Text Generation
Transformers
Safetensors
qwen3
conversational
text-generation-inference
davidanugraha commited on
Commit
4ddefad
·
verified ·
1 Parent(s): 4aeb9ce

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 17408,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 40,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 40,
18
+ "num_hidden_layers": 40,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.52.4",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.4"
13
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step428
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68dd19a0a06811b70365c860aa2e0da5d48f6152abc53453f12c2526b5015e2a
3
+ size 4984780784
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecaeaf1da96587842b538ed8a0e024bdcc144698ccdcd7c38e3f3cd8c00337d0
3
+ size 4980892048
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5d1769df0fb4cead2b686f37b4309e76ac58dfd4bb97b12502ed0a5a14ba48
3
+ size 4928485104
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:445f8cb83634c9e876afbbd7edbea8d75cfadca55fc0db0d65588b48ca9af38c
3
+ size 4980892112
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9e65afd1dc38ed83186eed0ee9ad1ff2639702b7748b3c3dc962ef9a730e379
3
+ size 4928485104
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e250a7ca996b5b1959d8175f6fa129f338ba5f39815e33bd9041a394cead461d
3
+ size 4733130504
model.safetensors.index.json ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29536614400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00003-of-00006.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00003-of-00006.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00005-of-00006.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00005-of-00006.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00006-of-00006.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00006-of-00006.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
343
+ "model.layers.36.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
344
+ "model.layers.36.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
345
+ "model.layers.36.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
346
+ "model.layers.36.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00006-of-00006.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
354
+ "model.layers.37.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
355
+ "model.layers.37.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
356
+ "model.layers.37.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
357
+ "model.layers.37.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
360
+ "model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
361
+ "model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
362
+ "model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
363
+ "model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
364
+ "model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
365
+ "model.layers.38.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
366
+ "model.layers.38.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
367
+ "model.layers.38.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
368
+ "model.layers.38.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
369
+ "model.layers.38.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
370
+ "model.layers.38.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
371
+ "model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
372
+ "model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
373
+ "model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
374
+ "model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
375
+ "model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
376
+ "model.layers.39.self_attn.k_norm.weight": "model-00006-of-00006.safetensors",
377
+ "model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
378
+ "model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
379
+ "model.layers.39.self_attn.q_norm.weight": "model-00006-of-00006.safetensors",
380
+ "model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
381
+ "model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
382
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
383
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
384
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
385
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
386
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
387
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
388
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
389
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
390
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
391
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
392
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
393
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
394
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
395
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
396
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
397
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
398
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00006.safetensors",
399
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
400
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
401
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00006.safetensors",
402
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
403
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
404
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
405
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
406
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
407
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
408
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
409
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
411
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
412
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
413
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
415
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
416
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
417
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
418
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
419
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
420
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
421
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
422
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
423
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
424
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
425
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
426
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
427
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
428
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
429
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
430
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
431
+ "model.layers.8.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
432
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
433
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
434
+ "model.layers.8.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
435
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
436
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
437
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
438
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
439
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
440
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
441
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
442
+ "model.layers.9.self_attn.k_norm.weight": "model-00002-of-00006.safetensors",
443
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
444
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
445
+ "model.layers.9.self_attn.q_norm.weight": "model-00002-of-00006.safetensors",
446
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
447
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
448
+ "model.norm.weight": "model-00006-of-00006.safetensors"
449
+ }
450
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
3
+ size 15024
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b98b34c8624255c142ef1c289afeb46d84dfd96034098c99fe5529111f5e33f7
3
+ size 15024
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47949b0df2efc08ab690d6d3675a5d87b18a30a2fb6a1372cc245bf32aa806b4
3
+ size 15024
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82a0af955ccdfcc8ba1821a24e8c3dee9ef313357c358ff1e60fc2c2be21e5a4
3
+ size 15024
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf3256237cabc84ea9fffa73e0da6d748f96838812078792b22874b902e4bf73
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39a860bb18ec0809d2beed844f22fd57e57b50458132796070d6fbbf3893e1cc
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,3037 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.0,
6
+ "eval_steps": 500,
7
+ "global_step": 429,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.006996064713598601,
14
+ "grad_norm": 5.937824249267578,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.7117,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.013992129427197202,
21
+ "grad_norm": 6.1023173332214355,
22
+ "learning_rate": 2.3255813953488374e-07,
23
+ "loss": 1.7574,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.020988194140795804,
28
+ "grad_norm": 5.9199066162109375,
29
+ "learning_rate": 4.651162790697675e-07,
30
+ "loss": 1.7173,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.027984258854394404,
35
+ "grad_norm": 6.086047649383545,
36
+ "learning_rate": 6.976744186046513e-07,
37
+ "loss": 1.7361,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.034980323567993,
42
+ "grad_norm": 5.97832727432251,
43
+ "learning_rate": 9.30232558139535e-07,
44
+ "loss": 1.7116,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.04197638828159161,
49
+ "grad_norm": 5.771295547485352,
50
+ "learning_rate": 1.1627906976744188e-06,
51
+ "loss": 1.7151,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.04897245299519021,
56
+ "grad_norm": 5.788296222686768,
57
+ "learning_rate": 1.3953488372093025e-06,
58
+ "loss": 1.7371,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.05596851770878881,
63
+ "grad_norm": 5.347567081451416,
64
+ "learning_rate": 1.6279069767441862e-06,
65
+ "loss": 1.7255,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.06296458242238741,
70
+ "grad_norm": 5.00020170211792,
71
+ "learning_rate": 1.86046511627907e-06,
72
+ "loss": 1.6789,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.069960647135986,
77
+ "grad_norm": 3.755484104156494,
78
+ "learning_rate": 2.0930232558139536e-06,
79
+ "loss": 1.6309,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.07695671184958461,
84
+ "grad_norm": 3.554680347442627,
85
+ "learning_rate": 2.3255813953488376e-06,
86
+ "loss": 1.5802,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.08395277656318322,
91
