,
|
1162 |
+
"grad_norm": 0.23971612751483917,
|
1163 |
+
"learning_rate": 7.765149748640198e-06,
|
1164 |
+
"loss": 1.0725,
|
1165 |
+
"step": 165
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 1.1609094884127678,
|
1169 |
+
"grad_norm": 0.25408315658569336,
|
1170 |
+
"learning_rate": 7.73115370064452e-06,
|
1171 |
+
"loss": 1.0601,
|
1172 |
+
"step": 166
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 1.1679055531263665,
|
1176 |
+
"grad_norm": 0.258532851934433,
|
1177 |
+
"learning_rate": 7.696976740021734e-06,
|
1178 |
+
"loss": 1.0614,
|
1179 |
+
"step": 167
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.174901617839965,
|
1183 |
+
"grad_norm": 0.2614459693431854,
|
1184 |
+
"learning_rate": 7.6626211306663e-06,
|
1185 |
+
"loss": 1.0903,
|
1186 |
+
"step": 168
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 1.1818976825535636,
|
1190 |
+
"grad_norm": 0.2806360423564911,
|
1191 |
+
"learning_rate": 7.628089148306434e-06,
|
1192 |
+
"loss": 1.0728,
|
1193 |
+
"step": 169
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 1.1888937472671621,
|
1197 |
+
"grad_norm": 0.2813877761363983,
|
1198 |
+
"learning_rate": 7.593383080353369e-06,
|
1199 |
+
"loss": 1.0673,
|
1200 |
+
"step": 170
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 1.1958898119807608,
|
1204 |
+
"grad_norm": 0.2591645419597626,
|
1205 |
+
"learning_rate": 7.558505225749827e-06,
|
1206 |
+
"loss": 1.0572,
|
1207 |
+
"step": 171
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 1.2028858766943595,
|
1211 |
+
"grad_norm": 0.26725247502326965,
|
1212 |
+
"learning_rate": 7.523457894817745e-06,
|
1213 |
+
"loss": 1.0631,
|
1214 |
+
"step": 172
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 1.209881941407958,
|
1218 |
+
"grad_norm": 0.2482025921344757,
|
1219 |
+
"learning_rate": 7.488243409105234e-06,
|
1220 |
+
"loss": 1.0876,
|
1221 |
+
"step": 173
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.2168780061215567,
|
1225 |
+
"grad_norm": 0.25393399596214294,
|
1226 |
+
"learning_rate": 7.452864101232798e-06,
|
1227 |
+
"loss": 1.0499,
|
1228 |
+
"step": 174
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 1.2238740708351552,
|
1232 |
+
"grad_norm": 0.2386392503976822,
|
1233 |
+
"learning_rate": 7.4173223147388215e-06,
|
1234 |
+
"loss": 1.07,
|
1235 |
+
"step": 175
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 1.230870135548754,
|
1239 |
+
"grad_norm": 0.24232785403728485,
|
1240 |
+
"learning_rate": 7.381620403924333e-06,
|
1241 |
+
"loss": 1.0705,
|
1242 |
+
"step": 176
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 1.2378662002623524,
|
1246 |
+
"grad_norm": 0.25469738245010376,
|
1247 |
+
"learning_rate": 7.3457607336970545e-06,
|
1248 |
+
"loss": 1.0693,
|
1249 |
+
"step": 177
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.244862264975951,
|
1253 |
+
"grad_norm": 0.2506999373435974,
|
1254 |
+
"learning_rate": 7.309745679414751e-06,
|
1255 |
+
"loss": 1.0642,
|
1256 |
+
"step": 178
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.2518583296895496,
|
1260 |
+
"grad_norm": 0.24194584786891937,
|
1261 |
+
"learning_rate": 7.273577626727884e-06,
|
1262 |
+
"loss": 1.0586,
|
1263 |
+
"step": 179
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.2588543944031483,
|
1267 |
+
"grad_norm": 0.23366078734397888,
|
1268 |
+
"learning_rate": 7.237258971421587e-06,
|
1269 |
+
"loss": 1.094,
|
1270 |
+
"step": 180
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.2658504591167468,
|
1274 |
+
"grad_norm": 0.2570526599884033,
|
1275 |
+
"learning_rate": 7.200792119256961e-06,
|
1276 |
+
"loss": 1.0581,
|
1277 |
+
"step": 181
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.2728465238303455,
|
1281 |
+
"grad_norm": 0.22975337505340576,
|
1282 |
+
"learning_rate": 7.164179485811728e-06,
|
1283 |
+
"loss": 1.0732,
|
1284 |
+
"step": 182
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.279842588543944,
|
1288 |
+
"grad_norm": 0.23770399391651154,
|
1289 |
+
"learning_rate": 7.127423496320212e-06,
|
1290 |
+
"loss": 1.0757,
|
1291 |
+
"step": 183
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 1.2868386532575427,
|
1295 |
+
"grad_norm": 0.23923391103744507,
|
1296 |
+
"learning_rate": 7.090526585512696e-06,
|
1297 |
+
"loss": 1.0572,
|
1298 |
+
"step": 184
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.2938347179711411,
|
1302 |
+
"grad_norm": 0.23085491359233856,
|
1303 |
+
"learning_rate": 7.053491197454142e-06,
|
1304 |
+
"loss": 1.0492,
|
1305 |
+
"step": 185
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.3008307826847398,
|
1309 |
+
"grad_norm": 0.23270699381828308,
|
1310 |
+
"learning_rate": 7.0163197853822975e-06,
|
1311 |
+
"loss": 1.0816,
|
1312 |
+
"step": 186
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.3078268473983385,
|
1316 |
+
"grad_norm": 0.25381889939308167,
|
1317 |
+
"learning_rate": 6.9790148115451894e-06,
|
1318 |
+
"loss": 1.0785,
|
1319 |
+
"step": 187
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.314822912111937,
|
1323 |
+
"grad_norm": 0.2601195275783539,
|
1324 |
+
"learning_rate": 6.941578747038024e-06,
|
1325 |
+
"loss": 1.0795,
|
1326 |
+
"step": 188
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 1.3218189768255355,
|
1330 |
+
"grad_norm": 0.25882264971733093,
|
1331 |
+
"learning_rate": 6.904014071639503e-06,
|
1332 |
+
"loss": 1.0661,
|
1333 |
+
"step": 189
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 1.3288150415391342,
|
1337 |
+
"grad_norm": 0.26806139945983887,
|
1338 |
+
"learning_rate": 6.866323273647564e-06,
|
1339 |
+
"loss": 1.0567,
|
1340 |
+
"step": 190
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.335811106252733,
|
1344 |
+
"grad_norm": 0.23781196773052216,
|
1345 |
+
"learning_rate": 6.828508849714546e-06,
|
1346 |
+
"loss": 1.0519,
|
1347 |
+
"step": 191
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.3428071709663314,
|
1351 |
+
"grad_norm": 0.2429259866476059,
|
1352 |
+
"learning_rate": 6.79057330468182e-06,
|
1353 |
+
"loss": 1.062,
|
1354 |
+
"step": 192
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.34980323567993,
|
1358 |
+
"grad_norm": 0.25786203145980835,
|
1359 |
+
"learning_rate": 6.752519151413862e-06,
|
1360 |
+
"loss": 1.0565,
|
1361 |
+
"step": 193
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.3567993003935286,
|
1365 |
+
"grad_norm": 0.24636365473270416,
|
1366 |
+
"learning_rate": 6.7143489106318e-06,
|
1367 |
+
"loss": 1.0576,
|
1368 |
+
"step": 194
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 1.3637953651071273,
|
1372 |
+
"grad_norm": 0.249672532081604,
|
1373 |
+
"learning_rate": 6.676065110746445e-06,
|
1374 |
+
"loss": 1.0519,
|
1375 |
+
"step": 195
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 1.3707914298207258,
|
1379 |
+
"grad_norm": 0.23771335184574127,
|
1380 |
+
"learning_rate": 6.6376702876908e-06,
|
1381 |
+
"loss": 1.0544,
|
1382 |
+
"step": 196
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.3777874945343245,
|
1386 |
+
"grad_norm": 0.24842609465122223,
|
1387 |
+
"learning_rate": 6.599166984752088e-06,
|
1388 |
+
"loss": 1.085,
|
1389 |
+
"step": 197
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.3847835592479232,
|
1393 |
+
"grad_norm": 0.2690418064594269,
|
1394 |
+
"learning_rate": 6.560557752403277e-06,
|
1395 |
+
"loss": 1.0821,
