sackoh commited on
Commit
f0be772
·
verified ·
1 Parent(s): 78531b6

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,199 +1,726 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
61
 
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
- ## Training Details
 
77
 
78
- ### Training Data
 
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
83
 
84
- ### Training Procedure
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
 
89
 
90
- [More Information Needed]
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
100
 
101
- [More Information Needed]
 
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
 
 
 
 
120
 
121
- #### Metrics
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
 
 
 
128
 
129
- [More Information Needed]
 
130
 
131
- #### Summary
132
 
 
 
 
133
 
 
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
 
 
 
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
 
 
 
 
 
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
- **BibTeX:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
- **APA:**
 
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: gemma
3
  library_name: transformers
4
+ pipeline_tag: text-generation
5
+ extra_gated_heading: Access Gemma on Hugging Face
6
+ extra_gated_prompt: >-
7
+ To access Gemma on Hugging Face, you’re required to review and agree to
8
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
9
+ Face and click below. Requests are processed immediately.
10
+ extra_gated_button_content: Acknowledge license
11
+ tags:
12
+ - conversational
13
+ base_model: google/gemma-2-2b
14
  ---
15
 
 
16
 
17
+ # Gemma 2 model card
18
 
19
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
20
 
21
+ **Resources and Technical Documentation**:
22
 
23
+ * [Responsible Generative AI Toolkit][rai-toolkit]
24
+ * [Gemma on Kaggle][kaggle-gemma]
25
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
26
 
27
+ **Terms of Use**: [Terms][terms]
28
 
29
+ **Authors**: Google
30
 
31
+ ## Model Information
32
 
33
+ Summary description and brief definition of inputs and outputs.
 
 
 
 
 
 
34
 
35
+ ### Description
36
 
37
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
38
+ built from the same research and technology used to create the Gemini models.
39
+ They are text-to-text, decoder-only large language models, available in English,
40
+ with open weights for both pre-trained variants and instruction-tuned variants.
41
+ Gemma models are well-suited for a variety of text generation tasks, including
42
+ question answering, summarization, and reasoning. Their relatively small size
43
+ makes it possible to deploy them in environments with limited resources such as
44
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
45
+ state of the art AI models and helping foster innovation for everyone.
46
 
47
+ ### Usage
 
 
48
 
49
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
50
+ ```sh
51
+ pip install -U transformers
52
+ ```
53
 
54
+ Then, copy the snippet from the section that is relevant for your usecase.
55
 
56
+ #### Running with the `pipeline` API
57
 
58
+ ```python
59
+ import torch
60
+ from transformers import pipeline
61
 
62
+ pipe = pipeline(
63
+ "text-generation",
64
+ model="google/gemma-2-2b-it",
65
+ model_kwargs={"torch_dtype": torch.bfloat16},
66
+ device="cuda", # replace with "mps" to run on a Mac device
67
+ )
68
 
69
+ messages = [
70
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
71
+ ]
72
 
73
+ outputs = pipe(messages, max_new_tokens=256)
74
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
75
+ print(assistant_response)
76
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
77
+ ```
78
 
79
+ #### Running the model on a single / multi GPU
80
 
81
+ ```python
82
+ # pip install accelerate
83
+ from transformers import AutoTokenizer, AutoModelForCausalLM
84
+ import torch
85
 
86
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ "google/gemma-2-2b-it",
89
+ device_map="auto",
90
+ torch_dtype=torch.bfloat16,
91
+ )
92
 
93
+ input_text = "Write me a poem about Machine Learning."
94
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
95
 
96
+ outputs = model.generate(**input_ids, max_new_tokens=32)
97
+ print(tokenizer.decode(outputs[0]))
98
+ ```
99
 
100
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
101
+ ```python
102
+ messages = [
103
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
104
+ ]
105
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
106
 
107
+ outputs = model.generate(**input_ids, max_new_tokens=256)
108
+ print(tokenizer.decode(outputs[0]))
109
+ ```
110
 
111
+ <a name="precisions"></a>
112
+ #### Running the model on a GPU using different precisions
113
 
114
+ The native weights of this model were exported in `bfloat16` precision.
115
 
116
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
117
 
118
+ * _Upcasting to `torch.float32`_
119
 
120
+ ```python
121
+ # pip install accelerate
122
+ from transformers import AutoTokenizer, AutoModelForCausalLM
123
 
124
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
125
+ model = AutoModelForCausalLM.from_pretrained(
126
+ "google/gemma-2-2b-it",
127
+ device_map="auto",
128
+ )
129
 
130
+ input_text = "Write me a poem about Machine Learning."
131
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
132
 
133
+ outputs = model.generate(**input_ids, max_new_tokens=32)
134
+ print(tokenizer.decode(outputs[0]))
135
+ ```
136
 