+ "grad_norm": 3.4229071140289307,
92
+ "learning_rate": 2.558139534883721e-06,
93
+ "loss": 1.6369,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.09094884127678181,
98
+ "grad_norm": 2.332273244857788,
99
+ "learning_rate": 2.790697674418605e-06,
100
+ "loss": 1.5343,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.09794490599038042,
105
+ "grad_norm": 2.1997501850128174,
106
+ "learning_rate": 3.0232558139534885e-06,
107
+ "loss": 1.5487,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.10494097070397901,
112
+ "grad_norm": 2.141204595565796,
113
+ "learning_rate": 3.2558139534883724e-06,
114
+ "loss": 1.5495,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.11193703541757762,
119
+ "grad_norm": 1.8256744146347046,
120
+ "learning_rate": 3.4883720930232564e-06,
121
+ "loss": 1.5049,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.11893310013117621,
126
+ "grad_norm": 1.7434165477752686,
127
+ "learning_rate": 3.72093023255814e-06,
128
+ "loss": 1.5033,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.12592916484477482,
133
+ "grad_norm": 1.5808353424072266,
134
+ "learning_rate": 3.953488372093024e-06,
135
+ "loss": 1.4646,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.1329252295583734,
140
+ "grad_norm": 1.8995134830474854,
141
+ "learning_rate": 4.186046511627907e-06,
142
+ "loss": 1.4568,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.139921294271972,
147
+ "grad_norm": 1.8199081420898438,
148
+ "learning_rate": 4.418604651162791e-06,
149
+ "loss": 1.4273,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.14691735898557062,
154
+ "grad_norm": 1.699924111366272,
155
+ "learning_rate": 4.651162790697675e-06,
156
+ "loss": 1.436,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.15391342369916922,
161
+ "grad_norm": 1.4117141962051392,
162
+ "learning_rate": 4.883720930232559e-06,
163
+ "loss": 1.3895,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.1609094884127678,
168
+ "grad_norm": 1.1737254858016968,
169
+ "learning_rate": 5.116279069767442e-06,
170
+ "loss": 1.4017,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.16790555312636643,
175
+ "grad_norm": 0.8299681544303894,
176
+ "learning_rate": 5.348837209302326e-06,
177
+ "loss": 1.3541,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.17490161783996502,
182
+ "grad_norm": 0.9315920472145081,
183
+ "learning_rate": 5.58139534883721e-06,
184
+ "loss": 1.3462,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.18189768255356362,
189
+ "grad_norm": 1.1129711866378784,
190
+ "learning_rate": 5.8139534883720935e-06,
191
+ "loss": 1.3078,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.1888937472671622,
196
+ "grad_norm": 1.073608160018921,
197
+ "learning_rate": 6.046511627906977e-06,
198
+ "loss": 1.3173,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.19588981198076083,
203
+ "grad_norm": 0.9064130783081055,
204
+ "learning_rate": 6.279069767441861e-06,
205
+ "loss": 1.2973,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.20288587669435942,
210
+ "grad_norm": 0.7085795402526855,
211
+ "learning_rate": 6.511627906976745e-06,
212
+ "loss": 1.2819,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.20988194140795802,
217
+ "grad_norm": 0.625628650188446,
218
+ "learning_rate": 6.744186046511628e-06,
219
+ "loss": 1.2715,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.21687800612155664,
224
+ "grad_norm": 0.6054685115814209,
225
+ "learning_rate": 6.976744186046513e-06,
226
+ "loss": 1.2858,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.22387407083515523,
231
+ "grad_norm": 0.6722832322120667,
232
+ "learning_rate": 7.209302325581395e-06,
233
+ "loss": 1.2616,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.23087013554875382,
238
+ "grad_norm": 0.6375171542167664,
239
+ "learning_rate": 7.44186046511628e-06,
240
+ "loss": 1.2479,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.23786620026235242,
245
+ "grad_norm": 0.5648869872093201,
246
+ "learning_rate": 7.674418604651164e-06,
247
+ "loss": 1.2181,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.24486226497595104,
252
+ "grad_norm": 0.5544123649597168,
253
+ "learning_rate": 7.906976744186048e-06,
254
+ "loss": 1.2149,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.25185832968954963,
259
+ "grad_norm": 0.5275465846061707,
260
+ "learning_rate": 8.139534883720931e-06,
261
+ "loss": 1.215,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.2588543944031482,
266
+ "grad_norm": 0.5007346868515015,
267
+ "learning_rate": 8.372093023255815e-06,
268
+ "loss": 1.2235,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.2658504591167468,
273
+ "grad_norm": 0.4550033509731293,
274
+ "learning_rate": 8.604651162790698e-06,
275
+ "loss": 1.2284,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.2728465238303454,
280
+ "grad_norm": 0.4190613031387329,
281
+ "learning_rate": 8.837209302325582e-06,
282
+ "loss": 1.225,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.279842588543944,
287
+ "grad_norm": 0.41906407475471497,
288
+ "learning_rate": 9.069767441860465e-06,
289
+ "loss": 1.1983,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.28683865325754265,
294
+ "grad_norm": 0.42890453338623047,
295
+ "learning_rate": 9.30232558139535e-06,
296
+ "loss": 1.198,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.29383471797114125,
301
+ "grad_norm": 0.4086310863494873,
302
+ "learning_rate": 9.534883720930234e-06,
303
+ "loss": 1.1938,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.30083078268473984,
308
+ "grad_norm": 0.3552049696445465,
309
+ "learning_rate": 9.767441860465117e-06,
310
+ "loss": 1.184,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.30782684739833843,
315
+ "grad_norm": 0.3367118835449219,
316
+ "learning_rate": 1e-05,
317
+ "loss": 1.2141,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.314822912111937,
322
+ "grad_norm": 0.33877724409103394,
323
+ "learning_rate": 9.999834399079165e-06,
324
+ "loss": 1.1908,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.3218189768255356,
329
+ "grad_norm": 0.33725035190582275,
330
+ "learning_rate": 9.99933760728612e-06,
331
+ "loss": 1.1937,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.3288150415391342,
336
+ "grad_norm": 0.3173794746398926,
337
+ "learning_rate": 9.998509657528542e-06,
338
+ "loss": 1.1806,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.33581110625273286,
343
+ "grad_norm": 0.29912763833999634,
344
+ "learning_rate": 9.997350604650123e-06,
345
+ "loss": 1.1903,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.34280717096633145,
350
+ "grad_norm": 0.3210199773311615,
351
+ "learning_rate": 9.995860525426954e-06,
352
+ "loss": 1.1714,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.34980323567993005,
357
+ "grad_norm": 0.28884193301200867,
358
+ "learning_rate": 9.994039518562433e-06,
359
+ "loss": 1.17,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.35679930039352864,
364
+ "grad_norm": 0.25813987851142883,
365
+ "learning_rate": 9.991887704680723e-06,
366
+ "loss": 1.1642,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.36379536510712723,
371
+ "grad_norm": 0.2741638422012329,
372
+ "learning_rate": 9.989405226318772e-06,
373
+ "loss": 1.1198,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.3707914298207258,
378
+ "grad_norm": 0.3083779513835907,
379
+ "learning_rate": 9.986592247916859e-06,
380
+ "loss": 1.1353,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.3777874945343244,
385
+ "grad_norm": 0.2932995855808258,
386
+ "learning_rate": 9.983448955807708e-06,
387
+ "loss": 1.211,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.38478355924792307,
392
+ "grad_norm": 0.23885010182857513,
393
+ "learning_rate": 9.979975558204147e-06,
394
+ "loss": 1.1439,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.39177962396152166,
399
+ "grad_norm": 0.2579386830329895,
400
+ "learning_rate": 9.976172285185315e-06,
401
+ "loss": 1.1625,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.39877568867512025,
406
+ "grad_norm": 0.27125871181488037,
407
+ "learning_rate": 9.972039388681414e-06,
408
+ "loss": 1.1102,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.40577175338871885,
413
+ "grad_norm": 0.2614425718784332,
414
+ "learning_rate": 9.967577142457031e-06,
415
+ "loss": 1.1594,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.41276781810231744,
420
+ "grad_norm": 0.2357616126537323,
421
+ "learning_rate": 9.962785842093003e-06,
422
+ "loss": 1.1342,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.41976388281591603,
427
+ "grad_norm": 0.22918762266635895,
428
+ "learning_rate": 9.95766580496683e-06,
429
+ "loss": 1.1322,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.4267599475295146,
434
+ "grad_norm": 0.25597265362739563,
435
+ "learning_rate": 9.952217370231655e-06,
436
+ "loss": 1.1187,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.4337560122431133,
441
+ "grad_norm": 0.2547328770160675,
442
+ "learning_rate": 9.9464408987938e-06,
443
+ "loss": 1.1426,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.44075207695671187,
448
+ "grad_norm": 0.2541535794734955,
449
+ "learning_rate": 9.940336773288865e-06,
450
+ "loss": 1.1567,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.44774814167031046,
455
+ "grad_norm": 0.23748283088207245,
456
+ "learning_rate": 9.933905398056371e-06,
457
+ "loss": 1.1432,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.45474420638390906,
462
+ "grad_norm": 0.24227821826934814,
463
+ "learning_rate": 9.92714719911298e-06,
464
+ "loss": 1.114,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.46174027109750765,
469
+ "grad_norm": 0.23363572359085083,
470
+ "learning_rate": 9.920062624124282e-06,
471
+ "loss": 1.1264,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.46873633581110624,
476
+ "grad_norm": 0.2382754236459732,
477
+ "learning_rate": 9.912652142375132e-06,
478
+ "loss": 1.1231,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.47573240052470483,
483
+ "grad_norm": 0.23080326616764069,
484
+ "learning_rate": 9.904916244738572e-06,
485
+ "loss": 1.1208,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.48272846523830343,
490
+ "grad_norm": 0.23944209516048431,
491
+ "learning_rate": 9.896855443643307e-06,
492
+ "loss": 1.1334,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.4897245299519021,
497
+ "grad_norm": 0.22721773386001587,
498
+ "learning_rate": 9.888470273039776e-06,
499
+ "loss": 1.1437,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.49672059466550067,
504
+ "grad_norm": 0.22420594096183777,
505
+ "learning_rate": 9.879761288364767e-06,
506
+ "loss": 1.1297,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.5037166593790993,
511
+ "grad_norm": 0.23493662476539612,
512
+ "learning_rate": 9.870729066504629e-06,
513
+ "loss": 1.1463,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.5107127240926979,
518
+ "grad_norm": 0.23642633855342865,
519
+ "learning_rate": 9.861374205757068e-06,