|
1396 |
+
"step": 198
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 1.3917796239615217,
|
1400 |
+
"grad_norm": 0.25750598311424255,
|
1401 |
+
"learning_rate": 6.52184514813414e-06,
|
1402 |
+
"loss": 1.0432,
|
1403 |
+
"step": 199
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.3987756886751201,
|
1407 |
+
"grad_norm": 0.25249239802360535,
|
1408 |
+
"learning_rate": 6.483031736281843e-06,
|
1409 |
+
"loss": 1.0347,
|
1410 |
+
"step": 200
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 1.4057717533887188,
|
1414 |
+
"grad_norm": 0.22841164469718933,
|
1415 |
+
"learning_rate": 6.444120087861081e-06,
|
1416 |
+
"loss": 1.0727,
|
1417 |
+
"step": 201
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 1.4127678181023176,
|
1421 |
+
"grad_norm": 0.2515389621257782,
|
1422 |
+
"learning_rate": 6.405112780393781e-06,
|
1423 |
+
"loss": 1.0637,
|
1424 |
+
"step": 202
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.419763882815916,
|
1428 |
+
"grad_norm": 0.26256147027015686,
|
1429 |
+
"learning_rate": 6.366012397738355e-06,
|
1430 |
+
"loss": 1.0614,
|
1431 |
+
"step": 203
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.4267599475295145,
|
1435 |
+
"grad_norm": 0.21680590510368347,
|
1436 |
+
"learning_rate": 6.3268215299185545e-06,
|
1437 |
+
"loss": 1.0625,
|
1438 |
+
"step": 204
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 1.4337560122431132,
|
1442 |
+
"grad_norm": 0.25839176774024963,
|
1443 |
+
"learning_rate": 6.2875427729518966e-06,
|
1444 |
+
"loss": 1.0564,
|
1445 |
+
"step": 205
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.440752076956712,
|
1449 |
+
"grad_norm": 0.2728981077671051,
|
1450 |
+
"learning_rate": 6.2481787286777116e-06,
|
1451 |
+
"loss": 1.0603,
|
1452 |
+
"step": 206
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 1.4477481416703104,
|
1456 |
+
"grad_norm": 0.24710682034492493,
|
1457 |
+
"learning_rate": 6.208732004584792e-06,
|
1458 |
+
"loss": 1.0543,
|
1459 |
+
"step": 207
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 1.454744206383909,
|
1463 |
+
"grad_norm": 0.2378065139055252,
|
1464 |
+
"learning_rate": 6.169205213638671e-06,
|
1465 |
+
"loss": 1.0738,
|
1466 |
+
"step": 208
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.4617402710975076,
|
1470 |
+
"grad_norm": 0.2657370865345001,
|
1471 |
+
"learning_rate": 6.129600974108538e-06,
|
1472 |
+
"loss": 1.032,
|
1473 |
+
"step": 209
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.4687363358111063,
|
1477 |
+
"grad_norm": 0.2566014528274536,
|
1478 |
+
"learning_rate": 6.089921909393812e-06,
|
1479 |
+
"loss": 1.0558,
|
1480 |
+
"step": 210
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 1.4757324005247048,
|
1484 |
+
"grad_norm": 0.22705771028995514,
|
1485 |
+
"learning_rate": 6.050170647850351e-06,
|
1486 |
+
"loss": 1.0802,
|
1487 |
+
"step": 211
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 1.4827284652383035,
|
1491 |
+
"grad_norm": 0.25922277569770813,
|
1492 |
+
"learning_rate": 6.01034982261636e-06,
|
1493 |
+
"loss": 1.0505,
|
1494 |
+
"step": 212
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.4897245299519022,
|
1498 |
+
"grad_norm": 0.2328343391418457,
|
1499 |
+
"learning_rate": 5.970462071437974e-06,
|
1500 |
+
"loss": 1.0494,
|
1501 |
+
"step": 213
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 1.4967205946655007,
|
1505 |
+
"grad_norm": 0.24370628595352173,
|
1506 |
+
"learning_rate": 5.93051003649452e-06,
|
1507 |
+
"loss": 1.0714,
|
1508 |
+
"step": 214
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.5037166593790992,
|
1512 |
+
"grad_norm": 0.22944258153438568,
|
1513 |
+
"learning_rate": 5.890496364223509e-06,
|
1514 |
+
"loss": 1.0563,
|
1515 |
+
"step": 215
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.5107127240926979,
|
1519 |
+
"grad_norm": 0.2519015669822693,
|
1520 |
+
"learning_rate": 5.850423705145334e-06,
|
1521 |
+
"loss": 1.061,
|
1522 |
+
"step": 216
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 1.5177087888062966,
|
1526 |
+
"grad_norm": 0.24373194575309753,
|
1527 |
+
"learning_rate": 5.810294713687687e-06,
|
1528 |
+
"loss": 1.0485,
|
1529 |
+
"step": 217
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.524704853519895,
|
1533 |
+
"grad_norm": 0.25564828515052795,
|
1534 |
+
"learning_rate": 5.770112048009747e-06,
|
1535 |
+
"loss": 1.0205,
|
1536 |
+
"step": 218
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.5317009182334935,
|
1540 |
+
"grad_norm": 0.23328275978565216,
|
1541 |
+
"learning_rate": 5.729878369826087e-06,
|
1542 |
+
"loss": 1.0268,
|
1543 |
+
"step": 219
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 1.5386969829470922,
|
1547 |
+
"grad_norm": 0.23757322132587433,
|
1548 |
+
"learning_rate": 5.68959634423037e-06,
|
1549 |
+
"loss": 1.0677,
|
1550 |
+
"step": 220
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.545693047660691,
|
1554 |
+
"grad_norm": 0.2618321180343628,
|
1555 |
+
"learning_rate": 5.64926863951881e-06,
|
1556 |
+
"loss": 1.0499,
|
1557 |
+
"step": 221
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.5526891123742894,
|
1561 |
+
"grad_norm": 0.24455450475215912,
|
1562 |
+
"learning_rate": 5.60889792701342e-06,
|
1563 |
+
"loss": 1.0721,
|
1564 |
+
"step": 222
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 1.559685177087888,
|
1568 |
+
"grad_norm": 0.23317770659923553,
|
1569 |
+
"learning_rate": 5.568486880885068e-06,
|
1570 |
+
"loss": 1.0684,
|
1571 |
+
"step": 223
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.5666812418014868,
|
1575 |
+
"grad_norm": 0.2898538410663605,
|
1576 |
+
"learning_rate": 5.52803817797633e-06,
|
1577 |
+
"loss": 1.0489,
|
1578 |
+
"step": 224
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 1.5736773065150853,
|
1582 |
+
"grad_norm": 0.25492820143699646,
|
1583 |
+
"learning_rate": 5.487554497624189e-06,
|
1584 |
+
"loss": 1.0586,
|
1585 |
+
"step": 225
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.5806733712286838,
|
1589 |
+
"grad_norm": 0.26318982243537903,
|
1590 |
+
"learning_rate": 5.447038521482542e-06,
|
1591 |
+
"loss": 1.0661,
|
1592 |
+
"step": 226
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.5876694359422825,
|
1596 |
+
"grad_norm": 0.22720639407634735,
|
1597 |
+
"learning_rate": 5.406492933344572e-06,
|
1598 |
+
"loss": 1.0577,
|
1599 |
+
"step": 227
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.5946655006558812,
|
1603 |
+
"grad_norm": 0.24046605825424194,
|
1604 |
+
"learning_rate": 5.365920418964973e-06,
|
1605 |
+
"loss": 1.0828,
|
1606 |
+
"step": 228
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 1.6016615653694797,
|
1610 |
+
"grad_norm": 0.24605053663253784,
|
1611 |
+
"learning_rate": 5.325323665882039e-06,
|
1612 |
+
"loss": 1.0481,
|
1613 |
+
"step": 229
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 1.6086576300830782,
|
1617 |
+
"grad_norm": 0.23823630809783936,
|
1618 |
+
"learning_rate": 5.284705363239651e-06,
|
1619 |
+
"loss": 1.0625,
|
1620 |
+
"step": 230
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.6156536947966769,
|
1624 |
+
"grad_norm": 0.2552984058856964,
|
1625 |
+
"learning_rate": 5.244068201609132e-06,
|
1626 |
+
"loss": 1.0191,
|
1627 |
+
"step": 231
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 1.6226497595102756,
|