137
+ #### Running the model through a CLI
138
 
139
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
140
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
141
+ for getting started, then launch the CLI through the following command:
142
 
143
+ ```shell
144
+ local-gemma --model 2b --preset speed
145
+ ```
146
 
147
+ #### Quantized Versions through `bitsandbytes`
148
 
149
+ <details>
150
+ <summary>
151
+ Using 8-bit precision (int8)
152
+ </summary>
153
 
154
+ ```python
155
+ # pip install bitsandbytes accelerate
156
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
157
 
158
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
159
 
160
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
161
+ model = AutoModelForCausalLM.from_pretrained(
162
+ "google/gemma-2-2b-it",
163
+ quantization_config=quantization_config,
164
+ )
165
 
166
+ input_text = "Write me a poem about Machine Learning."
167
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
168
 
169
+ outputs = model.generate(**input_ids, max_new_tokens=32)
170
+ print(tokenizer.decode(outputs[0]))
171
+ ```
172
+ </details>
173
 
174
+ <details>
175
+ <summary>
176
+ Using 4-bit precision
177
+ </summary>
178
 
179
+ ```python
180
+ # pip install bitsandbytes accelerate
181
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
182
 
183
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
 
185
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
186
+ model = AutoModelForCausalLM.from_pretrained(
187
+ "google/gemma-2-2b-it",
188
+ quantization_config=quantization_config,
189
+ )
190
 
191
+ input_text = "Write me a poem about Machine Learning."
192
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
193
 
194
+ outputs = model.generate(**input_ids, max_new_tokens=32)
195
+ print(tokenizer.decode(outputs[0]))
196
+ ```
197
+ </details>
198
 
199
+ #### Advanced Usage
200
 
201
+ <details>
202
+ <summary>
203
+ Torch compile
204
+ </summary>
205
 
206
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
207
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
208
 
209
+ Note that two warm-up steps are required before the full inference speed is realised:
210
 
211
+ ```python
212
+ import os
213
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
214
 
215
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
216
+ from transformers.cache_utils import HybridCache
217
+ import torch
218
 
219
+ torch.set_float32_matmul_precision("high")
220
 
221
+ # load the model + tokenizer
222
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
223
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
224
+ model.to("cuda")
225
 
226
+ # apply the torch compile transformation
227
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
228
 
229
+ # pre-process inputs
230
+ input_text = "The theory of special relativity states "
231
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
232
+ prompt_length = model_inputs.input_ids.shape[1]
233
 
234
+ # set-up k/v cache
235
+ past_key_values = HybridCache(
236
+ config=model.config,
237
+ max_batch_size=1,
238
+ max_cache_len=model.config.max_position_embeddings,
239
+ device=model.device,
240
+ dtype=model.dtype
241
+ )
242
 
243
+ # enable passing kv cache to generate
244
+ model._supports_cache_class = True
245
+ model.generation_config.cache_implementation = None
246
 
247
+ # two warm-up steps
248
+ for idx in range(2):
249
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
250
+ past_key_values.reset()
 
251
 
252
+ # fast run
253
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
254
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
255
+ ```
256
 
257
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
258
 
259
+ </details>
260
 
261
+ ### Chat Template
262
 
263
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
264
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
265
 
266
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
267
+
268
+ ```py
269
+ from transformers import AutoTokenizer, AutoModelForCausalLM
270
+ import transformers
271
+ import torch
272
 
273
+ model_id = "google/gemma-2-2b-it"
274
+ dtype = torch.bfloat16
275
 
276
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
277
+ model = AutoModelForCausalLM.from_pretrained(
278
+ model_id,
279
+ device_map="cuda",
280
+ torch_dtype=dtype,)
281
 
282
+ chat = [
283
+ { "role": "user", "content": "Write a hello world program" },
284
+ ]
285
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
286
+ ```
287
 
288
+ At this point, the prompt contains the following text:
289
 
290
+ ```
291
+ <bos><start_of_turn>user
292
+ Write a hello world program<end_of_turn>
293
+ <start_of_turn>model
294
+ ```
295
+
296
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
297
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
298
+ the `<end_of_turn>` token.
299
+
300
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
301
+ chat template.
302
+
303
+ After the prompt is ready, generation can be performed like this:
304
 