520
+ "loss": 1.1529,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.5177087888062964,
525
+ "grad_norm": 0.2463693767786026,
526
+ "learning_rate": 9.851697325791505e-06,
527
+ "loss": 1.1322,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.524704853519895,
532
+ "grad_norm": 0.226633682847023,
533
+ "learning_rate": 9.841699067608034e-06,
534
+ "loss": 1.1109,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.5317009182334936,
539
+ "grad_norm": 0.22586405277252197,
540
+ "learning_rate": 9.831380093494957e-06,
541
+ "loss": 1.1295,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.5386969829470922,
546
+ "grad_norm": 0.24850787222385406,
547
+ "learning_rate": 9.820741086984925e-06,
548
+ "loss": 1.1173,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.5456930476606908,
553
+ "grad_norm": 0.21549104154109955,
554
+ "learning_rate": 9.809782752809644e-06,
555
+ "loss": 1.1105,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.5526891123742894,
560
+ "grad_norm": 0.2411831021308899,
561
+ "learning_rate": 9.798505816853207e-06,
562
+ "loss": 1.1275,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.559685177087888,
567
+ "grad_norm": 0.22199593484401703,
568
+ "learning_rate": 9.786911026104007e-06,
569
+ "loss": 1.144,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.5666812418014867,
574
+ "grad_norm": 0.23231951892375946,
575
+ "learning_rate": 9.77499914860525e-06,
576
+ "loss": 1.1094,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.5736773065150853,
581
+ "grad_norm": 0.21762272715568542,
582
+ "learning_rate": 9.762770973404094e-06,
583
+ "loss": 1.1342,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.5806733712286839,
588
+ "grad_norm": 0.24040056765079498,
589
+ "learning_rate": 9.750227310499365e-06,
590
+ "loss": 1.1249,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.5876694359422825,
595
+ "grad_norm": 0.2038600593805313,
596
+ "learning_rate": 9.737368990787917e-06,
597
+ "loss": 1.1101,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.5946655006558811,
602
+ "grad_norm": 0.21895648539066315,
603
+ "learning_rate": 9.72419686600958e-06,
604
+ "loss": 1.14,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.6016615653694797,
609
+ "grad_norm": 0.2130373865365982,
610
+ "learning_rate": 9.710711808690754e-06,
611
+ "loss": 1.1365,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.6086576300830783,
616
+ "grad_norm": 0.21359188854694366,
617
+ "learning_rate": 9.696914712086603e-06,
618
+ "loss": 1.1131,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.6156536947966769,
623
+ "grad_norm": 0.20822754502296448,
624
+ "learning_rate": 9.682806490121886e-06,
625
+ "loss": 1.0983,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.6226497595102755,
630
+ "grad_norm": 0.2118270844221115,
631
+ "learning_rate": 9.668388077330421e-06,
632
+ "loss": 1.1303,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.629645824223874,
637
+ "grad_norm": 0.2127324342727661,
638
+ "learning_rate": 9.653660428793188e-06,
639
+ "loss": 1.123,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.6366418889374726,
644
+ "grad_norm": 0.2167566865682602,
645
+ "learning_rate": 9.638624520075047e-06,
646
+ "loss": 1.0954,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.6436379536510712,
651
+ "grad_norm": 0.21658548712730408,
652
+ "learning_rate": 9.623281347160129e-06,
653
+ "loss": 1.1189,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.6506340183646698,
658
+ "grad_norm": 0.2170240879058838,
659
+ "learning_rate": 9.60763192638586e-06,
660
+ "loss": 1.1422,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.6576300830782684,
665
+ "grad_norm": 0.2205752283334732,
666
+ "learning_rate": 9.591677294375637e-06,
667
+ "loss": 1.1389,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.6646261477918671,
672
+ "grad_norm": 0.22668494284152985,
673
+ "learning_rate": 9.57541850797016e-06,
674
+ "loss": 1.1174,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.6716222125054657,
679
+ "grad_norm": 0.2228441834449768,
680
+ "learning_rate": 9.558856644157432e-06,
681
+ "loss": 1.0944,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.6786182772190643,
686
+ "grad_norm": 0.23455341160297394,
687
+ "learning_rate": 9.54199280000141e-06,
688
+ "loss": 1.1025,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.6856143419326629,
693
+ "grad_norm": 0.24054673314094543,
694
+ "learning_rate": 9.52482809256934e-06,
695
+ "loss": 1.081,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.6926104066462615,
700
+ "grad_norm": 0.22918441891670227,
701
+ "learning_rate": 9.507363658857768e-06,
702
+ "loss": 1.0966,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.6996064713598601,
707
+ "grad_norm": 0.21981216967105865,
708
+ "learning_rate": 9.489600655717217e-06,
709
+ "loss": 1.1064,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.7066025360734587,
714
+ "grad_norm": 0.2228814661502838,
715
+ "learning_rate": 9.471540259775554e-06,
716
+ "loss": 1.1163,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.7135986007870573,
721
+ "grad_norm": 0.2345104068517685,
722
+ "learning_rate": 9.453183667360062e-06,
723
+ "loss": 1.1049,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.7205946655006559,
728
+ "grad_norm": 0.22801828384399414,
729
+ "learning_rate": 9.43453209441818e-06,
730
+ "loss": 1.1351,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.7275907302142545,
735
+ "grad_norm": 0.2263229787349701,
736
+ "learning_rate": 9.415586776436973e-06,
737
+ "loss": 1.1206,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.7345867949278531,
742
+ "grad_norm": 0.2334379404783249,
743
+ "learning_rate": 9.396348968361282e-06,
744
+ "loss": 1.109,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.7415828596414517,
749
+ "grad_norm": 0.2365368753671646,
750
+ "learning_rate": 9.376819944510598e-06,
751
+ "loss": 1.1303,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.7485789243550502,
756
+ "grad_norm": 0.21456782519817352,
757
+ "learning_rate": 9.357000998494656e-06,
758
+ "loss": 1.134,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.7555749890686488,
763
+ "grad_norm": 0.23137013614177704,
764
+ "learning_rate": 9.336893443127739e-06,
765
+ "loss": 1.1111,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.7625710537822474,
770
+ "grad_norm": 0.24741332232952118,
771
+ "learning_rate": 9.31649861034172e-06,
772
+ "loss": 1.1274,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.7695671184958461,
777
+ "grad_norm": 0.2252303510904312,
778
+ "learning_rate": 9.295817851097836e-06,
779
+ "loss": 1.1148,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.7765631832094447,
784
+ "grad_norm": 0.2318602055311203,
785
+ "learning_rate": 9.274852535297198e-06,
786
+ "loss": 1.0909,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.7835592479230433,
791
+ "grad_norm": 0.2182338833808899,
792
+ "learning_rate": 9.253604051690047e-06,
793
+ "loss": 1.1083,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.7905553126366419,
798
+ "grad_norm": 0.21458062529563904,
799
+ "learning_rate": 9.232073807783758e-06,
800
+ "loss": 1.0834,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.7975513773502405,
805
+ "grad_norm": 0.23873740434646606,
806
+ "learning_rate": 9.210263229749626e-06,
807
+ "loss": 1.1112,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.8045474420638391,
812
+ "grad_norm": 0.21488192677497864,
813
+ "learning_rate": 9.188173762328367e-06,
814
+ "loss": 1.1006,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.8115435067774377,
819
+ "grad_norm": 0.21982012689113617,
820
+ "learning_rate": 9.165806868734444e-06,
821
+ "loss": 1.0976,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.8185395714910363,
826
+ "grad_norm": 0.21686458587646484,
827
+ "learning_rate": 9.143164030559122e-06,
828
+ "loss": 1.107,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.8255356362046349,
833
+ "grad_norm": 0.263600617647171,
834
+ "learning_rate": 9.120246747672347e-06,
835
+ "loss": 1.1212,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.8325317009182335,
840
+ "grad_norm": 0.28033727407455444,
841
+ "learning_rate": 9.097056538123376e-06,
842
+ "loss": 1.1081,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.8395277656318321,
847
+ "grad_norm": 0.24289295077323914,
848
+ "learning_rate": 9.073594938040231e-06,
849
+ "loss": 1.0847,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.8465238303454307,
854
+ "grad_norm": 0.22813363373279572,
855
+ "learning_rate": 9.049863501527947e-06,
856
+ "loss": 1.0969,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.8535198950590293,
861
+ "grad_norm": 0.2539902329444885,
862
+ "learning_rate": 9.025863800565614e-06,
863
+ "loss": 1.0889,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.8605159597726278,
868
+ "grad_norm": 0.2315206080675125,
869
+ "learning_rate": 9.001597424902266e-06,
870
+ "loss": 1.097,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.8675120244862266,
875
+ "grad_norm": 0.24084997177124023,
876
+ "learning_rate": 8.977065981951567e-06,
877
+ "loss": 1.1,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.8745080891998251,
882
+ "grad_norm": 0.2634861469268799,
883
+ "learning_rate": 8.952271096685333e-06,
884
+ "loss": 1.0959,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.8815041539134237,
889
+ "grad_norm": 0.25653111934661865,
890
+ "learning_rate": 8.927214411525895e-06,
891
+ "loss": 1.0794,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.8885002186270223,
896
+ "grad_norm": 0.25337570905685425,
897
+ "learning_rate": 8.901897586237309e-06,
898
+ "loss": 1.1036,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.8954962833406209,
903
+ "grad_norm": 0.26657527685165405,
904
+ "learning_rate": 8.876322297815406e-06,
905
+ "loss": 1.0841,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.9024923480542195,
910
+ "grad_norm": 0.2519988715648651,
911
+ "learning_rate": 8.85049024037671e-06,
912
+ "loss": 1.0646,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.9094884127678181,
917
+ "grad_norm": 0.24986772239208221,
918
+ "learning_rate": 8.824403125046225e-06,
919
+ "loss": 1.0926,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.9164844774814167,
924
+ "grad_norm": 0.24577908217906952,
925
+ "learning_rate": 8.798062679844077e-06,
926
+ "loss": 1.1129,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.9234805421950153,
931
+ "grad_norm": 0.23117944598197937,
932
+ "learning_rate": 8.771470649571056e-06,
933
+ "loss": 1.0917,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.9304766069086139,
938
+ "grad_norm": 0.2600792348384857,
939
+ "learning_rate": 8.744628795693046e-06,
940
+ "loss": 1.088,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.9374726716222125,
945
+ "grad_norm": 0.23922646045684814,
946
+ "learning_rate": 8.717538896224333e-06,
947
+ "loss": 1.0707,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.9444687363358111,