1631 |
+
"grad_norm": 0.22282664477825165,
|
1632 |
+
"learning_rate": 5.203414872811042e-06,
|
1633 |
+
"loss": 1.0397,
|
1634 |
+
"step": 232
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.629645824223874,
|
1638 |
+
"grad_norm": 0.24304307997226715,
|
1639 |
+
"learning_rate": 5.162748069736851e-06,
|
1640 |
+
"loss": 1.0434,
|
1641 |
+
"step": 233
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.6366418889374725,
|
1645 |
+
"grad_norm": 0.2629837095737457,
|
1646 |
+
"learning_rate": 5.1220704861705775e-06,
|
1647 |
+
"loss": 1.0691,
|
1648 |
+
"step": 234
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 1.6436379536510712,
|
1652 |
+
"grad_norm": 0.24670404195785522,
|
1653 |
+
"learning_rate": 5.0813848166103365e-06,
|
1654 |
+
"loss": 1.0791,
|
1655 |
+
"step": 235
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 1.65063401836467,
|
1659 |
+
"grad_norm": 0.2600962817668915,
|
1660 |
+
"learning_rate": 5.040693756089865e-06,
|
1661 |
+
"loss": 1.0499,
|
1662 |
+
"step": 236
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 1.6576300830782684,
|
1666 |
+
"grad_norm": 0.24187523126602173,
|
1667 |
+
"learning_rate": 5e-06,
|
1668 |
+
"loss": 1.0474,
|
1669 |
+
"step": 237
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 1.6646261477918671,
|
1673 |
+
"grad_norm": 0.22072897851467133,
|
1674 |
+
"learning_rate": 4.959306243910137e-06,
|
1675 |
+
"loss": 1.067,
|
1676 |
+
"step": 238
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.6716222125054658,
|
1680 |
+
"grad_norm": 0.2424023151397705,
|
1681 |
+
"learning_rate": 4.918615183389666e-06,
|
1682 |
+
"loss": 1.0621,
|
1683 |
+
"step": 239
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.6786182772190643,
|
1687 |
+
"grad_norm": 0.23267744481563568,
|
1688 |
+
"learning_rate": 4.877929513829424e-06,
|
1689 |
+
"loss": 1.0256,
|
1690 |
+
"step": 240
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 1.6856143419326628,
|
1694 |
+
"grad_norm": 0.21274727582931519,
|
1695 |
+
"learning_rate": 4.837251930263149e-06,
|
1696 |
+
"loss": 1.0725,
|
1697 |
+
"step": 241
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.6926104066462615,
|
1701 |
+
"grad_norm": 0.24191388487815857,
|
1702 |
+
"learning_rate": 4.796585127188958e-06,
|
1703 |
+
"loss": 1.0664,
|
1704 |
+
"step": 242
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 1.6996064713598602,
|
1708 |
+
"grad_norm": 0.2611248195171356,
|
1709 |
+
"learning_rate": 4.755931798390867e-06,
|
1710 |
+
"loss": 1.0731,
|
1711 |
+
"step": 243
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 1.7066025360734587,
|
1715 |
+
"grad_norm": 0.21119238436222076,
|
1716 |
+
"learning_rate": 4.715294636760352e-06,
|
1717 |
+
"loss": 1.0413,
|
1718 |
+
"step": 244
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.7135986007870572,
|
1722 |
+
"grad_norm": 0.23526926338672638,
|
1723 |
+
"learning_rate": 4.674676334117962e-06,
|
1724 |
+
"loss": 1.0519,
|
1725 |
+
"step": 245
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.7205946655006559,
|
1729 |
+
"grad_norm": 0.22488483786582947,
|
1730 |
+
"learning_rate": 4.634079581035029e-06,
|
1731 |
+
"loss": 1.0657,
|
1732 |
+
"step": 246
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 1.7275907302142546,
|
1736 |
+
"grad_norm": 0.23433709144592285,
|
1737 |
+
"learning_rate": 4.59350706665543e-06,
|
1738 |
+
"loss": 1.0365,
|
1739 |
+
"step": 247
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 1.734586794927853,
|
1743 |
+
"grad_norm": 0.22495707869529724,
|
1744 |
+
"learning_rate": 4.5529614785174606e-06,
|
1745 |
+
"loss": 1.0858,
|
1746 |
+
"step": 248
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 1.7415828596414515,
|
1750 |
+
"grad_norm": 0.23225753009319305,
|
1751 |
+
"learning_rate": 4.512445502375813e-06,
|
1752 |
+
"loss": 1.0752,
|
1753 |
+
"step": 249
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 1.7485789243550502,
|
1757 |
+
"grad_norm": 0.22089412808418274,
|
1758 |
+
"learning_rate": 4.4719618220236715e-06,
|
1759 |
+
"loss": 1.0862,
|
1760 |
+
"step": 250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 1.755574989068649,
|
1764 |
+
"grad_norm": 0.21389490365982056,
|
1765 |
+
"learning_rate": 4.431513119114934e-06,
|
1766 |
+
"loss": 1.0688,
|
1767 |
+
"step": 251
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.7625710537822474,
|
1771 |
+
"grad_norm": 0.22955602407455444,
|
1772 |
+
"learning_rate": 4.391102072986581e-06,
|
1773 |
+
"loss": 1.058,
|
1774 |
+
"step": 252
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 1.7695671184958461,
|
1778 |
+
"grad_norm": 0.21846045553684235,
|
1779 |
+
"learning_rate": 4.350731360481191e-06,
|
1780 |
+
"loss": 1.0376,
|
1781 |
+
"step": 253
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 1.7765631832094448,
|
1785 |
+
"grad_norm": 0.21093875169754028,
|
1786 |
+
"learning_rate": 4.310403655769629e-06,
|
1787 |
+
"loss": 1.068,
|
1788 |
+
"step": 254
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"epoch": 1.7835592479230433,
|
1792 |
+
"grad_norm": 0.23426657915115356,
|
1793 |
+
"learning_rate": 4.270121630173913e-06,
|
1794 |
+
"loss": 1.0326,
|
1795 |
+
"step": 255
|
1796 |
+
},
|
1797 |
+
{
|
1798 |
+
"epoch": 1.7905553126366418,
|
1799 |
+
"grad_norm": 0.21856963634490967,
|
1800 |
+
"learning_rate": 4.229887951990255e-06,
|
1801 |
+
"loss": 1.0689,
|
1802 |
+
"step": 256
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 1.7975513773502405,
|
1806 |
+
"grad_norm": 0.21545103192329407,
|
1807 |
+
"learning_rate": 4.189705286312314e-06,
|
1808 |
+
"loss": 1.049,
|
1809 |
+
"step": 257
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.8045474420638392,
|
1813 |
+
"grad_norm": 0.21497775614261627,
|
1814 |
+
"learning_rate": 4.149576294854668e-06,
|
1815 |
+
"loss": 1.043,
|
1816 |
+
"step": 258
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"epoch": 1.8115435067774377,
|
1820 |
+
"grad_norm": 0.22141148149967194,
|
1821 |
+
"learning_rate": 4.109503635776492e-06,
|
1822 |
+
"loss": 1.0592,
|
1823 |
+
"step": 259
|
1824 |
+
},
|
1825 |
+
{
|
1826 |
+
"epoch": 1.8185395714910362,
|
1827 |
+
"grad_norm": 0.23661255836486816,
|
1828 |
+
"learning_rate": 4.069489963505482e-06,
|
1829 |
+
"loss": 1.0577,
|
1830 |
+
"step": 260
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"epoch": 1.8255356362046349,
|
1834 |
+
"grad_norm": 0.21644575893878937,
|
1835 |
+
"learning_rate": 4.029537928562028e-06,
|
1836 |
+
"loss": 1.0427,
|
1837 |
+
"step": 261
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 1.8325317009182336,
|
1841 |
+
"grad_norm": 0.20113667845726013,
|
1842 |
+
"learning_rate": 3.989650177383641e-06,
|
1843 |
+
"loss": 1.0513,
|
1844 |
+
"step": 262
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 1.839527765631832,
|
1848 |
+
"grad_norm": 0.21667400002479553,
|
1849 |
+
"learning_rate": 3.949829352149651e-06,
|
1850 |
+
"loss": 1.0459,
|
1851 |
+
"step": 263
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 1.8465238303454306,
|
1855 |
+
"grad_norm": 0.23230302333831787,
|
1856 |
+
"learning_rate": 3.91007809060619e-06,
|
1857 |
+
"loss": 1.0586,
|
1858 |
+
"step": 264
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 1.8535198950590293,
|
1862 |
+
"grad_norm": 0.2070595771074295,
|
1863 |
+
"learning_rate": 3.870399025891461e-06,
