sahil-everlign
commited on
Commit
•
9a66d54
1
Parent(s):
4b5e0de
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: layoutlmv2-base-uncased_finetuned_docvqa_on_1200
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# layoutlmv2-base-uncased_finetuned_docvqa_on_1200
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 4.6669
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 20
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
50 |
+
| 5.26 | 0.2212 | 50 | 4.5357 |
|
51 |
+
| 4.3552 | 0.4425 | 100 | 4.0284 |
|
52 |
+
| 4.0237 | 0.6637 | 150 | 3.7961 |
|
53 |
+
| 3.7428 | 0.8850 | 200 | 3.5727 |
|
54 |
+
| 3.6213 | 1.1062 | 250 | 3.7866 |
|
55 |
+
| 3.2334 | 1.3274 | 300 | 3.1121 |
|
56 |
+
| 3.0382 | 1.5487 | 350 | 2.9537 |
|
57 |
+
| 2.8353 | 1.7699 | 400 | 2.8318 |
|
58 |
+
| 2.4759 | 1.9912 | 450 | 2.6736 |
|
59 |
+
| 1.9881 | 2.2124 | 500 | 3.0365 |
|
60 |
+
| 1.9279 | 2.4336 | 550 | 2.4144 |
|
61 |
+
| 1.9336 | 2.6549 | 600 | 2.1754 |
|
62 |
+
| 1.772 | 2.8761 | 650 | 2.1086 |
|
63 |
+
| 1.5504 | 3.0973 | 700 | 2.7056 |
|
64 |
+
| 1.4621 | 3.3186 | 750 | 2.8930 |
|
65 |
+
| 1.4227 | 3.5398 | 800 | 2.4620 |
|
66 |
+
| 1.3924 | 3.7611 | 850 | 2.1275 |
|
67 |
+
| 1.3063 | 3.9823 | 900 | 2.2443 |
|
68 |
+
| 1.0697 | 4.2035 | 950 | 2.6747 |
|
69 |
+
| 0.9476 | 4.4248 | 1000 | 2.7229 |
|
70 |
+
| 1.0868 | 4.6460 | 1050 | 2.9257 |
|
71 |
+
| 0.8726 | 4.8673 | 1100 | 2.7007 |
|
72 |
+
| 0.9436 | 5.0885 | 1150 | 2.8765 |
|
73 |
+
| 0.7219 | 5.3097 | 1200 | 2.5301 |
|
74 |
+
| 0.6919 | 5.5310 | 1250 | 2.9763 |
|
75 |
+
| 0.491 | 5.7522 | 1300 | 3.1198 |
|
76 |
+
| 0.5382 | 5.9735 | 1350 | 3.0883 |
|
77 |
+
| 0.462 | 6.1947 | 1400 | 3.2955 |
|
78 |
+
| 0.6533 | 6.4159 | 1450 | 3.3370 |
|
79 |
+
| 0.6477 | 6.6372 | 1500 | 3.3794 |
|
80 |
+
| 0.4849 | 6.8584 | 1550 | 3.3798 |
|
81 |
+
| 0.4881 | 7.0796 | 1600 | 3.2085 |
|
82 |
+
| 0.3952 | 7.3009 | 1650 | 3.2885 |
|
83 |
+
| 0.161 | 7.5221 | 1700 | 3.6201 |
|
84 |
+
| 0.6895 | 7.7434 | 1750 | 3.4253 |
|
85 |
+
| 0.4638 | 7.9646 | 1800 | 3.4787 |
|
86 |
+
| 0.2186 | 8.1858 | 1850 | 3.7668 |
|
87 |
+
| 0.2531 | 8.4071 | 1900 | 3.7723 |
|
88 |
+
| 0.3971 | 8.6283 | 1950 | 3.7131 |
|
89 |
+
| 0.5665 | 8.8496 | 2000 | 3.5627 |
|
90 |
+
| 0.3377 | 9.0708 | 2050 | 3.1885 |
|
91 |
+
| 0.208 | 9.2920 | 2100 | 3.3734 |
|
92 |
+
