Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,35 @@ language:
|
|
6 |
base_model:
|
7 |
- google-t5/t5-small
|
8 |
pipeline_tag: summarization
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
base_model:
|
7 |
- google-t5/t5-small
|
8 |
pipeline_tag: summarization
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# AML Text Summarization T5 Model
|
13 |
+
|
14 |
+
This is a text summarization model based on the T5-Small architecture, developed as part of the Advanced Machine Learning course at the University of Bremen.
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
This model is fine-tuned on the CNN/Daily Mail dataset for abstractive text summarization. It uses the T5-Small (Text-To-Text Transfer Transformer) architecture.
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
```
|
23 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
24 |
+
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("s0urin/aml-text-summarization-t5")
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("s0urin/aml-text-summarization-t5")
|
27 |
+
|
28 |
+
text = "Your long text here..."
|
29 |
+
inputs = tokenizer("summarize: " + text, return_tensors="pt", max_length=512, truncation=True)
|
30 |
+
outputs = model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
31 |
+
summary = tokenizer.decode(outputs, skip_special_tokens=True)
|
32 |
+
|
33 |
+
print(summary)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Authors
|
38 |
+
|
39 |
+
- Sourin Kumar Pal
|
40 |
+
- Jassim Hameed Ayobkhan
|