|
1864 |
+
"loss": 1.0663,
|
1865 |
+
"step": 265
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 1.860515959772628,
|
1869 |
+
"grad_norm": 0.21182109415531158,
|
1870 |
+
"learning_rate": 3.83079478636133e-06,
|
1871 |
+
"loss": 1.0385,
|
1872 |
+
"step": 266
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 1.8675120244862264,
|
1876 |
+
"grad_norm": 0.2090914398431778,
|
1877 |
+
"learning_rate": 3.791267995415208e-06,
|
1878 |
+
"loss": 1.0601,
|
1879 |
+
"step": 267
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 1.8745080891998251,
|
1883 |
+
"grad_norm": 0.2156212478876114,
|
1884 |
+
"learning_rate": 3.7518212713222905e-06,
|
1885 |
+
"loss": 1.0639,
|
1886 |
+
"step": 268
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 1.8815041539134238,
|
1890 |
+
"grad_norm": 0.22998787462711334,
|
1891 |
+
"learning_rate": 3.7124572270481055e-06,
|
1892 |
+
"loss": 1.0389,
|
1893 |
+
"step": 269
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 1.8885002186270223,
|
1897 |
+
"grad_norm": 0.2200993150472641,
|
1898 |
+
"learning_rate": 3.6731784700814476e-06,
|
1899 |
+
"loss": 1.06,
|
1900 |
+
"step": 270
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 1.8954962833406208,
|
1904 |
+
"grad_norm": 0.2213740348815918,
|
1905 |
+
"learning_rate": 3.633987602261647e-06,
|
1906 |
+
"loss": 1.0496,
|
1907 |
+
"step": 271
|
1908 |
+
},
|
1909 |
+
{
|
1910 |
+
"epoch": 1.9024923480542195,
|
1911 |
+
"grad_norm": 0.22220519185066223,
|
1912 |
+
"learning_rate": 3.594887219606221e-06,
|
1913 |
+
"loss": 1.0589,
|
1914 |
+
"step": 272
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"epoch": 1.9094884127678182,
|
1918 |
+
"grad_norm": 0.24564726650714874,
|
1919 |
+
"learning_rate": 3.55587991213892e-06,
|
1920 |
+
"loss": 1.0556,
|
1921 |
+
"step": 273
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 1.9164844774814167,
|
1925 |
+
"grad_norm": 0.22368529438972473,
|
1926 |
+
"learning_rate": 3.516968263718159e-06,
|
1927 |
+
"loss": 1.0468,
|
1928 |
+
"step": 274
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 1.9234805421950152,
|
1932 |
+
"grad_norm": 0.2472257763147354,
|
1933 |
+
"learning_rate": 3.47815485186586e-06,
|
1934 |
+
"loss": 1.0512,
|
1935 |
+
"step": 275
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.930476606908614,
|
1939 |
+
"grad_norm": 0.22477369010448456,
|
1940 |
+
"learning_rate": 3.439442247596724e-06,
|
1941 |
+
"loss": 1.0738,
|
1942 |
+
"step": 276
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"epoch": 1.9374726716222126,
|
1946 |
+
"grad_norm": 0.2397991418838501,
|
1947 |
+
"learning_rate": 3.400833015247913e-06,
|
1948 |
+
"loss": 1.0506,
|
1949 |
+
"step": 277
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 1.944468736335811,
|
1953 |
+
"grad_norm": 0.22635191679000854,
|
1954 |
+
"learning_rate": 3.3623297123092007e-06,
|
1955 |
+
"loss": 1.0504,
|
1956 |
+
"step": 278
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 1.9514648010494096,
|
1960 |
+
"grad_norm": 0.20439866185188293,
|
1961 |
+
"learning_rate": 3.3239348892535562e-06,
|
1962 |
+
"loss": 1.0505,
|
1963 |
+
"step": 279
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 1.9584608657630083,
|
1967 |
+
"grad_norm": 0.21743066608905792,
|
1968 |
+
"learning_rate": 3.285651089368202e-06,
|
1969 |
+
"loss": 1.0396,
|
1970 |
+
"step": 280
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 1.965456930476607,
|
1974 |
+
"grad_norm": 0.22120308876037598,
|
1975 |
+
"learning_rate": 3.24748084858614e-06,
|
1976 |
+
"loss": 1.0359,
|
1977 |
+
"step": 281
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.9724529951902054,
|
1981 |
+
"grad_norm": 0.23442624509334564,
|
1982 |
+
"learning_rate": 3.2094266953181817e-06,
|
1983 |
+
"loss": 1.0415,
|
1984 |
+
"step": 282
|
1985 |
+
},
|
1986 |
+
{
|
1987 |
+
"epoch": 1.9794490599038042,
|
1988 |
+
"grad_norm": 0.22380927205085754,
|
1989 |
+
"learning_rate": 3.1714911502854564e-06,
|
1990 |
+
"loss": 1.0627,
|
1991 |
+
"step": 283
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 1.9864451246174029,
|
1995 |
+
"grad_norm": 0.22232678532600403,
|
1996 |
+
"learning_rate": 3.133676726352438e-06,
|
1997 |
+
"loss": 1.0586,
|
1998 |
+
"step": 284
|
1999 |
+
},
|
2000 |
+
{
|
2001 |
+
"epoch": 1.9934411893310013,
|
2002 |
+
"grad_norm": 0.21684490144252777,
|
2003 |
+
"learning_rate": 3.0959859283604984e-06,
|
2004 |
+
"loss": 1.0469,
|
2005 |
+
"step": 285
|
2006 |
+
},
|
2007 |
+
{
|
2008 |
+
"epoch": 2.0,
|
2009 |
+
"grad_norm": 0.22368235886096954,
|
2010 |
+
"learning_rate": 3.0584212529619777e-06,
|
2011 |
+
"loss": 1.0719,
|
2012 |
+
"step": 286
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 2.0069960647135985,
|
2016 |
+
"grad_norm": 0.24952030181884766,
|
2017 |
+
"learning_rate": 3.020985188454812e-06,
|
2018 |
+
"loss": 1.0254,
|
2019 |
+
"step": 287
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 2.0139921294271974,
|
2023 |
+
"grad_norm": 0.23081070184707642,
|
2024 |
+
"learning_rate": 2.9836802146177034e-06,
|
2025 |
+
"loss": 1.0191,
|
2026 |
+
"step": 288
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"epoch": 2.020988194140796,
|
2030 |
+
"grad_norm": 0.20420107245445251,
|
2031 |
+
"learning_rate": 2.946508802545859e-06,
|
2032 |
+
"loss": 1.0127,
|
2033 |
+
"step": 289
|
2034 |
+
},
|
2035 |
+
{
|
2036 |
+
"epoch": 2.0279842588543944,
|
2037 |
+
"grad_norm": 0.21790923178195953,
|
2038 |
+
"learning_rate": 2.9094734144873037e-06,
|
2039 |
+
"loss": 1.0309,
|
2040 |
+
"step": 290
|
2041 |
+
},
|
2042 |
+
{
|
2043 |
+
"epoch": 2.034980323567993,
|
2044 |
+
"grad_norm": 0.21608051657676697,
|
2045 |
+
"learning_rate": 2.872576503679789e-06,
|
2046 |
+
"loss": 1.0327,
|
2047 |
+
"step": 291
|
2048 |
+
},
|
2049 |
+
{
|
2050 |
+
"epoch": 2.041976388281592,
|
2051 |
+
"grad_norm": 0.2340073436498642,
|
2052 |
+
"learning_rate": 2.8358205141882735e-06,
|
2053 |
+
"loss": 1.0441,
|
2054 |
+
"step": 292
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 2.0489724529951903,
|
2058 |
+
"grad_norm": 0.239246666431427,
|
2059 |
+
"learning_rate": 2.7992078807430423e-06,
|
2060 |
+
"loss": 1.0302,
|
2061 |
+
"step": 293
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 2.0559685177087887,
|
2065 |
+
"grad_norm": 0.21766602993011475,
|
2066 |
+
"learning_rate": 2.7627410285784164e-06,
|
2067 |
+
"loss": 1.0225,
|
2068 |
+
"step": 294
|
2069 |
+
},
|
2070 |
+
{
|
2071 |
+
"epoch": 2.0629645824223872,
|
2072 |
+
"grad_norm": 0.2321794480085373,
|
2073 |
+
"learning_rate": 2.726422373272117e-06,
|
2074 |
+
"loss": 1.0251,
|
2075 |
+
"step": 295
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 2.069960647135986,
|
2079 |
+
"grad_norm": 0.22717420756816864,
|
2080 |
+
"learning_rate": 2.6902543205852496e-06,
|
2081 |
+
"loss": 1.0551,
|
2082 |
+
"step": 296
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 2.0769567118495846,
|
2086 |
+
"grad_norm": 0.2310858517885208,
|
2087 |
+
"learning_rate": 2.6542392663029463e-06,
|
2088 |
+
"loss": 1.0327,
|
2089 |
+
"step": 297
|
2090 |
+
},
|
2091 |
+
{
|
2092 |
+
"epoch": 2.083952776563183,
|
2093 |
+
"grad_norm": 0.2265992909669876,
|
2094 |
+
"learning_rate": 2.618379596075668e-06,
|
2095 |
+
"loss": 1.0355,
|
2096 |
+
"step": 298
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 2.0909488412767816,