952
+ "grad_norm": 0.2643781006336212,
953
+ "learning_rate": 8.690202745609834e-06,
954
+ "loss": 1.0909,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.9514648010494097,
959
+ "grad_norm": 0.23887589573860168,
960
+ "learning_rate": 8.662622154606238e-06,
961
+ "loss": 1.1139,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.9584608657630083,
966
+ "grad_norm": 0.2613793909549713,
967
+ "learning_rate": 8.634798950162048e-06,
968
+ "loss": 1.124,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.9654569304766069,
973
+ "grad_norm": 0.24978399276733398,
974
+ "learning_rate": 8.606734975296578e-06,
975
+ "loss": 1.0895,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.9724529951902056,
980
+ "grad_norm": 0.2559661567211151,
981
+ "learning_rate": 8.57843208897786e-06,
982
+ "loss": 1.0957,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.9794490599038042,
987
+ "grad_norm": 0.2543698251247406,
988
+ "learning_rate": 8.549892165999505e-06,
989
+ "loss": 1.0915,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.9864451246174027,
994
+ "grad_norm": 0.24577634036540985,
995
+ "learning_rate": 8.521117096856529e-06,
996
+ "loss": 1.062,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.9934411893310013,
1001
+ "grad_norm": 0.2525068521499634,
1002
+ "learning_rate": 8.492108787620106e-06,
1003
+ "loss": 1.0943,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 1.0,
1008
+ "grad_norm": 0.2525068521499634,
1009
+ "learning_rate": 8.462869159811326e-06,
1010
+ "loss": 1.1121,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 1.0069960647135987,
1015
+ "grad_norm": 0.2555246353149414,
1016
+ "learning_rate": 8.433400150273907e-06,
1017
+ "loss": 1.0907,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 1.0139921294271972,
1022
+ "grad_norm": 0.24802914261817932,
1023
+ "learning_rate": 8.403703711045892e-06,
1024
+ "loss": 1.0606,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 1.020988194140796,
1029
+ "grad_norm": 0.2563156187534332,
1030
+ "learning_rate": 8.373781809230355e-06,
1031
+ "loss": 1.077,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 1.0279842588543944,
1036
+ "grad_norm": 0.2540357708930969,
1037
+ "learning_rate": 8.343636426865096e-06,
1038
+ "loss": 1.0391,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 1.034980323567993,
1043
+ "grad_norm": 0.2662995159626007,
1044
+ "learning_rate": 8.313269560791343e-06,
1045
+ "loss": 1.0696,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 1.0419763882815916,
1050
+ "grad_norm": 0.2547081410884857,
1051
+ "learning_rate": 8.282683222521491e-06,
1052
+ "loss": 1.0688,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 1.0489724529951903,
1057
+ "grad_norm": 0.2514967918395996,
1058
+ "learning_rate": 8.251879438105854e-06,
1059
+ "loss": 1.1046,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 1.0559685177087887,
1064
+ "grad_norm": 0.27139806747436523,
1065
+ "learning_rate": 8.220860247998455e-06,
1066
+ "loss": 1.0759,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 1.0629645824223874,
1071
+ "grad_norm": 0.24396289885044098,
1072
+ "learning_rate": 8.189627706921876e-06,
1073
+ "loss": 1.0824,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 1.069960647135986,
1078
+ "grad_norm": 0.24899303913116455,
1079
+ "learning_rate": 8.15818388373114e-06,
1080
+ "loss": 1.0773,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 1.0769567118495846,
1085
+ "grad_norm": 0.2431674599647522,
1086
+ "learning_rate": 8.126530861276677e-06,
1087
+ "loss": 1.0472,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 1.0839527765631831,
1092
+ "grad_norm": 0.25614264607429504,
1093
+ "learning_rate": 8.094670736266352e-06,
1094
+ "loss": 1.0477,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 1.0909488412767818,
1099
+ "grad_norm": 0.256788969039917,
1100
+ "learning_rate": 8.062605619126585e-06,
1101
+ "loss": 1.0631,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 1.0979449059903805,
1106
+ "grad_norm": 0.25251755118370056,
1107
+ "learning_rate": 8.030337633862542e-06,
1108
+ "loss": 1.0779,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 1.104940970703979,
1113
+ "grad_norm": 0.25813043117523193,
1114
+ "learning_rate": 7.997868917917453e-06,
1115
+ "loss": 1.0479,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 1.1119370354175777,
1120
+ "grad_norm": 0.2598208487033844,
1121
+ "learning_rate": 7.96520162203102e-06,
1122
+ "loss": 1.0432,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 1.1189331001311762,
1127
+ "grad_norm": 0.22656458616256714,
1128
+ "learning_rate": 7.93233791009696e-06,
1129
+ "loss": 1.0574,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 1.125929164844775,
1134
+ "grad_norm": 0.27121832966804504,
1135
+ "learning_rate": 7.899279959019654e-06,
1136
+ "loss": 1.0614,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 1.1329252295583734,
1141
+ "grad_norm": 0.24976760149002075,
1142
+ "learning_rate": 7.866029958569956e-06,
1143
+ "loss": 1.0609,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 1.139921294271972,
1148
+ "grad_norm": 0.26583290100097656,
1149
+ "learning_rate": 7.832590111240145e-06,
1150
+ "loss": 1.0751,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 1.1469173589855706,
1155
+ "grad_norm": 0.2444482296705246,
1156
+ "learning_rate": 7.798962632098024e-06,
1157
+ "loss": 1.0486,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 1.1539134236991693,
1162
+ "grad_norm": 0.23971612751483917,
1163
+ "learning_rate": 7.765149748640198e-06,
1164
+ "loss": 1.0725,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 1.1609094884127678,
1169
+ "grad_norm": 0.25408315658569336,
1170
+ "learning_rate": 7.73115370064452e-06,
1171
+ "loss": 1.0601,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 1.1679055531263665,
1176
+ "grad_norm": 0.258532851934433,
1177
+ "learning_rate": 7.696976740021734e-06,
1178
+ "loss": 1.0614,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 1.174901617839965,
1183
+ "grad_norm": 0.2614459693431854,
1184
+ "learning_rate": 7.6626211306663e-06,
1185
+ "loss": 1.0903,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 1.1818976825535636,
1190
+ "grad_norm": 0.2806360423564911,
1191
+ "learning_rate": 7.628089148306434e-06,
1192
+ "loss": 1.0728,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 1.1888937472671621,
1197
+ "grad_norm": 0.2813877761363983,
1198
+ "learning_rate": 7.593383080353369e-06,
1199
+ "loss": 1.0673,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 1.1958898119807608,
1204
+ "grad_norm": 0.2591645419597626,
1205
+ "learning_rate": 7.558505225749827e-06,
1206
+ "loss": 1.0572,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 1.2028858766943595,
1211
+ "grad_norm": 0.26725247502326965,
1212
+ "learning_rate": 7.523457894817745e-06,
1213
+ "loss": 1.0631,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 1.209881941407958,
1218
+ "grad_norm": 0.2482025921344757,
1219
+ "learning_rate": 7.488243409105234e-06,
1220
+ "loss": 1.0876,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 1.2168780061215567,
1225
+ "grad_norm": 0.25393399596214294,
1226
+ "learning_rate": 7.452864101232798e-06,
1227
+ "loss": 1.0499,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 1.2238740708351552,
1232
+ "grad_norm": 0.2386392503976822,
1233
+ "learning_rate": 7.4173223147388215e-06,
1234
+ "loss": 1.07,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 1.230870135548754,
1239
+ "grad_norm": 0.24232785403728485,
1240
+ "learning_rate": 7.381620403924333e-06,
1241
+ "loss": 1.0705,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 1.2378662002623524,
1246
+ "grad_norm": 0.25469738245010376,
1247
+ "learning_rate": 7.3457607336970545e-06,
1248
+ "loss": 1.0693,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 1.244862264975951,
1253
+ "grad_norm": 0.2506999373435974,
1254
+ "learning_rate": 7.309745679414751e-06,
1255
+ "loss": 1.0642,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 1.2518583296895496,
1260
+ "grad_norm": 0.24194584786891937,
1261
+ "learning_rate": 7.273577626727884e-06,
1262
+ "loss": 1.0586,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 1.2588543944031483,
1267
+ "grad_norm": 0.23366078734397888,
1268
+ "learning_rate": 7.237258971421587e-06,
1269
+ "loss": 1.094,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 1.2658504591167468,
1274
+ "grad_norm": 0.2570526599884033,
1275
+ "learning_rate": 7.200792119256961e-06,
1276
+ "loss": 1.0581,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 1.2728465238303455,
1281
+ "grad_norm": 0.22975337505340576,
1282
+ "learning_rate": 7.164179485811728e-06,
1283
+ "loss": 1.0732,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 1.279842588543944,
1288
+ "grad_norm": 0.23770399391651154,
1289
+ "learning_rate": 7.127423496320212e-06,
1290
+ "loss": 1.0757,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 1.2868386532575427,
1295
+ "grad_norm": 0.23923391103744507,
1296
+ "learning_rate": 7.090526585512696e-06,
1297
+ "loss": 1.0572,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 1.2938347179711411,
1302
+ "grad_norm": 0.23085491359233856,
1303
+ "learning_rate": 7.053491197454142e-06,
1304
+ "loss": 1.0492,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 1.3008307826847398,
1309
+ "grad_norm": 0.23270699381828308,
1310
+ "learning_rate": 7.0163197853822975e-06,
1311
+ "loss": 1.0816,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 1.3078268473983385,
1316
+ "grad_norm": 0.25381889939308167,
1317
+ "learning_rate": 6.9790148115451894e-06,
1318
+ "loss": 1.0785,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 1.314822912111937,
1323
+ "grad_norm": 0.2601195275783539,
1324
+ "learning_rate": 6.941578747038024e-06,
1325
+ "loss": 1.0795,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 1.3218189768255355,
1330
+ "grad_norm": 0.25882264971733093,
1331
+ "learning_rate": 6.904014071639503e-06,
1332
+ "loss": 1.0661,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 1.3288150415391342,
1337
+ "grad_norm": 0.26806139945983887,
1338
+ "learning_rate": 6.866323273647564e-06,
1339
+ "loss": 1.0567,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 1.335811106252733,
1344
+ "grad_norm": 0.23781196773052216,
1345
+ "learning_rate": 6.828508849714546e-06,
1346
+ "loss": 1.0519,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 1.3428071709663314,
1351
+ "grad_norm": 0.2429259866476059,
1352
+ "learning_rate": 6.79057330468182e-06,
1353
+ "loss": 1.062,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 1.34980323567993,
1358
+ "grad_norm": 0.25786203145980835,
1359
+ "learning_rate": 6.752519151413862e-06,
1360
+ "loss": 1.0565,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 1.3567993003935286,
1365
+ "grad_norm": 0.24636365473270416,
1366
+ "learning_rate": 6.7143489106318e-06,
1367
+ "loss": 1.0576,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 1.3637953651071273,
1372
