import faiss import numpy as np import pickle import os class SimilaritySearchEngine: def __init__(self, embeddings_path='data/embeddings.pkl'): # Load precomputed embeddings with open(embeddings_path, 'rb') as f: data = pickle.load(f) self.embeddings = data['embeddings'] self.image_paths = data['image_paths'] # Create FAISS index dimension = len(self.embeddings[0]) self.index = faiss.IndexFlatL2(dimension) self.index.add(np.array(self.embeddings)) def search_similar_images(self, query_embedding, top_k=5): # Perform similarity search distances, indices = self.index.search(np.array([query_embedding]), top_k) return [self.image_paths[idx] for idx in indices[0]], distances[0]