305
+ ```py
306
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
307
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
308
+ print(tokenizer.decode(outputs[0]))
309
+ ```
310
+
311
+ ### Inputs and outputs
312
+
313
+ * **Input:** Text string, such as a question, a prompt, or a document to be
314
+ summarized.
315
+ * **Output:** Generated English-language text in response to the input, such
316
+ as an answer to a question, or a summary of a document.
317
+
318
+ ### Citation
319
+
320
+ ```none
321
+ @article{gemma_2024,
322
+ title={Gemma},
323
+ url={https://www.kaggle.com/m/3301},
324
+ DOI={10.34740/KAGGLE/M/3301},
325
+ publisher={Kaggle},
326
+ author={Gemma Team},
327
+ year={2024}
328
+ }
329
+ ```
330
+
331
+ ## Model Data
332
+
333
+ Data used for model training and how the data was processed.
334
+
335
+ ### Training Dataset
336
+
337
+ These models were trained on a dataset of text data that includes a wide variety
338
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
339
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
340
+ Here are the key components:
341
 
342
+ * Web Documents: A diverse collection of web text ensures the model is exposed
343
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
344
+ English-language content.
345
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
346
+ programming languages, which improves its ability to generate code or
347
+ understand code-related questions.
348
+ * Mathematics: Training on mathematical text helps the model learn logical
349
+ reasoning, symbolic representation, and to address mathematical queries.
350
 
351
+ The combination of these diverse data sources is crucial for training a powerful
352
+ language model that can handle a wide variety of different tasks and text
353
+ formats.
354
 
355
+ ### Data Preprocessing
356
 
357
+ Here are the key data cleaning and filtering methods applied to the training
358
+ data:
359
+
360
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
361
+ applied at multiple stages in the data preparation process to ensure the
362
+ exclusion of harmful and illegal content.
363
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
364
+ reliable, automated techniques were used to filter out certain personal
365
+ information and other sensitive data from training sets.
366
+ * Additional methods: Filtering based on content quality and safety in line with
367
+ [our policies][safety-policies].
368
+
369
+ ## Implementation Information
370
+
371
+ Details about the model internals.
372
+
373
+ ### Hardware
374
+
375
+ Gemma was trained using the latest generation of
376
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
377
+
378
+ Training large language models requires significant computational power. TPUs,
379
+ designed specifically for matrix operations common in machine learning, offer
380
+ several advantages in this domain:
381
+
382
+ * Performance: TPUs are specifically designed to handle the massive computations
383
+ involved in training LLMs. They can speed up training considerably compared to
384
+ CPUs.
385
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
386
+ for the handling of large models and batch sizes during training. This can
387
+ lead to better model quality.
388
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
389
+ handling the growing complexity of large foundation models. You can distribute
390
+ training across multiple TPU devices for faster and more efficient processing.
391
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
392
+ solution for training large models compared to CPU-based infrastructure,
393
+ especially when considering the time and resources saved due to faster
394
+ training.
395
+ * These advantages are aligned with
396
+ [Google's commitments to operate sustainably][sustainability].
397
+
398
+ ### Software
399
+
400
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
401
+
402
+ JAX allows researchers to take advantage of the latest generation of hardware,
403
+ including TPUs, for faster and more efficient training of large models.
404
+
405
+ ML Pathways is Google's latest effort to build artificially intelligent systems
406
+ capable of generalizing across multiple tasks. This is specially suitable for
407
+ [foundation models][foundation-models], including large language models like
408
+ these ones.
409
+
410
+ Together, JAX and ML Pathways are used as described in the
411
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
412
+ controller' programming model of Jax and Pathways allows a single Python
413
+ process to orchestrate the entire training run, dramatically simplifying the
414
+ development workflow."
415
 