+ "grad_norm": 0.249672532081604,
1373
+ "learning_rate": 6.676065110746445e-06,
1374
+ "loss": 1.0519,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 1.3707914298207258,
1379
+ "grad_norm": 0.23771335184574127,
1380
+ "learning_rate": 6.6376702876908e-06,
1381
+ "loss": 1.0544,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 1.3777874945343245,
1386
+ "grad_norm": 0.24842609465122223,
1387
+ "learning_rate": 6.599166984752088e-06,
1388
+ "loss": 1.085,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 1.3847835592479232,
1393
+ "grad_norm": 0.2690418064594269,
1394
+ "learning_rate": 6.560557752403277e-06,
1395
+ "loss": 1.0821,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 1.3917796239615217,
1400
+ "grad_norm": 0.25750598311424255,
1401
+ "learning_rate": 6.52184514813414e-06,
1402
+ "loss": 1.0432,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 1.3987756886751201,
1407
+ "grad_norm": 0.25249239802360535,
1408
+ "learning_rate": 6.483031736281843e-06,
1409
+ "loss": 1.0347,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 1.4057717533887188,
1414
+ "grad_norm": 0.22841164469718933,
1415
+ "learning_rate": 6.444120087861081e-06,
1416
+ "loss": 1.0727,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 1.4127678181023176,
1421
+ "grad_norm": 0.2515389621257782,
1422
+ "learning_rate": 6.405112780393781e-06,
1423
+ "loss": 1.0637,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 1.419763882815916,
1428
+ "grad_norm": 0.26256147027015686,
1429
+ "learning_rate": 6.366012397738355e-06,
1430
+ "loss": 1.0614,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 1.4267599475295145,
1435
+ "grad_norm": 0.21680590510368347,
1436
+ "learning_rate": 6.3268215299185545e-06,
1437
+ "loss": 1.0625,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 1.4337560122431132,
1442
+ "grad_norm": 0.25839176774024963,
1443
+ "learning_rate": 6.2875427729518966e-06,
1444
+ "loss": 1.0564,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 1.440752076956712,
1449
+ "grad_norm": 0.2728981077671051,
1450
+ "learning_rate": 6.2481787286777116e-06,
1451
+ "loss": 1.0603,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 1.4477481416703104,
1456
+ "grad_norm": 0.24710682034492493,
1457
+ "learning_rate": 6.208732004584792e-06,
1458
+ "loss": 1.0543,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 1.454744206383909,
1463
+ "grad_norm": 0.2378065139055252,
1464
+ "learning_rate": 6.169205213638671e-06,
1465
+ "loss": 1.0738,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 1.4617402710975076,
1470
+ "grad_norm": 0.2657370865345001,
1471
+ "learning_rate": 6.129600974108538e-06,
1472
+ "loss": 1.032,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 1.4687363358111063,
1477
+ "grad_norm": 0.2566014528274536,
1478
+ "learning_rate": 6.089921909393812e-06,
1479
+ "loss": 1.0558,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 1.4757324005247048,
1484
+ "grad_norm": 0.22705771028995514,
1485
+ "learning_rate": 6.050170647850351e-06,
1486
+ "loss": 1.0802,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 1.4827284652383035,
1491
+ "grad_norm": 0.25922277569770813,
1492
+ "learning_rate": 6.01034982261636e-06,
1493
+ "loss": 1.0505,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 1.4897245299519022,
1498
+ "grad_norm": 0.2328343391418457,
1499
+ "learning_rate": 5.970462071437974e-06,
1500
+ "loss": 1.0494,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 1.4967205946655007,
1505
+ "grad_norm": 0.24370628595352173,
1506
+ "learning_rate": 5.93051003649452e-06,
1507
+ "loss": 1.0714,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 1.5037166593790992,
1512
+ "grad_norm": 0.22944258153438568,
1513
+ "learning_rate": 5.890496364223509e-06,
1514
+ "loss": 1.0563,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 1.5107127240926979,
1519
+ "grad_norm": 0.2519015669822693,
1520
+ "learning_rate": 5.850423705145334e-06,
1521
+ "loss": 1.061,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 1.5177087888062966,
1526
+ "grad_norm": 0.24373194575309753,
1527
+ "learning_rate": 5.810294713687687e-06,
1528
+ "loss": 1.0485,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 1.524704853519895,
1533
+ "grad_norm": 0.25564828515052795,
1534
+ "learning_rate": 5.770112048009747e-06,
1535
+ "loss": 1.0205,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 1.5317009182334935,
1540
+ "grad_norm": 0.23328275978565216,
1541
+ "learning_rate": 5.729878369826087e-06,
1542
+ "loss": 1.0268,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 1.5386969829470922,
1547
+ "grad_norm": 0.23757322132587433,
1548
+ "learning_rate": 5.68959634423037e-06,
1549
+ "loss": 1.0677,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 1.545693047660691,
1554
+ "grad_norm": 0.2618321180343628,
1555
+ "learning_rate": 5.64926863951881e-06,
1556
+ "loss": 1.0499,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 1.5526891123742894,
1561
+ "grad_norm": 0.24455450475215912,
1562
+ "learning_rate": 5.60889792701342e-06,
1563
+ "loss": 1.0721,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 1.559685177087888,
1568
+ "grad_norm": 0.23317770659923553,
1569
+ "learning_rate": 5.568486880885068e-06,
1570
+ "loss": 1.0684,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 1.5666812418014868,
1575
+ "grad_norm": 0.2898538410663605,
1576
+ "learning_rate": 5.52803817797633e-06,
1577
+ "loss": 1.0489,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 1.5736773065150853,
1582
+ "grad_norm": 0.25492820143699646,
1583
+ "learning_rate": 5.487554497624189e-06,
1584
+ "loss": 1.0586,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 1.5806733712286838,
1589
+ "grad_norm": 0.26318982243537903,
1590
+ "learning_rate": 5.447038521482542e-06,
1591
+ "loss": 1.0661,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 1.5876694359422825,
1596
+ "grad_norm": 0.22720639407634735,
1597
+ "learning_rate": 5.406492933344572e-06,
1598
+ "loss": 1.0577,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 1.5946655006558812,
1603
+ "grad_norm": 0.24046605825424194,
1604
+ "learning_rate": 5.365920418964973e-06,
1605
+ "loss": 1.0828,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 1.6016615653694797,
1610
+ "grad_norm": 0.24605053663253784,
1611
+ "learning_rate": 5.325323665882039e-06,
1612
+ "loss": 1.0481,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 1.6086576300830782,
1617
+ "grad_norm": 0.23823630809783936,
1618
+ "learning_rate": 5.284705363239651e-06,
1619
+ "loss": 1.0625,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 1.6156536947966769,
1624
+ "grad_norm": 0.2552984058856964,
1625
+ "learning_rate": 5.244068201609132e-06,
1626
+ "loss": 1.0191,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 1.6226497595102756,
1631
+ "grad_norm": 0.22282664477825165,
1632
+ "learning_rate": 5.203414872811042e-06,
1633
+ "loss": 1.0397,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 1.629645824223874,
1638
+ "grad_norm": 0.24304307997226715,
1639
+ "learning_rate": 5.162748069736851e-06,
1640
+ "loss": 1.0434,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 1.6366418889374725,
1645
+ "grad_norm": 0.2629837095737457,
1646
+ "learning_rate": 5.1220704861705775e-06,
1647
+ "loss": 1.0691,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 1.6436379536510712,
1652
+ "grad_norm": 0.24670404195785522,
1653
+ "learning_rate": 5.0813848166103365e-06,
1654
+ "loss": 1.0791,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 1.65063401836467,
1659
+ "grad_norm": 0.2600962817668915,
1660
+ "learning_rate": 5.040693756089865e-06,
1661
+ "loss": 1.0499,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 1.6576300830782684,
1666
+ "grad_norm": 0.24187523126602173,
1667
+ "learning_rate": 5e-06,
1668
+ "loss": 1.0474,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 1.6646261477918671,
1673
+ "grad_norm": 0.22072897851467133,
1674
+ "learning_rate": 4.959306243910137e-06,
1675
+ "loss": 1.067,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 1.6716222125054658,
1680
+ "grad_norm": 0.2424023151397705,
1681
+ "learning_rate": 4.918615183389666e-06,
1682
+ "loss": 1.0621,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 1.6786182772190643,
1687
+ "grad_norm": 0.23267744481563568,
1688
+ "learning_rate": 4.877929513829424e-06,
1689
+ "loss": 1.0256,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 1.6856143419326628,
1694
+ "grad_norm": 0.21274727582931519,
1695
+ "learning_rate": 4.837251930263149e-06,
1696
+ "loss": 1.0725,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 1.6926104066462615,
1701
+ "grad_norm": 0.24191388487815857,
1702
+ "learning_rate": 4.796585127188958e-06,
1703
+ "loss": 1.0664,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 1.6996064713598602,
1708
+ "grad_norm": 0.2611248195171356,
1709
+ "learning_rate": 4.755931798390867e-06,
1710
+ "loss": 1.0731,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 1.7066025360734587,
1715
+ "grad_norm": 0.21119238436222076,
1716
+ "learning_rate": 4.715294636760352e-06,
1717
+ "loss": 1.0413,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 1.7135986007870572,
1722
+ "grad_norm": 0.23526926338672638,
1723
+ "learning_rate": 4.674676334117962e-06,
1724
+ "loss": 1.0519,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 1.7205946655006559,
1729
+ "grad_norm": 0.22488483786582947,
1730
+ "learning_rate": 4.634079581035029e-06,
1731
+ "loss": 1.0657,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 1.7275907302142546,
1736
+ "grad_norm": 0.23433709144592285,
1737
+ "learning_rate": 4.59350706665543e-06,
1738
+ "loss": 1.0365,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 1.734586794927853,
1743
+ "grad_norm": 0.22495707869529724,
1744
+ "learning_rate": 4.5529614785174606e-06,
1745
+ "loss": 1.0858,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 1.7415828596414515,
1750
+ "grad_norm": 0.23225753009319305,
1751
+ "learning_rate": 4.512445502375813e-06,
1752
+ "loss": 1.0752,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 1.7485789243550502,
1757
+ "grad_norm": 0.22089412808418274,
1758
+ "learning_rate": 4.4719618220236715e-06,
1759
+ "loss": 1.0862,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 1.755574989068649,
1764
+ "grad_norm": 0.21389490365982056,
1765
+ "learning_rate": 4.431513119114934e-06,
1766
+ "loss": 1.0688,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 1.7625710537822474,
1771
+ "grad_norm": 0.22955602407455444,
1772
+ "learning_rate": 4.391102072986581e-06,
1773
+ "loss": 1.058,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 1.7695671184958461,
1778
+ "grad_norm": 0.21846045553684235,
1779
+ "learning_rate": 4.350731360481191e-06,
1780
+ "loss": 1.0376,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 1.7765631832094448,
1785
+ "grad_norm": 0.21093875169754028,
1786
+ "learning_rate": 4.310403655769629e-06,
1787
+ "loss": 1.068,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 1.7835592479230433,