|
2100 |
+
"grad_norm": 0.203124538064003,
|
2101 |
+
"learning_rate": 2.582677685261179e-06,
|
2102 |
+
"loss": 1.0255,
|
2103 |
+
"step": 299
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 2.0979449059903805,
|
2107 |
+
"grad_norm": 0.2333555668592453,
|
2108 |
+
"learning_rate": 2.547135898767202e-06,
|
2109 |
+
"loss": 1.0389,
|
2110 |
+
"step": 300
|
2111 |
+
},
|
2112 |
+
{
|
2113 |
+
"epoch": 2.104940970703979,
|
2114 |
+
"grad_norm": 0.25730496644973755,
|
2115 |
+
"learning_rate": 2.511756590894765e-06,
|
2116 |
+
"loss": 1.0423,
|
2117 |
+
"step": 301
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 2.1119370354175775,
|
2121 |
+
"grad_norm": 0.23582589626312256,
|
2122 |
+
"learning_rate": 2.476542105182254e-06,
|
2123 |
+
"loss": 1.037,
|
2124 |
+
"step": 302
|
2125 |
+
},
|
2126 |
+
{
|
2127 |
+
"epoch": 2.1189331001311764,
|
2128 |
+
"grad_norm": 0.20338290929794312,
|
2129 |
+
"learning_rate": 2.4414947742501743e-06,
|
2130 |
+
"loss": 1.0454,
|
2131 |
+
"step": 303
|
2132 |
+
},
|
2133 |
+
{
|
2134 |
+
"epoch": 2.125929164844775,
|
2135 |
+
"grad_norm": 0.21949388086795807,
|
2136 |
+
"learning_rate": 2.4066169196466326e-06,
|
2137 |
+
"loss": 1.0374,
|
2138 |
+
"step": 304
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 2.1329252295583734,
|
2142 |
+
"grad_norm": 0.21819548308849335,
|
2143 |
+
"learning_rate": 2.3719108516935686e-06,
|
2144 |
+
"loss": 1.0365,
|
2145 |
+
"step": 305
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 2.139921294271972,
|
2149 |
+
"grad_norm": 0.2275557965040207,
|
2150 |
+
"learning_rate": 2.3373788693337024e-06,
|
2151 |
+
"loss": 0.9914,
|
2152 |
+
"step": 306
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"epoch": 2.146917358985571,
|
2156 |
+
"grad_norm": 0.20474126935005188,
|
2157 |
+
"learning_rate": 2.303023259978267e-06,
|
2158 |
+
"loss": 1.0061,
|
2159 |
+
"step": 307
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 2.1539134236991693,
|
2163 |
+
"grad_norm": 0.23000217974185944,
|
2164 |
+
"learning_rate": 2.268846299355481e-06,
|
2165 |
+
"loss": 1.0365,
|
2166 |
+
"step": 308
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 2.1609094884127678,
|
2170 |
+
"grad_norm": 0.20540106296539307,
|
2171 |
+
"learning_rate": 2.2348502513598035e-06,
|
2172 |
+
"loss": 1.019,
|
2173 |
+
"step": 309
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 2.1679055531263662,
|
2177 |
+
"grad_norm": 0.1969561129808426,
|
2178 |
+
"learning_rate": 2.2010373679019773e-06,
|
2179 |
+
"loss": 1.038,
|
2180 |
+
"step": 310
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 2.174901617839965,
|
2184 |
+
"grad_norm": 0.20978093147277832,
|
2185 |
+
"learning_rate": 2.167409888759856e-06,
|
2186 |
+
"loss": 1.0452,
|
2187 |
+
"step": 311
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 2.1818976825535636,
|
2191 |
+
"grad_norm": 0.2135351151227951,
|
2192 |
+
"learning_rate": 2.133970041430044e-06,
|
2193 |
+
"loss": 1.042,
|
2194 |
+
"step": 312
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 2.188893747267162,
|
2198 |
+
"grad_norm": 0.2012661248445511,
|
2199 |
+
"learning_rate": 2.1007200409803465e-06,
|
2200 |
+
"loss": 1.0197,
|
2201 |
+
"step": 313
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 2.195889811980761,
|
2205 |
+
"grad_norm": 0.20381034910678864,
|
2206 |
+
"learning_rate": 2.0676620899030393e-06,
|
2207 |
+
"loss": 1.0309,
|
2208 |
+
"step": 314
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 2.2028858766943595,
|
2212 |
+
"grad_norm": 0.21021777391433716,
|
2213 |
+
"learning_rate": 2.03479837796898e-06,
|
2214 |
+
"loss": 1.0455,
|
2215 |
+
"step": 315
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 2.209881941407958,
|
2219 |
+
"grad_norm": 0.2063123732805252,
|
2220 |
+
"learning_rate": 2.002131082082549e-06,
|
2221 |
+
"loss": 1.0391,
|
2222 |
+
"step": 316
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 2.2168780061215565,
|
2226 |
+
"grad_norm": 0.2144179344177246,
|
2227 |
+
"learning_rate": 1.969662366137462e-06,
|
2228 |
+
"loss": 1.0405,
|
2229 |
+
"step": 317
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 2.2238740708351554,
|
2233 |
+
"grad_norm": 0.20752228796482086,
|
2234 |
+
"learning_rate": 1.937394380873418e-06,
|
2235 |
+
"loss": 1.0358,
|
2236 |
+
"step": 318
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 2.230870135548754,
|
2240 |
+
"grad_norm": 0.19838763773441315,
|
2241 |
+
"learning_rate": 1.905329263733649e-06,
|
2242 |
+
"loss": 1.0507,
|
2243 |
+
"step": 319
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 2.2378662002623524,
|
2247 |
+
"grad_norm": 0.20437507331371307,
|
2248 |
+
"learning_rate": 1.873469138723325e-06,
|
2249 |
+
"loss": 1.0419,
|
2250 |
+
"step": 320
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 2.244862264975951,
|
2254 |
+
"grad_norm": 0.22749823331832886,
|
2255 |
+
"learning_rate": 1.8418161162688613e-06,
|
2256 |
+
"loss": 1.0287,
|
2257 |
+
"step": 321
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 2.25185832968955,
|
2261 |
+
"grad_norm": 0.21343137323856354,
|
2262 |
+
"learning_rate": 1.8103722930781249e-06,
|
2263 |
+
"loss": 1.0369,
|
2264 |
+
"step": 322
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 2.2588543944031483,
|
2268 |
+
"grad_norm": 0.22807368636131287,
|
2269 |
+
"learning_rate": 1.7791397520015452e-06,
|
2270 |
+
"loss": 1.017,
|
2271 |
+
"step": 323
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.2658504591167468,
|
2275 |
+
"grad_norm": 0.21017831563949585,
|
2276 |
+
"learning_rate": 1.7481205618941472e-06,
|
2277 |
+
"loss": 1.0313,
|
2278 |
+
"step": 324
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"epoch": 2.2728465238303452,
|
2282 |
+
"grad_norm": 0.20900066196918488,
|
2283 |
+
"learning_rate": 1.7173167774785093e-06,
|
2284 |
+
"loss": 1.0436,
|
2285 |
+
"step": 325
|
2286 |
+
},
|
2287 |
+
{
|
2288 |
+
"epoch": 2.279842588543944,
|
2289 |
+
"grad_norm": 0.21329908072948456,
|
2290 |
+
"learning_rate": 1.6867304392086575e-06,
|
2291 |
+
"loss": 1.0463,
|
2292 |
+
"step": 326
|
2293 |
+
},
|
2294 |
+
{
|
2295 |
+
"epoch": 2.2868386532575427,
|
2296 |
+
"grad_norm": 0.1967432200908661,
|
2297 |
+
"learning_rate": 1.656363573134906e-06,
|
2298 |
+
"loss": 1.0489,
|
2299 |
+
"step": 327
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 2.293834717971141,
|
2303 |
+
"grad_norm": 0.18167762458324432,
|
2304 |
+
"learning_rate": 1.6262181907696456e-06,
|
2305 |
+
"loss": 1.0615,
|
2306 |
+
"step": 328
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 2.3008307826847396,
|
2310 |
+
"grad_norm": 0.19959093630313873,
|
2311 |
+
"learning_rate": 1.5962962889541106e-06,
|
2312 |
+
"loss": 1.0622,
|
2313 |
+
"step": 329
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.3078268473983385,
|
2317 |
+
"grad_norm": 0.21402791142463684,
|
2318 |
+
"learning_rate": 1.5665998497260959e-06,
|
2319 |
+
"loss": 1.0358,
|
2320 |
+
"step": 330
|
2321 |
+
},
|
2322 |
+
{
|
2323 |
+
"epoch": 2.314822912111937,
|
2324 |
+
"grad_norm": 0.20190435647964478,
|
2325 |
+
"learning_rate": 1.5371308401886759e-06,
|
2326 |
+
"loss": 1.0502,
|
2327 |
+
"step": 331
|
2328 |
+
},
|
2329 |
+
{
|
2330 |
+
"epoch": 2.3218189768255355,
|
2331 |
+
"grad_norm": 0.20728997886180878,
|
2332 |
+
"learning_rate": 1.507891212379896e-06,
