rufimelo commited on
Commit
0e884e6
·
1 Parent(s): f6154c1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -23,7 +23,7 @@ Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://hu
23
 
24
  For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)."
25
 
26
- The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 2e-5, using TSDAE technique)
27
 
28
 
29
  ## Available models
@@ -38,7 +38,7 @@ The performance of Language Models can change drastically when there is a domain
38
  ```python
39
  from transformers import AutoTokenizer, AutoModelForMaskedLM
40
 
41
- tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
42
 
43
  model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
44
  ```
@@ -49,8 +49,8 @@ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSD
49
  from transformers import pipeline
50
  from transformers import AutoTokenizer, AutoModelForMaskedLM
51
 
52
- tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
53
- model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
54
 
55
  pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
56
  pipe('O advogado apresentou [MASK] para o juíz')
 
23
 
24
  For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)."
25
 
26
+ The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 1e-5, using TSDAE technique)
27
 
28
 
29
  ## Available models
 
38
  ```python
39
  from transformers import AutoTokenizer, AutoModelForMaskedLM
40
 
41
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3")
42
 
43
  model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE")
44
  ```
 
49
  from transformers import pipeline
50
  from transformers import AutoTokenizer, AutoModelForMaskedLM
51
 
52
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3")
53
+ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3")
54
 
55
  pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
56
  pipe('O advogado apresentou [MASK] para o juíz')