--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:50000 - loss:CosineSimilarityLoss base_model: google-bert/bert-base-uncased widget: - source_sentence: Sometimes the people who represent themselves don't even know the significant facts of their case. sentences: - The law is very easy to understand, so representing yourself in court is the best way to win a case. - Sewage poured into upstairs windows from the streets while people whispered to each other. - His faith may be lacking. - source_sentence: When he married in 1901, he and his wife (Olga Knipper of the Moscow Art Theater) went directly from the ceremony to a honeymoon in a sanitarium. sentences: - if a person wants to eat you understand that - 'His wife has never went to a sanitarium. ' - The new system appears far more complex, but ultimately easier and more thorough. - source_sentence: it really is i heard something that their supposed to be starting a huge campaign in New York about um child abuse and stopping child abuse and it's supposed to be like it's starting there supposed to be like a big nationwide campaign and you know so hopefully that will take off and really do something i don't know there's just sentences: - The Washington Post was the first company to report on attempts of private companies growing embryos. - Me too? - It's unfortunate that nobody is organizing a child abuse campaign. - source_sentence: On the mainland, an invasion of even greater significance followed in 1580, when Philip II of Spain proclaimed himself king of Portugal and marched his armies across the border. sentences: - Some of the modern buildings that were erected in their place are not admired today. - Jon wanted to save them from the angry mob. - Philip II of Spain invaded Portugal. - source_sentence: The river plays a central role in all visits to Paris. sentences: - He said Dave Hanson. - The river is central to all vacations to Paris. - Trauma is the leading cause of alcohol abuse. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.7301988757371918 name: Pearson Cosine - type: spearman_cosine value: 0.7323168725786805 name: Spearman Cosine --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ryanhoangt/bert-base-uncased-mnli-cosine") # Run inference sentences = [ 'The river plays a central role in all visits to Paris.', 'The river is central to all vacations to Paris.', 'Trauma is the leading cause of alcohol abuse.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7302 | | **spearman_cosine** | **0.7323** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 50,000 training samples * Columns: sentence1, sentence2, and label * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | label | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------| | Conceptually cream skimming has two basic dimensions - product and geography. | Product and geography are what make cream skimming work. | 0.0 | | you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him | You lose the things to the following level if the people recall. | 1.0 | | One of our number will carry out your instructions minutely. | A member of my team will execute your orders with immense precision. | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 1 - `warmup_steps`: 100 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | spearman_cosine | |:------:|:----:|:-------------:|:---------------:| | 0.0320 | 50 | 0.2752 | - | | 0.0640 | 100 | 0.1898 | - | | 0.0960 | 150 | 0.1733 | - | | 0.1280 | 200 | 0.1679 | - | | 0.1599 | 250 | 0.1743 | - | | 0.1919 | 300 | 0.1703 | - | | 0.2239 | 350 | 0.1599 | - | | 0.2559 | 400 | 0.1614 | - | | 0.2879 | 450 | 0.149 | - | | 0.3199 | 500 | 0.1555 | - | | 0.3519 | 550 | 0.1631 | - | | 0.3839 | 600 | 0.1537 | - | | 0.4159 | 650 | 0.1497 | - | | 0.4479 | 700 | 0.1512 | - | | 0.4798 | 750 | 0.157 | - | | 0.5118 | 800 | 0.1544 | - | | 0.5438 | 850 | 0.1502 | - | | 0.5758 | 900 | 0.1459 | - | | 0.6078 | 950 | 0.1476 | - | | 0.6398 | 1000 | 0.1439 | - | | 0.6718 | 1050 | 0.1508 | - | | 0.7038 | 1100 | 0.1444 | - | | 0.7358 | 1150 | 0.1457 | - | | 0.7678 | 1200 | 0.1486 | - | | 0.7997 | 1250 | 0.1485 | - | | 0.8317 | 1300 | 0.1419 | - | | 0.8637 | 1350 | 0.1406 | - | | 0.8957 | 1400 | 0.1407 | - | | 0.9277 | 1450 | 0.1434 | - | | 0.9597 | 1500 | 0.1365 | - | | 0.9917 | 1550 | 0.1465 | - | | -1 | -1 | - | 0.7323 | ### Framework Versions - Python: 3.11.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 3.2.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```