|
2333 |
+
"loss": 1.0417,
|
2334 |
+
"step": 332
|
2335 |
+
},
|
2336 |
+
{
|
2337 |
+
"epoch": 2.3288150415391344,
|
2338 |
+
"grad_norm": 0.20769530534744263,
|
2339 |
+
"learning_rate": 1.4788829031434733e-06,
|
2340 |
+
"loss": 1.0185,
|
2341 |
+
"step": 333
|
2342 |
+
},
|
2343 |
+
{
|
2344 |
+
"epoch": 2.335811106252733,
|
2345 |
+
"grad_norm": 0.2038041651248932,
|
2346 |
+
"learning_rate": 1.4501078340004954e-06,
|
2347 |
+
"loss": 1.0182,
|
2348 |
+
"step": 334
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 2.3428071709663314,
|
2352 |
+
"grad_norm": 0.2017662227153778,
|
2353 |
+
"learning_rate": 1.4215679110221415e-06,
|
2354 |
+
"loss": 1.039,
|
2355 |
+
"step": 335
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.34980323567993,
|
2359 |
+
"grad_norm": 0.20630167424678802,
|
2360 |
+
"learning_rate": 1.393265024703422e-06,
|
2361 |
+
"loss": 1.0356,
|
2362 |
+
"step": 336
|
2363 |
+
},
|
2364 |
+
{
|
2365 |
+
"epoch": 2.356799300393529,
|
2366 |
+
"grad_norm": 0.2051134705543518,
|
2367 |
+
"learning_rate": 1.365201049837952e-06,
|
2368 |
+
"loss": 1.0104,
|
2369 |
+
"step": 337
|
2370 |
+
},
|
2371 |
+
{
|
2372 |
+
"epoch": 2.3637953651071273,
|
2373 |
+
"grad_norm": 0.2016696333885193,
|
2374 |
+
"learning_rate": 1.337377845393763e-06,
|
2375 |
+
"loss": 1.0409,
|
2376 |
+
"step": 338
|
2377 |
+
},
|
2378 |
+
{
|
2379 |
+
"epoch": 2.3707914298207258,
|
2380 |
+
"grad_norm": 0.20232132077217102,
|
2381 |
+
"learning_rate": 1.3097972543901672e-06,
|
2382 |
+
"loss": 1.0453,
|
2383 |
+
"step": 339
|
2384 |
+
},
|
2385 |
+
{
|
2386 |
+
"epoch": 2.3777874945343243,
|
2387 |
+
"grad_norm": 0.19618479907512665,
|
2388 |
+
"learning_rate": 1.2824611037756686e-06,
|
2389 |
+
"loss": 1.0414,
|
2390 |
+
"step": 340
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 2.384783559247923,
|
2394 |
+
"grad_norm": 0.19780609011650085,
|
2395 |
+
"learning_rate": 1.255371204306956e-06,
|
2396 |
+
"loss": 1.0428,
|
2397 |
+
"step": 341
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.3917796239615217,
|
2401 |
+
"grad_norm": 0.2076359987258911,
|
2402 |
+
"learning_rate": 1.2285293504289448e-06,
|
2403 |
+
"loss": 1.0204,
|
2404 |
+
"step": 342
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"epoch": 2.39877568867512,
|
2408 |
+
"grad_norm": 0.19863395392894745,
|
2409 |
+
"learning_rate": 1.2019373201559247e-06,
|
2410 |
+
"loss": 1.018,
|
2411 |
+
"step": 343
|
2412 |
+
},
|
2413 |
+
{
|
2414 |
+
"epoch": 2.405771753388719,
|
2415 |
+
"grad_norm": 0.1929175853729248,
|
2416 |
+
"learning_rate": 1.1755968749537755e-06,
|
2417 |
+
"loss": 1.0251,
|
2418 |
+
"step": 344
|
2419 |
+
},
|
2420 |
+
{
|
2421 |
+
"epoch": 2.4127678181023176,
|
2422 |
+
"grad_norm": 0.1984327733516693,
|
2423 |
+
"learning_rate": 1.1495097596232901e-06,
|
2424 |
+
"loss": 1.0428,
|
2425 |
+
"step": 345
|
2426 |
+
},
|
2427 |
+
{
|
2428 |
+
"epoch": 2.419763882815916,
|
2429 |
+
"grad_norm": 0.18438038229942322,
|
2430 |
+
"learning_rate": 1.1236777021845957e-06,
|
2431 |
+
"loss": 1.0368,
|
2432 |
+
"step": 346
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 2.4267599475295145,
|
2436 |
+
"grad_norm": 0.20130807161331177,
|
2437 |
+
"learning_rate": 1.0981024137626923e-06,
|
2438 |
+
"loss": 1.0507,
|
2439 |
+
"step": 347
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.4337560122431134,
|
2443 |
+
"grad_norm": 0.22717654705047607,
|
2444 |
+
"learning_rate": 1.0727855884741057e-06,
|
2445 |
+
"loss": 1.05,
|
2446 |
+
"step": 348
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"epoch": 2.440752076956712,
|
2450 |
+
"grad_norm": 0.19452641904354095,
|
2451 |
+
"learning_rate": 1.0477289033146675e-06,
|
2452 |
+
"loss": 1.0433,
|
2453 |
+
"step": 349
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 2.4477481416703104,
|
2457 |
+
"grad_norm": 0.17928987741470337,
|
2458 |
+
"learning_rate": 1.022934018048432e-06,
|
2459 |
+
"loss": 1.0233,
|
2460 |
+
"step": 350
|
2461 |
+
},
|
2462 |
+
{
|
2463 |
+
"epoch": 2.454744206383909,
|
2464 |
+
"grad_norm": 0.18564386665821075,
|
2465 |
+
"learning_rate": 9.984025750977338e-07,
|
2466 |
+
"loss": 1.0316,
|
2467 |
+
"step": 351
|
2468 |
+
},
|
2469 |
+
{
|
2470 |
+
"epoch": 2.461740271097508,
|
2471 |
+
"grad_norm": 0.20213739573955536,
|
2472 |
+
"learning_rate": 9.741361994343867e-07,
|
2473 |
+
"loss": 1.0356,
|
2474 |
+
"step": 352
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 2.4687363358111063,
|
2478 |
+
"grad_norm": 0.19384591281414032,
|
2479 |
+
"learning_rate": 9.501364984720557e-07,
|
2480 |
+
"loss": 1.0086,
|
2481 |
+
"step": 353
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.475732400524705,
|
2485 |
+
"grad_norm": 0.1930152028799057,
|
2486 |
+
"learning_rate": 9.264050619597697e-07,
|
2487 |
+
"loss": 1.0246,
|
2488 |
+
"step": 354
|
2489 |
+
},
|
2490 |
+
{
|
2491 |
+
"epoch": 2.4827284652383033,
|
2492 |
+
"grad_norm": 0.18979789316654205,
|
2493 |
+
"learning_rate": 9.029434618766253e-07,
|
2494 |
+
"loss": 0.9967,
|
2495 |
+
"step": 355
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 2.489724529951902,
|
2499 |
+
"grad_norm": 0.18281033635139465,
|
2500 |
+
"learning_rate": 8.797532523276542e-07,
|
2501 |
+
"loss": 1.0438,
|
2502 |
+
"step": 356
|
2503 |
+
},
|
2504 |
+
{
|
2505 |
+
"epoch": 2.4967205946655007,
|
2506 |
+
"grad_norm": 0.18996168673038483,
|
2507 |
+
"learning_rate": 8.56835969440879e-07,
|
2508 |
+
"loss": 1.0244,
|
2509 |
+
"step": 357
|
2510 |
+
},
|
2511 |
+
{
|
2512 |
+
"epoch": 2.503716659379099,
|
2513 |
+
"grad_norm": 0.1979200392961502,
|
2514 |
+
"learning_rate": 8.341931312655582e-07,
|
2515 |
+
"loss": 1.0317,
|
2516 |
+
"step": 358
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 2.5107127240926976,
|
2520 |
+
"grad_norm": 0.1972116082906723,
|
2521 |
+
"learning_rate": 8.11826237671634e-07,
|
2522 |
+
"loss": 1.0087,
|
2523 |
+
"step": 359
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 2.5177087888062966,
|
2527 |
+
"grad_norm": 0.18998436629772186,
|
2528 |
+
"learning_rate": 7.897367702503755e-07,
|
2529 |
+
"loss": 1.028,
|
2530 |
+
"step": 360
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"epoch": 2.524704853519895,
|
2534 |
+
"grad_norm": 0.18390554189682007,
|
2535 |
+
"learning_rate": 7.679261922162417e-07,
|
2536 |
+
"loss": 1.0419,
|
2537 |
+
"step": 361
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 2.5317009182334935,
|
2541 |
+
"grad_norm": 0.18704506754875183,
|
2542 |
+
"learning_rate": 7.463959483099547e-07,
|
2543 |
+
"loss": 1.0043,
|
2544 |
+
"step": 362
|
2545 |
+
},
|
2546 |
+
{
|
2547 |
+
"epoch": 2.5386969829470925,
|
2548 |
+
"grad_norm": 0.19950369000434875,
|
2549 |
+
"learning_rate": 7.251474647028028e-07,
|
2550 |
+
"loss": 1.0246,
|
2551 |
+
"step": 363
|
2552 |
+
},
|
2553 |
+
{
|
2554 |
+
"epoch": 2.545693047660691,
|
2555 |
+
"grad_norm": 0.18810006976127625,
|
2556 |
+
"learning_rate": 7.041821489021639e-07,
|
2557 |
+
"loss": 0.9838,
|
2558 |
+
"step": 364
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 2.5526891123742894,
|
2562 |
+
"grad_norm": 0.18209373950958252,
|
2563 |
+
"learning_rate": 6.835013896582821e-07,
|
2564 |
+
"loss": 0.9988,
|
2565 |
+
"step": 365
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 2.559685177087888,
|
2569 |
+
"grad_norm": 0.16651113331317902,