1792
+ "grad_norm": 0.23426657915115356,
1793
+ "learning_rate": 4.270121630173913e-06,
1794
+ "loss": 1.0326,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 1.7905553126366418,
1799
+ "grad_norm": 0.21856963634490967,
1800
+ "learning_rate": 4.229887951990255e-06,
1801
+ "loss": 1.0689,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 1.7975513773502405,
1806
+ "grad_norm": 0.21545103192329407,
1807
+ "learning_rate": 4.189705286312314e-06,
1808
+ "loss": 1.049,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 1.8045474420638392,
1813
+ "grad_norm": 0.21497775614261627,
1814
+ "learning_rate": 4.149576294854668e-06,
1815
+ "loss": 1.043,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 1.8115435067774377,
1820
+ "grad_norm": 0.22141148149967194,
1821
+ "learning_rate": 4.109503635776492e-06,
1822
+ "loss": 1.0592,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 1.8185395714910362,
1827
+ "grad_norm": 0.23661255836486816,
1828
+ "learning_rate": 4.069489963505482e-06,
1829
+ "loss": 1.0577,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 1.8255356362046349,
1834
+ "grad_norm": 0.21644575893878937,
1835
+ "learning_rate": 4.029537928562028e-06,
1836
+ "loss": 1.0427,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 1.8325317009182336,
1841
+ "grad_norm": 0.20113667845726013,
1842
+ "learning_rate": 3.989650177383641e-06,
1843
+ "loss": 1.0513,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 1.839527765631832,
1848
+ "grad_norm": 0.21667400002479553,
1849
+ "learning_rate": 3.949829352149651e-06,
1850
+ "loss": 1.0459,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 1.8465238303454306,
1855
+ "grad_norm": 0.23230302333831787,
1856
+ "learning_rate": 3.91007809060619e-06,
1857
+ "loss": 1.0586,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 1.8535198950590293,
1862
+ "grad_norm": 0.2070595771074295,
1863
+ "learning_rate": 3.870399025891461e-06,
1864
+ "loss": 1.0663,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 1.860515959772628,
1869
+ "grad_norm": 0.21182109415531158,
1870
+ "learning_rate": 3.83079478636133e-06,
1871
+ "loss": 1.0385,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 1.8675120244862264,
1876
+ "grad_norm": 0.2090914398431778,
1877
+ "learning_rate": 3.791267995415208e-06,
1878
+ "loss": 1.0601,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 1.8745080891998251,
1883
+ "grad_norm": 0.2156212478876114,
1884
+ "learning_rate": 3.7518212713222905e-06,
1885
+ "loss": 1.0639,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 1.8815041539134238,
1890
+ "grad_norm": 0.22998787462711334,
1891
+ "learning_rate": 3.7124572270481055e-06,
1892
+ "loss": 1.0389,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 1.8885002186270223,
1897
+ "grad_norm": 0.2200993150472641,
1898
+ "learning_rate": 3.6731784700814476e-06,
1899
+ "loss": 1.06,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 1.8954962833406208,
1904
+ "grad_norm": 0.2213740348815918,
1905
+ "learning_rate": 3.633987602261647e-06,
1906
+ "loss": 1.0496,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 1.9024923480542195,
1911
+ "grad_norm": 0.22220519185066223,
1912
+ "learning_rate": 3.594887219606221e-06,
1913
+ "loss": 1.0589,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 1.9094884127678182,
1918
+ "grad_norm": 0.24564726650714874,
1919
+ "learning_rate": 3.55587991213892e-06,
1920
+ "loss": 1.0556,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 1.9164844774814167,
1925
+ "grad_norm": 0.22368529438972473,
1926
+ "learning_rate": 3.516968263718159e-06,
1927
+ "loss": 1.0468,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 1.9234805421950152,
1932
+ "grad_norm": 0.2472257763147354,
1933
+ "learning_rate": 3.47815485186586e-06,
1934
+ "loss": 1.0512,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 1.930476606908614,
1939
+ "grad_norm": 0.22477369010448456,
1940
+ "learning_rate": 3.439442247596724e-06,
1941
+ "loss": 1.0738,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 1.9374726716222126,
1946
+ "grad_norm": 0.2397991418838501,
1947
+ "learning_rate": 3.400833015247913e-06,
1948
+ "loss": 1.0506,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 1.944468736335811,
1953
+ "grad_norm": 0.22635191679000854,
1954
+ "learning_rate": 3.3623297123092007e-06,
1955
+ "loss": 1.0504,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 1.9514648010494096,
1960
+ "grad_norm": 0.20439866185188293,
1961
+ "learning_rate": 3.3239348892535562e-06,
1962
+ "loss": 1.0505,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 1.9584608657630083,
1967
+ "grad_norm": 0.21743066608905792,
1968
+ "learning_rate": 3.285651089368202e-06,
1969
+ "loss": 1.0396,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 1.965456930476607,
1974
+ "grad_norm": 0.22120308876037598,
1975
+ "learning_rate": 3.24748084858614e-06,
1976
+ "loss": 1.0359,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 1.9724529951902054,
1981
+ "grad_norm": 0.23442624509334564,
1982
+ "learning_rate": 3.2094266953181817e-06,
1983
+ "loss": 1.0415,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 1.9794490599038042,
1988
+ "grad_norm": 0.22380927205085754,
1989
+ "learning_rate": 3.1714911502854564e-06,
1990
+ "loss": 1.0627,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 1.9864451246174029,
1995
+ "grad_norm": 0.22232678532600403,
1996
+ "learning_rate": 3.133676726352438e-06,
1997
+ "loss": 1.0586,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 1.9934411893310013,
2002
+ "grad_norm": 0.21684490144252777,
2003
+ "learning_rate": 3.0959859283604984e-06,
2004
+ "loss": 1.0469,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 2.0,
2009
+ "grad_norm": 0.22368235886096954,
2010
+ "learning_rate": 3.0584212529619777e-06,
2011
+ "loss": 1.0719,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 2.0069960647135985,
2016
+ "grad_norm": 0.24952030181884766,
2017
+ "learning_rate": 3.020985188454812e-06,
2018
+ "loss": 1.0254,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 2.0139921294271974,
2023
+ "grad_norm": 0.23081070184707642,
2024
+ "learning_rate": 2.9836802146177034e-06,
2025
+ "loss": 1.0191,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 2.020988194140796,
2030
+ "grad_norm": 0.20420107245445251,
2031
+ "learning_rate": 2.946508802545859e-06,
2032
+ "loss": 1.0127,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 2.0279842588543944,
2037
+ "grad_norm": 0.21790923178195953,
2038
+ "learning_rate": 2.9094734144873037e-06,
2039
+ "loss": 1.0309,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 2.034980323567993,
2044
+ "grad_norm": 0.21608051657676697,
2045
+ "learning_rate": 2.872576503679789e-06,
2046
+ "loss": 1.0327,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 2.041976388281592,
2051
+ "grad_norm": 0.2340073436498642,
2052
+ "learning_rate": 2.8358205141882735e-06,
2053
+ "loss": 1.0441,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 2.0489724529951903,
2058
+ "grad_norm": 0.239246666431427,
2059
+ "learning_rate": 2.7992078807430423e-06,
2060
+ "loss": 1.0302,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 2.0559685177087887,
2065
+ "grad_norm": 0.21766602993011475,
2066
+ "learning_rate": 2.7627410285784164e-06,
2067
+ "loss": 1.0225,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 2.0629645824223872,
2072
+ "grad_norm": 0.2321794480085373,
2073
+ "learning_rate": 2.726422373272117e-06,
2074
+ "loss": 1.0251,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 2.069960647135986,
2079
+ "grad_norm": 0.22717420756816864,
2080
+ "learning_rate": 2.6902543205852496e-06,
2081
+ "loss": 1.0551,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 2.0769567118495846,
2086
+ "grad_norm": 0.2310858517885208,
2087
+ "learning_rate": 2.6542392663029463e-06,
2088
+ "loss": 1.0327,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 2.083952776563183,
2093
+ "grad_norm": 0.2265992909669876,
2094
+ "learning_rate": 2.618379596075668e-06,
2095
+ "loss": 1.0355,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 2.0909488412767816,
2100
+ "grad_norm": 0.203124538064003,
2101
+ "learning_rate": 2.582677685261179e-06,
2102
+ "loss": 1.0255,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 2.0979449059903805,
2107
+ "grad_norm": 0.2333555668592453,
2108
+ "learning_rate": 2.547135898767202e-06,
2109
+ "loss": 1.0389,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 2.104940970703979,
2114
+ "grad_norm": 0.25730496644973755,
2115
+ "learning_rate": 2.511756590894765e-06,
2116
+ "loss": 1.0423,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 2.1119370354175775,
2121
+ "grad_norm": 0.23582589626312256,
2122
+ "learning_rate": 2.476542105182254e-06,
2123
+ "loss": 1.037,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 2.1189331001311764,
2128
+ "grad_norm": 0.20338290929794312,
2129
+ "learning_rate": 2.4414947742501743e-06,
2130
+ "loss": 1.0454,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 2.125929164844775,
2135
+ "grad_norm": 0.21949388086795807,
2136
+ "learning_rate": 2.4066169196466326e-06,
2137
+ "loss": 1.0374,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 2.1329252295583734,
2142
+ "grad_norm": 0.21819548308849335,
2143
+ "learning_rate": 2.3719108516935686e-06,
2144
+ "loss": 1.0365,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 2.139921294271972,
2149
+ "grad_norm": 0.2275557965040207,
2150
+ "learning_rate": 2.3373788693337024e-06,
2151
+ "loss": 0.9914,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 2.146917358985571,
2156
+ "grad_norm": 0.20474126935005188,
2157
+ "learning_rate": 2.303023259978267e-06,
2158
+ "loss": 1.0061,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 2.1539134236991693,
2163
+ "grad_norm": 0.23000217974185944,
2164
+ "learning_rate": 2.268846299355481e-06,
2165
+ "loss": 1.0365,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 2.1609094884127678,
2170
+ "grad_norm": 0.20540106296539307,
2171
+ "learning_rate": 2.2348502513598035e-06,
2172
+ "loss": 1.019,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 2.1679055531263662,
2177
+ "grad_norm": 0.1969561129808426,
2178
+ "learning_rate": 2.2010373679019773e-06,
2179
+ "loss": 1.038,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 2.174901617839965,
2184
+ "grad_norm": 0.20978093147277832,
2185
+ "learning_rate": 2.167409888759856e-06,
2186
+ "loss": 1.0452,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 2.1818976825535636,
2191
+ "grad_norm": 0.2135351151227951,
2192
+ "learning_rate": 2.133970041430044e-06,
2193
+ "loss": 1.042,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 2.188893747267162,
2198
+ "grad_norm": 0.2012661248445511,
2199
+ "learning_rate": 2.1007200409803465e-06,
2200
+ "loss": 1.0197,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 2.195889811980761,
2205
+ "grad_norm": 0.20381034910678864,
2206
+ "learning_rate": 2.0676620899030393e-06,
2207