416
+ ## Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
417
 
418
+ Model evaluation metrics and results.
419
+
420
+ ### Benchmark Results
421
+
422
+ These models were evaluated against a large collection of different datasets and
423
+ metrics to cover different aspects of text generation:
424
+
425
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
426
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
427
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
428
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
429
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
430
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
431
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
432
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
433
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
434
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
435
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
436
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
437
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
438
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
439
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
440
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
441
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
442
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
443
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
444
+
445
+ ## Ethics and Safety
446
+
447
+ Ethics and safety evaluation approach and results.
448
+
449
+ ### Evaluation Approach
450
+
451
+ Our evaluation methods include structured evaluations and internal red-teaming
452
+ testing of relevant content policies. Red-teaming was conducted by a number of
453
+ different teams, each with different goals and human evaluation metrics. These
454
+ models were evaluated against a number of different categories relevant to
455
+ ethics and safety, including:
456
+
457
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
458
+ policies including child sexual abuse and exploitation, harassment, violence
459
+ and gore, and hate speech.
460
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
461
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
462
+ * Memorization: Automated evaluation of memorization of training data, including
463
+ the risk of personally identifiable information exposure.
464
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
465
+ biological, radiological, and nuclear (CBRN) risks.
466
+
467
+ ### Evaluation Results
468
+
469
+ The results of ethics and safety evaluations are within acceptable thresholds
470
+ for meeting [internal policies][safety-policies] for categories such as child
471
+ safety, content safety, representational harms, memorization, large-scale harms.
472
+ On top of robust internal evaluations, the results of well-known safety
473
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
474
+ are shown here.
475
+
476
+ #### Gemma 2.0
477
+
478
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
479
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
480
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
481
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
482
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
483
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
484
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
485
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
486
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
487
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
488
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
489
+
490
+ ## Dangerous Capability Evaluations
491
+
492
+ ### Evaluation Approach
493
+
494
+ We evaluated a range of dangerous capabilities:
495
+
496
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
497
+ cybersecurity contexts, we utilized both publicly available
498
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
499
+ well as internally developed CTF challenges. These evaluations measure the
500
+ model's ability to exploit vulnerabilities and gain unauthorized access in
501
+ simulated environments.
502
+ - **Self-proliferation:** We evaluated the model's capacity for
503
+ self-proliferation by designing tasks that involve resource acquisition, code
504
+ execution, and interaction with remote systems. These evaluations assess
505
+ the model's ability to independently replicate and spread.
506
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
507
+ deception, we conducted human persuasion studies. These studies involved
508
+ scenarios that measure the model's ability to build rapport, influence
509
+ beliefs, and elicit specific actions from human participants.
510
+
511
+ ### Evaluation Results
512
+
513
+ All evaluations are described in detail in
514
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
515
+ and in brief in the
516
+ [Gemma 2 technical report][tech-report].
517
+
518
+ <table>
519
+ <thead>
520
+ <tr>
521
+ <th>Evaluation</th>
522
+ <th>Capability</th>
523
+ <th>Gemma 2 IT 27B</th>
524
+ </tr>
525
+ </thead>
526
+ <tbody>
527
+ <tr>
528
+ <td>InterCode-CTF</td>
529
+ <td>Offensive cybersecurity</td>
530
+ <td>34/76 challenges</td>
531
+ </tr>
532
+ <tr>
533
+ <td>Internal CTF</td>
534
+ <td>Offensive cybersecurity</td>
535
+ <td>1/13 challenges</td>
536
+ </tr>
537
+ <tr>
538
+ <td>Hack the Box</td>
539
+ <td>Offensive cybersecurity</td>
540
+ <td>0/13 challenges</td>
541
+ </tr>
542
+ <tr>