|
2570 |
+
"learning_rate": 6.631065568722633e-07,
|
2571 |
+
"loss": 1.005,
|
2572 |
+
"step": 366
|
2573 |
+
},
|
2574 |
+
{
|
2575 |
+
"epoch": 2.566681241801487,
|
2576 |
+
"grad_norm": 0.1969648152589798,
|
2577 |
+
"learning_rate": 6.429990015053461e-07,
|
2578 |
+
"loss": 1.0265,
|
2579 |
+
"step": 367
|
2580 |
+
},
|
2581 |
+
{
|
2582 |
+
"epoch": 2.5736773065150853,
|
2583 |
+
"grad_norm": 0.1813141405582428,
|
2584 |
+
"learning_rate": 6.231800554894029e-07,
|
2585 |
+
"loss": 1.0341,
|
2586 |
+
"step": 368
|
2587 |
+
},
|
2588 |
+
{
|
2589 |
+
"epoch": 2.580673371228684,
|
2590 |
+
"grad_norm": 0.1921863704919815,
|
2591 |
+
"learning_rate": 6.036510316387196e-07,
|
2592 |
+
"loss": 1.0168,
|
2593 |
+
"step": 369
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 2.5876694359422823,
|
2597 |
+
"grad_norm": 0.18890000879764557,
|
2598 |
+
"learning_rate": 5.844132235630273e-07,
|
2599 |
+
"loss": 1.0315,
|
2600 |
+
"step": 370
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 2.594665500655881,
|
2604 |
+
"grad_norm": 0.18416599929332733,
|
2605 |
+
"learning_rate": 5.654679055818202e-07,
|
2606 |
+
"loss": 1.0301,
|
2607 |
+
"step": 371
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 2.6016615653694797,
|
2611 |
+
"grad_norm": 0.18219484388828278,
|
2612 |
+
"learning_rate": 5.46816332639939e-07,
|
2613 |
+
"loss": 1.0354,
|
2614 |
+
"step": 372
|
2615 |
+
},
|
2616 |
+
{
|
2617 |
+
"epoch": 2.608657630083078,
|
2618 |
+
"grad_norm": 0.19500690698623657,
|
2619 |
+
"learning_rate": 5.284597402244457e-07,
|
2620 |
+
"loss": 1.0644,
|
2621 |
+
"step": 373
|
2622 |
+
},
|
2623 |
+
{
|
2624 |
+
"epoch": 2.615653694796677,
|
2625 |
+
"grad_norm": 0.19194085896015167,
|
2626 |
+
"learning_rate": 5.103993442827832e-07,
|
2627 |
+
"loss": 1.0283,
|
2628 |
+
"step": 374
|
2629 |
+
},
|
2630 |
+
{
|
2631 |
+
"epoch": 2.6226497595102756,
|
2632 |
+
"grad_norm": 0.1873580813407898,
|
2633 |
+
"learning_rate": 4.926363411422319e-07,
|
2634 |
+
"loss": 1.0017,
|
2635 |
+
"step": 375
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 2.629645824223874,
|
2639 |
+
"grad_norm": 0.17427587509155273,
|
2640 |
+
"learning_rate": 4.751719074306604e-07,
|
2641 |
+
"loss": 1.0256,
|
2642 |
+
"step": 376
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 2.6366418889374725,
|
2646 |
+
"grad_norm": 0.1876949965953827,
|
2647 |
+
"learning_rate": 4.58007199998593e-07,
|
2648 |
+
"loss": 0.9952,
|
2649 |
+
"step": 377
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 2.643637953651071,
|
2653 |
+
"grad_norm": 0.18339499831199646,
|
2654 |
+
"learning_rate": 4.4114335584256986e-07,
|
2655 |
+
"loss": 1.021,
|
2656 |
+
"step": 378
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"epoch": 2.65063401836467,
|
2660 |
+
"grad_norm": 0.1752660721540451,
|
2661 |
+
"learning_rate": 4.2458149202984025e-07,
|
2662 |
+
"loss": 1.0134,
|
2663 |
+
"step": 379
|
2664 |
+
},
|
2665 |
+
{
|
2666 |
+
"epoch": 2.6576300830782684,
|
2667 |
+
"grad_norm": 0.17881804704666138,
|
2668 |
+
"learning_rate": 4.0832270562436436e-07,
|
2669 |
+
"loss": 1.0573,
|
2670 |
+
"step": 380
|
2671 |
+
},
|
2672 |
+
{
|
2673 |
+
"epoch": 2.664626147791867,
|
2674 |
+
"grad_norm": 0.18826191127300262,
|
2675 |
+
"learning_rate": 3.923680736141411e-07,
|
2676 |
+
"loss": 1.0462,
|
2677 |
+
"step": 381
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 2.671622212505466,
|
2681 |
+
"grad_norm": 0.18888552486896515,
|
2682 |
+
"learning_rate": 3.7671865283987254e-07,
|
2683 |
+
"loss": 1.0385,
|
2684 |
+
"step": 382
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 2.6786182772190643,
|
2688 |
+
"grad_norm": 0.18031838536262512,
|
2689 |
+
"learning_rate": 3.613754799249547e-07,
|
2690 |
+
"loss": 1.0311,
|
2691 |
+
"step": 383
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 2.685614341932663,
|
2695 |
+
"grad_norm": 0.18545882403850555,
|
2696 |
+
"learning_rate": 3.4633957120681294e-07,
|
2697 |
+
"loss": 1.0288,
|
2698 |
+
"step": 384
|
2699 |
+
},
|
2700 |
+
{
|
2701 |
+
"epoch": 2.6926104066462617,
|
2702 |
+
"grad_norm": 0.19693773984909058,
|
2703 |
+
"learning_rate": 3.316119226695785e-07,
|
2704 |
+
"loss": 1.0316,
|
2705 |
+
"step": 385
|
2706 |
+
},
|
2707 |
+
{
|
2708 |
+
"epoch": 2.69960647135986,
|
2709 |
+
"grad_norm": 0.17951585352420807,
|
2710 |
+
"learning_rate": 3.1719350987811537e-07,
|
2711 |
+
"loss": 1.0237,
|
2712 |
+
"step": 386
|
2713 |
+
},
|
2714 |
+
{
|
2715 |
+
"epoch": 2.7066025360734587,
|
2716 |
+
"grad_norm": 0.1714509278535843,
|
2717 |
+
"learning_rate": 3.030852879133989e-07,
|
2718 |
+
"loss": 1.0105,
|
2719 |
+
"step": 387
|
2720 |
+
},
|
2721 |
+
{
|
2722 |
+
"epoch": 2.713598600787057,
|
2723 |
+
"grad_norm": 0.19598188996315002,
|
2724 |
+
"learning_rate": 2.8928819130924656e-07,
|
2725 |
+
"loss": 1.0337,
|
2726 |
+
"step": 388
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 2.7205946655006557,
|
2730 |
+
"grad_norm": 0.17747808992862701,
|
2731 |
+
"learning_rate": 2.75803133990421e-07,
|
2732 |
+
"loss": 1.0344,
|
2733 |
+
"step": 389
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 2.7275907302142546,
|
2737 |
+
"grad_norm": 0.18708738684654236,
|
2738 |
+
"learning_rate": 2.6263100921208484e-07,
|
2739 |
+
"loss": 1.0355,
|
2740 |
+
"step": 390
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 2.734586794927853,
|
2744 |
+
"grad_norm": 0.1784721165895462,
|
2745 |
+
"learning_rate": 2.497726895006353e-07,
|
2746 |
+
"loss": 1.0281,
|
2747 |
+
"step": 391
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 2.7415828596414515,
|
2751 |
+
"grad_norm": 0.18551653623580933,
|
2752 |
+
"learning_rate": 2.3722902659590653e-07,
|
2753 |
+
"loss": 1.0202,
|
2754 |
+
"step": 392
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 2.7485789243550505,
|
2758 |
+
"grad_norm": 0.17838101089000702,
|
2759 |
+
"learning_rate": 2.2500085139474992e-07,
|
2760 |
+
"loss": 0.9873,
|
2761 |
+
"step": 393
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 2.755574989068649,
|
2765 |
+
"grad_norm": 0.19315992295742035,
|
2766 |
+
"learning_rate": 2.130889738959946e-07,
|
2767 |
+
"loss": 1.0218,
|
2768 |
+
"step": 394
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.7625710537822474,
|
2772 |
+
"grad_norm": 0.18315425515174866,
|
2773 |
+
"learning_rate": 2.0149418314679313e-07,
|
2774 |
+
"loss": 1.0366,
|
2775 |
+
"step": 395
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.7695671184958464,
|
2779 |
+
"grad_norm": 0.17746944725513458,
|
2780 |
+
"learning_rate": 1.902172471903563e-07,
|
2781 |
+
"loss": 1.0194,
|
2782 |
+
"step": 396
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 2.776563183209445,
|
2786 |
+
"grad_norm": 0.185789555311203,
|
2787 |
+
"learning_rate": 1.792589130150757e-07,
|
2788 |
+
"loss": 1.0175,
|
2789 |
+
"step": 397
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 2.7835592479230433,
|
2793 |
+
"grad_norm": 0.18121521174907684,
|
2794 |
+
"learning_rate": 1.6861990650504256e-07,
|
2795 |
+
"loss": 1.0511,
|
2796 |
+
"step": 398
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 2.790555312636642,
|
2800 |
+
"grad_norm": 0.17998731136322021,
|
2801 |
+
"learning_rate": 1.5830093239196765e-07,
|
2802 |
+
"loss": 1.0307,
|
2803 |
+
"step": 399
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 2.7975513773502403,