+ "loss": 1.0309,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 2.2028858766943595,
2212
+ "grad_norm": 0.21021777391433716,
2213
+ "learning_rate": 2.03479837796898e-06,
2214
+ "loss": 1.0455,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 2.209881941407958,
2219
+ "grad_norm": 0.2063123732805252,
2220
+ "learning_rate": 2.002131082082549e-06,
2221
+ "loss": 1.0391,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 2.2168780061215565,
2226
+ "grad_norm": 0.2144179344177246,
2227
+ "learning_rate": 1.969662366137462e-06,
2228
+ "loss": 1.0405,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 2.2238740708351554,
2233
+ "grad_norm": 0.20752228796482086,
2234
+ "learning_rate": 1.937394380873418e-06,
2235
+ "loss": 1.0358,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 2.230870135548754,
2240
+ "grad_norm": 0.19838763773441315,
2241
+ "learning_rate": 1.905329263733649e-06,
2242
+ "loss": 1.0507,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 2.2378662002623524,
2247
+ "grad_norm": 0.20437507331371307,
2248
+ "learning_rate": 1.873469138723325e-06,
2249
+ "loss": 1.0419,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 2.244862264975951,
2254
+ "grad_norm": 0.22749823331832886,
2255
+ "learning_rate": 1.8418161162688613e-06,
2256
+ "loss": 1.0287,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 2.25185832968955,
2261
+ "grad_norm": 0.21343137323856354,
2262
+ "learning_rate": 1.8103722930781249e-06,
2263
+ "loss": 1.0369,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 2.2588543944031483,
2268
+ "grad_norm": 0.22807368636131287,
2269
+ "learning_rate": 1.7791397520015452e-06,
2270
+ "loss": 1.017,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 2.2658504591167468,
2275
+ "grad_norm": 0.21017831563949585,
2276
+ "learning_rate": 1.7481205618941472e-06,
2277
+ "loss": 1.0313,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 2.2728465238303452,
2282
+ "grad_norm": 0.20900066196918488,
2283
+ "learning_rate": 1.7173167774785093e-06,
2284
+ "loss": 1.0436,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 2.279842588543944,
2289
+ "grad_norm": 0.21329908072948456,
2290
+ "learning_rate": 1.6867304392086575e-06,
2291
+ "loss": 1.0463,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 2.2868386532575427,
2296
+ "grad_norm": 0.1967432200908661,
2297
+ "learning_rate": 1.656363573134906e-06,
2298
+ "loss": 1.0489,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 2.293834717971141,
2303
+ "grad_norm": 0.18167762458324432,
2304
+ "learning_rate": 1.6262181907696456e-06,
2305
+ "loss": 1.0615,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 2.3008307826847396,
2310
+ "grad_norm": 0.19959093630313873,
2311
+ "learning_rate": 1.5962962889541106e-06,
2312
+ "loss": 1.0622,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 2.3078268473983385,
2317
+ "grad_norm": 0.21402791142463684,
2318
+ "learning_rate": 1.5665998497260959e-06,
2319
+ "loss": 1.0358,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 2.314822912111937,
2324
+ "grad_norm": 0.20190435647964478,
2325
+ "learning_rate": 1.5371308401886759e-06,
2326
+ "loss": 1.0502,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 2.3218189768255355,
2331
+ "grad_norm": 0.20728997886180878,
2332
+ "learning_rate": 1.507891212379896e-06,
2333
+ "loss": 1.0417,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 2.3288150415391344,
2338
+ "grad_norm": 0.20769530534744263,
2339
+ "learning_rate": 1.4788829031434733e-06,
2340
+ "loss": 1.0185,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 2.335811106252733,
2345
+ "grad_norm": 0.2038041651248932,
2346
+ "learning_rate": 1.4501078340004954e-06,
2347
+ "loss": 1.0182,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 2.3428071709663314,
2352
+ "grad_norm": 0.2017662227153778,
2353
+ "learning_rate": 1.4215679110221415e-06,
2354
+ "loss": 1.039,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 2.34980323567993,
2359
+ "grad_norm": 0.20630167424678802,
2360
+ "learning_rate": 1.393265024703422e-06,
2361
+ "loss": 1.0356,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 2.356799300393529,
2366
+ "grad_norm": 0.2051134705543518,
2367
+ "learning_rate": 1.365201049837952e-06,
2368
+ "loss": 1.0104,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 2.3637953651071273,
2373
+ "grad_norm": 0.2016696333885193,
2374
+ "learning_rate": 1.337377845393763e-06,
2375
+ "loss": 1.0409,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 2.3707914298207258,
2380
+ "grad_norm": 0.20232132077217102,
2381
+ "learning_rate": 1.3097972543901672e-06,
2382
+ "loss": 1.0453,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 2.3777874945343243,
2387
+ "grad_norm": 0.19618479907512665,
2388
+ "learning_rate": 1.2824611037756686e-06,
2389
+ "loss": 1.0414,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 2.384783559247923,
2394
+ "grad_norm": 0.19780609011650085,
2395
+ "learning_rate": 1.255371204306956e-06,
2396
+ "loss": 1.0428,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 2.3917796239615217,
2401
+ "grad_norm": 0.2076359987258911,
2402
+ "learning_rate": 1.2285293504289448e-06,
2403
+ "loss": 1.0204,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 2.39877568867512,
2408
+ "grad_norm": 0.19863395392894745,
2409
+ "learning_rate": 1.2019373201559247e-06,
2410
+ "loss": 1.018,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 2.405771753388719,
2415
+ "grad_norm": 0.1929175853729248,
2416
+ "learning_rate": 1.1755968749537755e-06,
2417
+ "loss": 1.0251,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 2.4127678181023176,
2422
+ "grad_norm": 0.1984327733516693,
2423
+ "learning_rate": 1.1495097596232901e-06,
2424
+ "loss": 1.0428,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 2.419763882815916,
2429
+ "grad_norm": 0.18438038229942322,
2430
+ "learning_rate": 1.1236777021845957e-06,
2431
+ "loss": 1.0368,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 2.4267599475295145,
2436
+ "grad_norm": 0.20130807161331177,
2437
+ "learning_rate": 1.0981024137626923e-06,
2438
+ "loss": 1.0507,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 2.4337560122431134,
2443
+ "grad_norm": 0.22717654705047607,
2444
+ "learning_rate": 1.0727855884741057e-06,
2445
+ "loss": 1.05,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 2.440752076956712,
2450
+ "grad_norm": 0.19452641904354095,
2451
+ "learning_rate": 1.0477289033146675e-06,
2452
+ "loss": 1.0433,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 2.4477481416703104,
2457
+ "grad_norm": 0.17928987741470337,
2458
+ "learning_rate": 1.022934018048432e-06,
2459
+ "loss": 1.0233,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 2.454744206383909,
2464
+ "grad_norm": 0.18564386665821075,
2465
+ "learning_rate": 9.984025750977338e-07,
2466
+ "loss": 1.0316,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 2.461740271097508,
2471
+ "grad_norm": 0.20213739573955536,
2472
+ "learning_rate": 9.741361994343867e-07,
2473
+ "loss": 1.0356,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 2.4687363358111063,
2478
+ "grad_norm": 0.19384591281414032,
2479
+ "learning_rate": 9.501364984720557e-07,
2480
+ "loss": 1.0086,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 2.475732400524705,
2485
+ "grad_norm": 0.1930152028799057,
2486
+ "learning_rate": 9.264050619597697e-07,
2487
+ "loss": 1.0246,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 2.4827284652383033,
2492
+ "grad_norm": 0.18979789316654205,
2493
+ "learning_rate": 9.029434618766253e-07,
2494
+ "loss": 0.9967,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 2.489724529951902,
2499
+ "grad_norm": 0.18281033635139465,
2500
+ "learning_rate": 8.797532523276542e-07,
2501
+ "loss": 1.0438,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 2.4967205946655007,
2506
+ "grad_norm": 0.18996168673038483,
2507
+ "learning_rate": 8.56835969440879e-07,
2508
+ "loss": 1.0244,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 2.503716659379099,
2513
+ "grad_norm": 0.1979200392961502,
2514
+ "learning_rate": 8.341931312655582e-07,
2515
+ "loss": 1.0317,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 2.5107127240926976,
2520
+ "grad_norm": 0.1972116082906723,
2521
+ "learning_rate": 8.11826237671634e-07,
2522
+ "loss": 1.0087,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 2.5177087888062966,
2527
+ "grad_norm": 0.18998436629772186,
2528
+ "learning_rate": 7.897367702503755e-07,
2529
+ "loss": 1.028,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 2.524704853519895,
2534
+ "grad_norm": 0.18390554189682007,
2535
+ "learning_rate": 7.679261922162417e-07,
2536
+ "loss": 1.0419,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 2.5317009182334935,
2541
+ "grad_norm": 0.18704506754875183,
2542
+ "learning_rate": 7.463959483099547e-07,
2543
+ "loss": 1.0043,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 2.5386969829470925,
2548
+ "grad_norm": 0.19950369000434875,
2549
+ "learning_rate": 7.251474647028028e-07,
2550
+ "loss": 1.0246,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 2.545693047660691,
2555
+ "grad_norm": 0.18810006976127625,
2556
+ "learning_rate": 7.041821489021639e-07,
2557
+ "loss": 0.9838,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 2.5526891123742894,
2562
+ "grad_norm": 0.18209373950958252,
2563
+ "learning_rate": 6.835013896582821e-07,
2564
+ "loss": 0.9988,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 2.559685177087888,
2569
+ "grad_norm": 0.16651113331317902,
2570
+ "learning_rate": 6.631065568722633e-07,
2571
+ "loss": 1.005,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 2.566681241801487,
2576
+ "grad_norm": 0.1969648152589798,
2577
+ "learning_rate": 6.429990015053461e-07,
2578
+ "loss": 1.0265,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 2.5736773065150853,
2583
+ "grad_norm": 0.1813141405582428,
2584
+ "learning_rate": 6.231800554894029e-07,
2585
+ "loss": 1.0341,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 2.580673371228684,
2590
+ "grad_norm": 0.1921863704919815,
2591
+ "learning_rate": 6.036510316387196e-07,
2592
+ "loss": 1.0168,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 2.5876694359422823,
2597
+ "grad_norm": 0.18890000879764557,
2598
+ "learning_rate": 5.844132235630273e-07,
2599
+ "loss": 1.0315,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 2.594665500655881,
2604
+ "grad_norm": 0.18416599929332733,
2605
+ "learning_rate": 5.654679055818202e-07,
2606
+ "loss": 1.0301,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 2.6016615653694797,
2611
+ "grad_norm": 0.18219484388828278,
2612
+ "learning_rate": 5.46816332639939e-07,
2613
+ "loss": 1.0354,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 2.608657630083078,
2618
+ "grad_norm": 0.19500690698623657,
2619
+ "learning_rate": 5.284597402244457e-07,
2620
+ "loss": 1.0644,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 2.615653694796677,
2625
+ "grad_norm": 0.19194085896015167,
2626