543
+ <td>Self-proliferation early warning</td>
544
+ <td>Self-proliferation</td>
545
+ <td>1/10 challenges</td>
546
+ </tr>
547
+ <tr>
548
+ <td>Charm offensive</td>
549
+ <td>Persuasion</td>
550
+ <td>Percent of participants agreeing:
551
+ 81% interesting,
552
+ 75% would speak again,
553
+ 80% made personal connection</td>
554
+ </tr>
555
+ <tr>
556
+ <td>Click Links</td>
557
+ <td>Persuasion</td>
558
+ <td>34% of participants</td>
559
+ </tr>
560
+ <tr>
561
+ <td>Find Info</td>
562
+ <td>Persuasion</td>
563
+ <td>9% of participants</td>
564
+ </tr>
565
+ <tr>
566
+ <td>Run Code</td>
567
+ <td>Persuasion</td>
568
+ <td>11% of participants</td>
569
+ </tr>
570
+ <tr>
571
+ <td>Money talks</td>
572
+ <td>Persuasion</td>
573
+ <td>£3.72 mean donation</td>
574
+ </tr>
575
+ <tr>
576
+ <td>Web of Lies</td>
577
+ <td>Persuasion</td>
578
+ <td>18% mean shift towards correct belief, 1% mean shift towards
579
+ incorrect belief</td>
580
+ </tr>
581
+ </tbody>
582
+ </table>
583
+
584
+ ## Usage and Limitations
585
+
586
+ These models have certain limitations that users should be aware of.
587
+
588
+ ### Intended Usage
589
+
590
+ Open Large Language Models (LLMs) have a wide range of applications across
591
+ various industries and domains. The following list of potential uses is not
592
+ comprehensive. The purpose of this list is to provide contextual information
593
+ about the possible use-cases that the model creators considered as part of model
594
+ training and development.
595
+
596
+ * Content Creation and Communication
597
+ * Text Generation: These models can be used to generate creative text formats
598
+ such as poems, scripts, code, marketing copy, and email drafts.
599
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
600
+ service, virtual assistants, or interactive applications.
601
+ * Text Summarization: Generate concise summaries of a text corpus, research
602
+ papers, or reports.
603
+ * Research and Education
604
+ * Natural Language Processing (NLP) Research: These models can serve as a
605
+ foundation for researchers to experiment with NLP techniques, develop
606
+ algorithms, and contribute to the advancement of the field.
607
+ * Language Learning Tools: Support interactive language learning experiences,
608
+ aiding in grammar correction or providing writing practice.
609
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
610
+ by generating summaries or answering questions about specific topics.
611
+
612
+ ### Limitations
613
+
614
+ * Training Data
615
+ * The quality and diversity of the training data significantly influence the
616
+ model's capabilities. Biases or gaps in the training data can lead to
617
+ limitations in the model's responses.
618
+ * The scope of the training dataset determines the subject areas the model can
619
+ handle effectively.
620
+ * Context and Task Complexity
621
+ * LLMs are better at tasks that can be framed with clear prompts and
622
+ instructions. Open-ended or highly complex tasks might be challenging.
623
+ * A model's performance can be influenced by the amount of context provided
624
+ (longer context generally leads to better outputs, up to a certain point).
625
+ * Language Ambiguity and Nuance
626
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
627
+ nuances, sarcasm, or figurative language.
628
+ * Factual Accuracy
629
+ * LLMs generate responses based on information they learned from their
630
+ training datasets, but they are not knowledge bases. They may generate
631
+ incorrect or outdated factual statements.
632
+ * Common Sense
633
+ * LLMs rely on statistical patterns in language. They might lack the ability
634
+ to apply common sense reasoning in certain situations.
635
+
636
+ ### Ethical Considerations and Risks
637
+
638
+ The development of large language models (LLMs) raises several ethical concerns.
639
+ In creating an open model, we have carefully considered the following:
640
+
641
+ * Bias and Fairness
642
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
643
+ biases embedded in the training material. These models underwent careful
644
+ scrutiny, input data pre-processing described and posterior evaluations
645
+ reported in this card.
646
+ * Misinformation and Misuse
647
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
648
+ * Guidelines are provided for responsible use with the model, see the
649
+ [Responsible Generative AI Toolkit][rai-toolkit].
650
+ * Transparency and Accountability:
651
+ * This model card summarizes details on the models' architecture,
652
+ capabilities, limitations, and evaluation processes.
653
+ * A responsibly developed open model offers the opportunity to share
654
+ innovation by making LLM technology accessible to developers and researchers
655
+ across the AI ecosystem.
656
+
657
+ Risks identified and mitigations:
658
+
659
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
660
+ (using evaluation metrics, human review) and the exploration of de-biasing
661
+ techniques during model training, fine-tuning, and other use cases.
662
+ * Generation of harmful content: Mechanisms and guidelines for content safety
663
+ are essential. Developers are encouraged to exercise caution and implement
664
+ appropriate content safety safeguards based on their specific product policies
665
+ and application use cases.
666
+ * Misuse for malicious purposes: Technical limitations and developer and
667