|
2807 |
+
"grad_norm": 0.17075778543949127,
|
2808 |
+
"learning_rate": 1.4830267420849587e-07,
|
2809 |
+
"loss": 1.0304,
|
2810 |
+
"step": 400
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 2.804547442063839,
|
2814 |
+
"grad_norm": 0.18096929788589478,
|
2815 |
+
"learning_rate": 1.3862579424293366e-07,
|
2816 |
+
"loss": 1.0134,
|
2817 |
+
"step": 401
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 2.8115435067774377,
|
2821 |
+
"grad_norm": 0.1751806139945984,
|
2822 |
+
"learning_rate": 1.292709334953729e-07,
|
2823 |
+
"loss": 1.0119,
|
2824 |
+
"step": 402
|
2825 |
+
},
|
2826 |
+
{
|
2827 |
+
"epoch": 2.818539571491036,
|
2828 |
+
"grad_norm": 0.18296852707862854,
|
2829 |
+
"learning_rate": 1.202387116352355e-07,
|
2830 |
+
"loss": 1.0188,
|
2831 |
+
"step": 403
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 2.825535636204635,
|
2835 |
+
"grad_norm": 0.18236733973026276,
|
2836 |
+
"learning_rate": 1.1152972696022447e-07,
|
2837 |
+
"loss": 1.0356,
|
2838 |
+
"step": 404
|
2839 |
+
},
|
2840 |
+
{
|
2841 |
+
"epoch": 2.8325317009182336,
|
2842 |
+
"grad_norm": 0.17827041447162628,
|
2843 |
+
"learning_rate": 1.0314455635669296e-07,
|
2844 |
+
"loss": 1.0339,
|
2845 |
+
"step": 405
|
2846 |
+
},
|
2847 |
+
{
|
2848 |
+
"epoch": 2.839527765631832,
|
2849 |
+
"grad_norm": 0.17066597938537598,
|
2850 |
+
"learning_rate": 9.508375526142976e-08,
|
2851 |
+
"loss": 1.0261,
|
2852 |
+
"step": 406
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 2.8465238303454306,
|
2856 |
+
"grad_norm": 0.1768139749765396,
|
2857 |
+
"learning_rate": 8.734785762486875e-08,
|
2858 |
+
"loss": 1.0479,
|
2859 |
+
"step": 407
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 2.853519895059029,
|
2863 |
+
"grad_norm": 0.16926994919776917,
|
2864 |
+
"learning_rate": 7.993737587571825e-08,
|
2865 |
+
"loss": 1.0307,
|
2866 |
+
"step": 408
|
2867 |
+
},
|
2868 |
+
{
|
2869 |
+
"epoch": 2.860515959772628,
|
2870 |
+
"grad_norm": 0.17480771243572235,
|
2871 |
+
"learning_rate": 7.285280088701996e-08,
|
2872 |
+
"loss": 1.0116,
|
2873 |
+
"step": 409
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 2.8675120244862264,
|
2877 |
+
"grad_norm": 0.17737415432929993,
|
2878 |
+
"learning_rate": 6.609460194362927e-08,
|
2879 |
+
"loss": 1.0101,
|
2880 |
+
"step": 410
|
2881 |
+
},
|
2882 |
+
{
|
2883 |
+
"epoch": 2.874508089199825,
|
2884 |
+
"grad_norm": 0.18863534927368164,
|
2885 |
+
"learning_rate": 5.966322671113523e-08,
|
2886 |
+
"loss": 1.0119,
|
2887 |
+
"step": 411
|
2888 |
+
},
|
2889 |
+
{
|
2890 |
+
"epoch": 2.881504153913424,
|
2891 |
+
"grad_norm": 0.17490120232105255,
|
2892 |
+
"learning_rate": 5.3559101206200337e-08,
|
2893 |
+
"loss": 1.0334,
|
2894 |
+
"step": 412
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 2.8885002186270223,
|
2898 |
+
"grad_norm": 0.18111565709114075,
|
2899 |
+
"learning_rate": 4.778262976834758e-08,
|
2900 |
+
"loss": 1.0412,
|
2901 |
+
"step": 413
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 2.895496283340621,
|
2905 |
+
"grad_norm": 0.1804577261209488,
|
2906 |
+
"learning_rate": 4.233419503317182e-08,
|
2907 |
+
"loss": 1.0525,
|
2908 |
+
"step": 414
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"epoch": 2.9024923480542197,
|
2912 |
+
"grad_norm": 0.16903232038021088,
|
2913 |
+
"learning_rate": 3.7214157906996784e-08,
|
2914 |
+
"loss": 1.016,
|
2915 |
+
"step": 415
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 2.909488412767818,
|
2919 |
+
"grad_norm": 0.17621533572673798,
|
2920 |
+
"learning_rate": 3.242285754296859e-08,
|
2921 |
+
"loss": 1.0176,
|
2922 |
+
"step": 416
|
2923 |
+
},
|
2924 |
+
{
|
2925 |
+
"epoch": 2.9164844774814167,
|
2926 |
+
"grad_norm": 0.18803808093070984,
|
2927 |
+
"learning_rate": 2.796061131858707e-08,
|
2928 |
+
"loss": 1.0659,
|
2929 |
+
"step": 417
|
2930 |
+
},
|
2931 |
+
{
|
2932 |
+
"epoch": 2.923480542195015,
|
2933 |
+
"grad_norm": 0.17898492515087128,
|
2934 |
+
"learning_rate": 2.3827714814686488e-08,
|
2935 |
+
"loss": 1.0179,
|
2936 |
+
"step": 418
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 2.9304766069086137,
|
2940 |
+
"grad_norm": 0.16611486673355103,
|
2941 |
+
"learning_rate": 2.002444179585339e-08,
|
2942 |
+
"loss": 1.0495,
|
2943 |
+
"step": 419
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 2.9374726716222126,
|
2947 |
+
"grad_norm": 0.1799437254667282,
|
2948 |
+
"learning_rate": 1.655104419229281e-08,
|
2949 |
+
"loss": 1.0172,
|
2950 |
+
"step": 420
|
2951 |
+
},
|
2952 |
+
{
|
2953 |
+
"epoch": 2.944468736335811,
|
2954 |
+
"grad_norm": 0.17451150715351105,
|
2955 |
+
"learning_rate": 1.3407752083142155e-08,
|
2956 |
+
"loss": 1.0268,
|
2957 |
+
"step": 421
|
2958 |
+
},
|
2959 |
+
{
|
2960 |
+
"epoch": 2.9514648010494096,
|
2961 |
+
"grad_norm": 0.17181828618049622,
|
2962 |
+
"learning_rate": 1.059477368122841e-08,
|
2963 |
+
"loss": 1.0194,
|
2964 |
+
"step": 422
|
2965 |
+
},
|
2966 |
+
{
|
2967 |
+
"epoch": 2.9584608657630085,
|
2968 |
+
"grad_norm": 0.16880981624126434,
|
2969 |
+
"learning_rate": 8.112295319276931e-09,
|
2970 |
+
"loss": 1.0317,
|
2971 |
+
"step": 423
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 2.965456930476607,
|
2975 |
+
"grad_norm": 0.19107691943645477,
|
2976 |
+
"learning_rate": 5.9604814375685546e-09,
|
2977 |
+
"loss": 1.0622,
|
2978 |
+
"step": 424
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 2.9724529951902054,
|
2982 |
+
"grad_norm": 0.18856149911880493,
|
2983 |
+
"learning_rate": 4.139474573047197e-09,
|
2984 |
+
"loss": 1.0483,
|
2985 |
+
"step": 425
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 2.9794490599038044,
|
2989 |
+
"grad_norm": 0.18675896525382996,
|
2990 |
+
"learning_rate": 2.6493953498790692e-09,
|
2991 |
+
"loss": 1.0207,
|
2992 |
+
"step": 426
|
2993 |
+
},
|
2994 |
+
{
|
2995 |
+
"epoch": 2.986445124617403,
|
2996 |
+
"grad_norm": 0.18428866565227509,
|
2997 |
+
"learning_rate": 1.4903424714601821e-09,
|
2998 |
+
"loss": 1.0299,
|
2999 |
+
"step": 427
|
3000 |
+
},
|
3001 |
+
{
|
3002 |
+
"epoch": 2.9934411893310013,
|
3003 |
+
"grad_norm": 0.17121976613998413,
|
3004 |
+
"learning_rate": 6.623927138804665e-10,
|
3005 |
+
"loss": 1.0298,
|
3006 |
+
"step": 428
|
3007 |
+
},
|
3008 |
+
{
|
3009 |
+
"epoch": 3.0,
|
3010 |
+
"grad_norm": 0.17932668328285217,
|
3011 |
+
"learning_rate": 1.6560092083672818e-10,
|
3012 |
+
"loss": 1.0303,
|
3013 |
+
"step": 429
|
3014 |
+
}
|
3015 |
+
],
|
3016 |
+
"logging_steps": 1,
|
3017 |
+
"max_steps": 429,
|
3018 |
+
"num_input_tokens_seen": 0,
|
3019 |
+
"num_train_epochs": 3,
|
3020 |
+
"save_steps": 500,
|
3021 |
+
"stateful_callbacks": {
|
3022 |
+
"TrainerControl": {
|
3023 |
+
"args": {
|
3024 |
+
"should_epoch_stop": false,
|
3025 |
+
"should_evaluate": false,
|
3026 |
+
"should_log": false,
|
3027 |
+
"should_save": true,
|
3028 |
+
"should_training_stop": true
|
3029 |
+
},
|
3030 |
+
"attributes": {}
|
3031 |
+
}
|
3032 |
+
},
|
3033 |
+
"total_flos": 2292626699059200.0,
|
3034 |
+
"train_batch_size": 1,
|
3035 |
+
"trial_name": null,
|
3036 |
+
"trial_params": null
|
3037 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13e27dcab4b358594662fdc0823ac45133631773772244a04bd1751578fe4042
|
3 |
+
size 7736
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|