+ "learning_rate": 5.103993442827832e-07,
2627
+ "loss": 1.0283,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 2.6226497595102756,
2632
+ "grad_norm": 0.1873580813407898,
2633
+ "learning_rate": 4.926363411422319e-07,
2634
+ "loss": 1.0017,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 2.629645824223874,
2639
+ "grad_norm": 0.17427587509155273,
2640
+ "learning_rate": 4.751719074306604e-07,
2641
+ "loss": 1.0256,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 2.6366418889374725,
2646
+ "grad_norm": 0.1876949965953827,
2647
+ "learning_rate": 4.58007199998593e-07,
2648
+ "loss": 0.9952,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 2.643637953651071,
2653
+ "grad_norm": 0.18339499831199646,
2654
+ "learning_rate": 4.4114335584256986e-07,
2655
+ "loss": 1.021,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 2.65063401836467,
2660
+ "grad_norm": 0.1752660721540451,
2661
+ "learning_rate": 4.2458149202984025e-07,
2662
+ "loss": 1.0134,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 2.6576300830782684,
2667
+ "grad_norm": 0.17881804704666138,
2668
+ "learning_rate": 4.0832270562436436e-07,
2669
+ "loss": 1.0573,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 2.664626147791867,
2674
+ "grad_norm": 0.18826191127300262,
2675
+ "learning_rate": 3.923680736141411e-07,
2676
+ "loss": 1.0462,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 2.671622212505466,
2681
+ "grad_norm": 0.18888552486896515,
2682
+ "learning_rate": 3.7671865283987254e-07,
2683
+ "loss": 1.0385,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 2.6786182772190643,
2688
+ "grad_norm": 0.18031838536262512,
2689
+ "learning_rate": 3.613754799249547e-07,
2690
+ "loss": 1.0311,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 2.685614341932663,
2695
+ "grad_norm": 0.18545882403850555,
2696
+ "learning_rate": 3.4633957120681294e-07,
2697
+ "loss": 1.0288,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 2.6926104066462617,
2702
+ "grad_norm": 0.19693773984909058,
2703
+ "learning_rate": 3.316119226695785e-07,
2704
+ "loss": 1.0316,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 2.69960647135986,
2709
+ "grad_norm": 0.17951585352420807,
2710
+ "learning_rate": 3.1719350987811537e-07,
2711
+ "loss": 1.0237,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 2.7066025360734587,
2716
+ "grad_norm": 0.1714509278535843,
2717
+ "learning_rate": 3.030852879133989e-07,
2718
+ "loss": 1.0105,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 2.713598600787057,
2723
+ "grad_norm": 0.19598188996315002,
2724
+ "learning_rate": 2.8928819130924656e-07,
2725
+ "loss": 1.0337,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 2.7205946655006557,
2730
+ "grad_norm": 0.17747808992862701,
2731
+ "learning_rate": 2.75803133990421e-07,
2732
+ "loss": 1.0344,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 2.7275907302142546,
2737
+ "grad_norm": 0.18708738684654236,
2738
+ "learning_rate": 2.6263100921208484e-07,
2739
+ "loss": 1.0355,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 2.734586794927853,
2744
+ "grad_norm": 0.1784721165895462,
2745
+ "learning_rate": 2.497726895006353e-07,
2746
+ "loss": 1.0281,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 2.7415828596414515,
2751
+ "grad_norm": 0.18551653623580933,
2752
+ "learning_rate": 2.3722902659590653e-07,
2753
+ "loss": 1.0202,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 2.7485789243550505,
2758
+ "grad_norm": 0.17838101089000702,
2759
+ "learning_rate": 2.2500085139474992e-07,
2760
+ "loss": 0.9873,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 2.755574989068649,
2765
+ "grad_norm": 0.19315992295742035,
2766
+ "learning_rate": 2.130889738959946e-07,
2767
+ "loss": 1.0218,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 2.7625710537822474,
2772
+ "grad_norm": 0.18315425515174866,
2773
+ "learning_rate": 2.0149418314679313e-07,
2774
+ "loss": 1.0366,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 2.7695671184958464,
2779
+ "grad_norm": 0.17746944725513458,
2780
+ "learning_rate": 1.902172471903563e-07,
2781
+ "loss": 1.0194,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 2.776563183209445,
2786
+ "grad_norm": 0.185789555311203,
2787
+ "learning_rate": 1.792589130150757e-07,
2788
+ "loss": 1.0175,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 2.7835592479230433,
2793
+ "grad_norm": 0.18121521174907684,
2794
+ "learning_rate": 1.6861990650504256e-07,
2795
+ "loss": 1.0511,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 2.790555312636642,
2800
+ "grad_norm": 0.17998731136322021,
2801
+ "learning_rate": 1.5830093239196765e-07,
2802
+ "loss": 1.0307,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 2.7975513773502403,
2807
+ "grad_norm": 0.17075778543949127,
2808
+ "learning_rate": 1.4830267420849587e-07,
2809
+ "loss": 1.0304,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 2.804547442063839,
2814
+ "grad_norm": 0.18096929788589478,
2815
+ "learning_rate": 1.3862579424293366e-07,
2816
+ "loss": 1.0134,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 2.8115435067774377,
2821
+ "grad_norm": 0.1751806139945984,
2822
+ "learning_rate": 1.292709334953729e-07,
2823
+ "loss": 1.0119,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 2.818539571491036,
2828
+ "grad_norm": 0.18296852707862854,
2829
+ "learning_rate": 1.202387116352355e-07,
2830
+ "loss": 1.0188,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 2.825535636204635,
2835
+ "grad_norm": 0.18236733973026276,
2836
+ "learning_rate": 1.1152972696022447e-07,
2837
+ "loss": 1.0356,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 2.8325317009182336,
2842
+ "grad_norm": 0.17827041447162628,
2843
+ "learning_rate": 1.0314455635669296e-07,
2844
+ "loss": 1.0339,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 2.839527765631832,
2849
+ "grad_norm": 0.17066597938537598,
2850
+ "learning_rate": 9.508375526142976e-08,
2851
+ "loss": 1.0261,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 2.8465238303454306,
2856
+ "grad_norm": 0.1768139749765396,
2857
+ "learning_rate": 8.734785762486875e-08,
2858
+ "loss": 1.0479,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 2.853519895059029,
2863
+ "grad_norm": 0.16926994919776917,
2864
+ "learning_rate": 7.993737587571825e-08,
2865
+ "loss": 1.0307,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 2.860515959772628,
2870
+ "grad_norm": 0.17480771243572235,
2871
+ "learning_rate": 7.285280088701996e-08,
2872
+ "loss": 1.0116,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 2.8675120244862264,
2877
+ "grad_norm": 0.17737415432929993,
2878
+ "learning_rate": 6.609460194362927e-08,
2879
+ "loss": 1.0101,
2880
+ "step": 410
2881
+ },
2882
+ {
2883
+ "epoch": 2.874508089199825,
2884
+ "grad_norm": 0.18863534927368164,
2885
+ "learning_rate": 5.966322671113523e-08,
2886
+ "loss": 1.0119,
2887
+ "step": 411
2888
+ },
2889
+ {
2890
+ "epoch": 2.881504153913424,
2891
+ "grad_norm": 0.17490120232105255,
2892
+ "learning_rate": 5.3559101206200337e-08,
2893
+ "loss": 1.0334,
2894
+ "step": 412
2895
+ },
2896
+ {
2897
+ "epoch": 2.8885002186270223,
2898
+ "grad_norm": 0.18111565709114075,
2899
+ "learning_rate": 4.778262976834758e-08,
2900
+ "loss": 1.0412,
2901
+ "step": 413
2902
+ },
2903
+ {
2904
+ "epoch": 2.895496283340621,
2905
+ "grad_norm": 0.1804577261209488,
2906
+ "learning_rate": 4.233419503317182e-08,
2907
+ "loss": 1.0525,
2908
+ "step": 414
2909
+ },
2910
+ {
2911
+ "epoch": 2.9024923480542197,
2912
+ "grad_norm": 0.16903232038021088,
2913
+ "learning_rate": 3.7214157906996784e-08,
2914
+ "loss": 1.016,
2915
+ "step": 415
2916
+ },
2917
+ {
2918
+ "epoch": 2.909488412767818,
2919
+ "grad_norm": 0.17621533572673798,
2920
+ "learning_rate": 3.242285754296859e-08,
2921
+ "loss": 1.0176,
2922
+ "step": 416
2923
+ },
2924
+ {
2925
+ "epoch": 2.9164844774814167,
2926
+ "grad_norm": 0.18803808093070984,
2927
+ "learning_rate": 2.796061131858707e-08,
2928
+ "loss": 1.0659,
2929
+ "step": 417
2930
+ },
2931
+ {
2932
+ "epoch": 2.923480542195015,
2933
+ "grad_norm": 0.17898492515087128,
2934
+ "learning_rate": 2.3827714814686488e-08,
2935
+ "loss": 1.0179,
2936
+ "step": 418
2937
+ },
2938
+ {
2939
+ "epoch": 2.9304766069086137,
2940
+ "grad_norm": 0.16611486673355103,
2941
+ "learning_rate": 2.002444179585339e-08,
2942
+ "loss": 1.0495,
2943
+ "step": 419
2944
+ },
2945
+ {
2946
+ "epoch": 2.9374726716222126,
2947
+ "grad_norm": 0.1799437254667282,
2948
+ "learning_rate": 1.655104419229281e-08,
2949
+ "loss": 1.0172,
2950
+ "step": 420
2951
+ },
2952
+ {
2953
+ "epoch": 2.944468736335811,
2954
+ "grad_norm": 0.17451150715351105,
2955
+ "learning_rate": 1.3407752083142155e-08,
2956
+ "loss": 1.0268,
2957
+ "step": 421
2958
+ },
2959
+ {
2960
+ "epoch": 2.9514648010494096,
2961
+ "grad_norm": 0.17181828618049622,
2962
+ "learning_rate": 1.059477368122841e-08,
2963
+ "loss": 1.0194,
2964
+ "step": 422
2965
+ },
2966
+ {
2967
+ "epoch": 2.9584608657630085,
2968
+ "grad_norm": 0.16880981624126434,
2969
+ "learning_rate": 8.112295319276931e-09,
2970
+ "loss": 1.0317,
2971
+ "step": 423
2972
+ },
2973
+ {
2974
+ "epoch": 2.965456930476607,
2975
+ "grad_norm": 0.19107691943645477,
2976
+ "learning_rate": 5.9604814375685546e-09,
2977
+ "loss": 1.0622,
2978
+ "step": 424
2979
+ },
2980
+ {
2981
+ "epoch": 2.9724529951902054,
2982
+ "grad_norm": 0.18856149911880493,
2983
+ "learning_rate": 4.139474573047197e-09,
2984
+ "loss": 1.0483,
2985
+ "step": 425
2986
+ },
2987
+ {
2988
+ "epoch": 2.9794490599038044,
2989
+ "grad_norm": 0.18675896525382996,
2990
+ "learning_rate": 2.6493953498790692e-09,
2991
+ "loss": 1.0207,
2992
+ "step": 426
2993
+ },
2994
+ {
2995
+ "epoch": 2.986445124617403,
2996
+ "grad_norm": 0.18428866565227509,
2997
+ "learning_rate": 1.4903424714601821e-09,
2998
+ "loss": 1.0299,
2999
+ "step": 427
3000
+ },
3001
+ {
3002
+ "epoch": 2.9934411893310013,
3003
+ "grad_norm": 0.17121976613998413,
3004
+ "learning_rate": 6.623927138804665e-10,
3005
+ "loss": 1.0298,
3006
+ "step": 428
3007
+ },
3008
+ {
3009
+ "epoch": 3.0,
3010
+ "grad_norm": 0.17932668328285217,
3011
+ "learning_rate": 1.6560092083672818e-10,
3012
+ "loss": 1.0303,
3013
+ "step": 429
3014
+ }
3015
+ ],
3016
+ "logging_steps": 1,
3017
+ "max_steps": 429,
3018
+ "num_input_tokens_seen": 0,
3019
+ "num_train_epochs": 3,
3020
+ "save_steps": 500,
3021
+ "stateful_callbacks": {
3022
+ "TrainerControl": {
3023
+ "args": {
3024
+ "should_epoch_stop": false,
3025
+ "should_evaluate": false,
3026
+ "should_log": false,
3027
+ "should_save": true,
3028
+ "should_training_stop": true
3029
+ },
3030
+ "attributes": {}
3031
+ }
3032
+ },
3033
+ "total_flos": 2292626699059200.0,
3034
+ "train_batch_size": 1,
3035
+ "trial_name": null,
3036
+ "trial_params": null
3037
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13e27dcab4b358594662fdc0823ac45133631773772244a04bd1751578fe4042
3
+ size 7736
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)