File size: 2,698 Bytes
daef20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- null
model-index:
- name: nbailab-base-ner-scandi-unbalanced
  results:
  - task:
      name: Token Classification
      type: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nbailab-base-ner-scandi-unbalanced

This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0666
- Micro F1: 0.8693
- Micro F1 No Misc: 0.8925

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 90135.90000000001
- num_epochs: 1000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Micro F1 | Micro F1 No Misc |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------------:|
| 0.6682        | 1.0   | 2816  | 0.0872          | 0.6916   | 0.7306           |
| 0.0684        | 2.0   | 5632  | 0.0464          | 0.8167   | 0.8538           |
| 0.0444        | 3.0   | 8448  | 0.0367          | 0.8485   | 0.8783           |
| 0.0349        | 4.0   | 11264 | 0.0316          | 0.8684   | 0.8920           |
| 0.0282        | 5.0   | 14080 | 0.0290          | 0.8820   | 0.9033           |
| 0.0231        | 6.0   | 16896 | 0.0283          | 0.8854   | 0.9060           |
| 0.0189        | 7.0   | 19712 | 0.0253          | 0.8964   | 0.9156           |
| 0.0155        | 8.0   | 22528 | 0.0260          | 0.9016   | 0.9201           |
| 0.0123        | 9.0   | 25344 | 0.0266          | 0.9059   | 0.9233           |
| 0.0098        | 10.0  | 28160 | 0.0280          | 0.9091   | 0.9279           |
| 0.008         | 11.0  | 30976 | 0.0309          | 0.9093   | 0.9287           |
| 0.0065        | 12.0  | 33792 | 0.0313          | 0.9103   | 0.9284           |
| 0.0053        | 13.0  | 36608 | 0.0322          | 0.9078   | 0.9257           |
| 0.0046        | 14.0  | 39424 | 0.0343          | 0.9075   | 0.9256           |


### Framework versions

- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3