ruslanmv commited on
Commit
15584a6
1 Parent(s): f8cf026

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -7
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit
3
  language:
4
  - en
 
5
  license: apache-2.0
6
  tags:
7
  - text-generation-inference
@@ -12,12 +12,79 @@ tags:
12
  - sft
13
  ---
14
 
15
- # Uploaded model
16
 
17
- - **Developed by:** ruslanmv
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
  ---
 
2
  language:
3
  - en
4
+ - it
5
  license: apache-2.0
6
  tags:
7
  - text-generation-inference
 
12
  - sft
13
  ---
14
 
15
+ # Meta LLaMA 3.1 8B 4-bit Finetuned Model
16
 
17
+ This model is a fine-tuned version of `Meta-Llama-3.1-8B`, developed by **ruslanmv** for text generation tasks. It leverages 4-bit quantization, making it more efficient for inference while maintaining strong performance in natural language generation.
18
+
19
+ ---
20
+
21
+ ## Model Details
22
+
23
+ - **Base Model**: `unsloth/meta-llama-3.1-8b-bnb-4bit`
24
+ - **Finetuned by**: ruslanmv
25
+ - **Language**: English
26
+ - **License**: [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
27
+ - **Tags**:
28
+ - text-generation-inference
29
+ - transformers
30
+ - unsloth
31
+ - llama
32
+ - trl
33
+ - sft
34
+
35
+ ---
36
+
37
+ ## Model Usage
38
+
39
+ ### Installation
40
+
41
+ To use this model, you will need to install the necessary libraries:
42
+
43
+ ```bash
44
+ pip install transformers accelerate bitsandbytes
45
+ ```
46
+
47
+ ### Loading the Model in Python
48
+
49
+ Here’s an example of how to load this fine-tuned model using Hugging Face's `transformers` library:
50
+
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+ import torch
54
+
55
+ # Load the model and tokenizer
56
+ model_name = "Meta-Llama-3.1-8B-Text-to-SQL-4bit"
57
+
58
+ # Ensure you have the right device setup
59
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
60
+
61
+ # Load the model and tokenizer from the Hugging Face Hub
62
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
63
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
64
+
65
+ # Example usage
66
+ input_text = "Recupera il conteggio di tutte le righe nella tabella table1"
67
+ inputs = tokenizer(input_text, return_tensors="pt").to(device)
68
+
69
+ # Generate output text
70
+ outputs = model.generate(**inputs, max_length=50)
71
+
72
+ # Decode and print the generated text
73
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
74
+ print(generated_text)
75
+ ```
76
+
77
+ ### Model Features
78
+
79
+ - **Text Generation**: This model is fine-tuned to generate coherent and contextually accurate text based on the provided input.
80
+ - **Efficiency**: Using 4-bit quantization with the `bitsandbytes` library, it optimizes memory and inference performance.
81
+
82
+ ### License
83
+
84
+ This model is licensed under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0). You are free to use, modify, and distribute this model, provided that you comply with the license terms.
85
+
86
+ ### Acknowledgments
87
+
88
+ This model was fine-tuned by **ruslanmv** based on the original work of `unsloth` and the `meta-llama-3.1-8b-bnb-4bit` model.
89
 
 
90