+ end-user education can help mitigate against malicious applications of LLMs.
668
+ Educational resources and reporting mechanisms for users to flag misuse are
669
+ provided. Prohibited uses of Gemma models are outlined in the
670
+ [Gemma Prohibited Use Policy][prohibited-use].
671
+ * Privacy violations: Models were trained on data filtered for removal of PII
672
+ (Personally Identifiable Information). Developers are encouraged to adhere to
673
+ privacy regulations with privacy-preserving techniques.
674
+
675
+ ### Benefits
676
+
677
+ At the time of release, this family of models provides high-performance open
678
+ large language model implementations designed from the ground up for Responsible
679
+ AI development compared to similarly sized models.
680
+
681
+ Using the benchmark evaluation metrics described in this document, these models
682
+ have shown to provide superior performance to other, comparably-sized open model
683
+ alternatives.
684
+
685
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
686
+ [rai-toolkit]: https://ai.google.dev/responsible
687
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
688
+ [terms]: https://ai.google.dev/gemma/terms
689
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
690
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
691
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
692
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
693
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
694
+ [sustainability]: https://sustainability.google/operating-sustainably/
695
+ [jax]: https://github.com/google/jax
696
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
697
+ [sustainability]: https://sustainability.google/operating-sustainably/
698
+ [foundation-models]: https://ai.google/discover/foundation-models/
699
+ [gemini-2-paper]: https://goo.gle/gemma2report
700
+ [mmlu]: https://arxiv.org/abs/2009.03300
701
+ [hellaswag]: https://arxiv.org/abs/1905.07830
702
+ [piqa]: https://arxiv.org/abs/1911.11641
703
+ [socialiqa]: https://arxiv.org/abs/1904.09728
704
+ [boolq]: https://arxiv.org/abs/1905.10044
705
+ [winogrande]: https://arxiv.org/abs/1907.10641
706
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
707
+ [openbookqa]: https://arxiv.org/abs/1809.02789
708
+ [arc]: https://arxiv.org/abs/1911.01547
709
+ [triviaqa]: https://arxiv.org/abs/1705.03551
710
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
711
+ [humaneval]: https://arxiv.org/abs/2107.03374
712
+ [mbpp]: https://arxiv.org/abs/2108.07732
713
+ [gsm8k]: https://arxiv.org/abs/2110.14168
714
+ [realtox]: https://arxiv.org/abs/2009.11462
715
+ [bold]: https://arxiv.org/abs/2101.11718
716
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
717
+ [bbq]: https://arxiv.org/abs/2110.08193v2
718
+ [winogender]: https://arxiv.org/abs/1804.09301
719
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
720
+ [winobias]: https://arxiv.org/abs/1804.06876
721
+ [math]: https://arxiv.org/abs/2103.03874
722
+ [agieval]: https://arxiv.org/abs/2304.06364
723
+ [drop]: https://arxiv.org/abs/1903.00161
724
+ [big-bench]: https://arxiv.org/abs/2206.04615
725
+ [toxigen]: https://arxiv.org/abs/2203.09509
726
+ [eval-danger]: https://arxiv.org/abs/2403.13793
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": 50.0,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": [
11
+ 1,
12
+ 107
13
+ ],
14
+ "final_logit_softcapping": 30.0,
15
+ "head_dim": 256,
16
+ "hidden_act": "gelu_pytorch_tanh",
17
+ "hidden_activation": "gelu_pytorch_tanh",
18
+ "hidden_size": 2304,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 9216,
21
+ "max_position_embeddings": 8192,
22
+ "model_type": "gemma2",
23
+ "num_attention_heads": 8,
24
+ "num_hidden_layers": 26,
25
+ "num_key_value_heads": 4,
26
+ "pad_token_id": 0,
27
+ "query_pre_attn_scalar": 256,
28
+ "rms_norm_eps": 1e-06,
29
+ "rope_theta": 10000.0,
30
+ "sliding_window": 4096,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.42.4",
33
+ "use_cache": true,
34
+ "vocab_size": 256000
35
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": [
6
+ 1,
7
+ 107
8
+ ],
9
+ "pad_token_id": 0,
10
+ "transformers_version": "4.42.4"
11
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:532d792c9178805064170a3ec485b7dedbfccc6fd297b92c31a6091b6c7e41bf
3
+ size 4988025760
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6d9ce84db398fb6e0191f91542e5da0a73da2cb695e172a24edc2146dc8d20
3
+ size 240691728
model.safetensors.index.json ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5228683776
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.norm.weight": "model-00002-of-00002.safetensors"
294
+ }
295
+ }
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5f7eee611703c5ce5d1eee32d9cdcfe465647b8aff0c1dfb3bed7ad7dbb05060
3
- size 34362873
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
3
+ size 17525357
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json CHANGED
@@ -2003,7 +2003,6 @@
2003
  "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
2004
  "clean_up_tokenization_spaces": false,
2005
  "eos_token": "<eos>",
2006
- "extra_special_tokens": {},
2007
  "model_max_length": 1000000000000000019884624838656,
2008
  "pad_token": "<pad>",
2009
  "sp_model_kwargs": {},
 
2003
  "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
2004
  "clean_up_tokenization_spaces": false,
2005
  "eos_token": "<eos>",
 
2006
  "model_max_length": 1000000000000000019884624838656,
2007
  "pad_token": "<pad>",
2008
  "sp_model_kwargs": {},