| 0.1775 | 9.5133 | 2150 | 4.0609 |
|
93 |
+
| 0.3295 | 9.7345 | 2200 | 3.7039 |
|
94 |
+
| 0.2627 | 9.9558 | 2250 | 3.6028 |
|
95 |
+
| 0.1988 | 10.1770 | 2300 | 3.6288 |
|
96 |
+
| 0.1772 | 10.3982 | 2350 | 3.5394 |
|
97 |
+
| 0.0719 | 10.6195 | 2400 | 4.2068 |
|
98 |
+
| 0.1629 | 10.8407 | 2450 | 4.2701 |
|
99 |
+
| 0.1921 | 11.0619 | 2500 | 4.0440 |
|
100 |
+
| 0.164 | 11.2832 | 2550 | 3.9099 |
|
101 |
+
| 0.1281 | 11.5044 | 2600 | 3.7753 |
|
102 |
+
| 0.0586 | 11.7257 | 2650 | 3.9491 |
|
103 |
+
| 0.1436 | 11.9469 | 2700 | 4.2734 |
|
104 |
+
| 0.0405 | 12.1681 | 2750 | 4.4347 |
|
105 |
+
| 0.0664 | 12.3894 | 2800 | 4.2338 |
|
106 |
+
| 0.0864 | 12.6106 | 2850 | 3.8694 |
|
107 |
+
| 0.103 | 12.8319 | 2900 | 3.9883 |
|
108 |
+
| 0.0456 | 13.0531 | 2950 | 4.5064 |
|
109 |
+
| 0.05 | 13.2743 | 3000 | 4.1434 |
|
110 |
+
| 0.0436 | 13.4956 | 3050 | 4.3928 |
|
111 |
+
| 0.0798 | 13.7168 | 3100 | 4.5576 |
|
112 |
+
| 0.0919 | 13.9381 | 3150 | 4.4114 |
|
113 |
+
| 0.0988 | 14.1593 | 3200 | 4.4998 |
|
114 |
+
| 0.0332 | 14.3805 | 3250 | 4.3948 |
|
115 |
+
| 0.0326 | 14.6018 | 3300 | 4.3823 |
|
116 |
+
| 0.0434 | 14.8230 | 3350 | 4.2468 |
|
117 |
+
| 0.0926 | 15.0442 | 3400 | 4.3909 |
|
118 |
+
| 0.027 | 15.2655 | 3450 | 4.5539 |
|
119 |
+
| 0.047 | 15.4867 | 3500 | 4.5799 |
|
120 |
+
| 0.0189 | 15.7080 | 3550 | 4.3943 |
|
121 |
+
| 0.0096 | 15.9292 | 3600 | 4.4218 |
|
122 |
+
| 0.0467 | 16.1504 | 3650 | 4.6181 |
|
123 |
+
| 0.0144 | 16.3717 | 3700 | 4.5609 |
|
124 |
+
| 0.0339 | 16.5929 | 3750 | 4.5994 |
|
125 |
+
| 0.074 | 16.8142 | 3800 | 4.5598 |
|
126 |
+
| 0.018 | 17.0354 | 3850 | 4.5528 |
|
127 |
+
| 0.0043 | 17.2566 | 3900 | 4.6133 |
|
128 |
+
| 0.0179 | 17.4779 | 3950 | 4.5414 |
|
129 |
+
| 0.039 | 17.6991 | 4000 | 4.4690 |
|
130 |
+
| 0.0134 | 17.9204 | 4050 | 4.4789 |
|
131 |
+
| 0.0094 | 18.1416 | 4100 | 4.5317 |
|
132 |
+
| 0.004 | 18.3628 | 4150 | 4.5711 |
|
133 |
+
| 0.0064 | 18.5841 | 4200 | 4.6237 |
|
134 |
+
| 0.0505 | 18.8053 | 4250 | 4.6148 |
|
135 |
+
| 0.0312 | 19.0265 | 4300 | 4.6302 |
|
136 |
+
| 0.0127 | 19.2478 | 4350 | 4.6577 |
|
137 |
+
| 0.0169 | 19.4690 | 4400 | 4.6685 |
|
138 |
+
| 0.0192 | 19.6903 | 4450 | 4.6626 |
|
139 |
+
| 0.0232 | 19.9115 | 4500 | 4.6669 |
|
140 |
+
|
141 |
+
|
142 |
+
### Framework versions
|
143 |
+
|
144 |
+
- Transformers 4.44.2
|
145 |
+
- Pytorch 2.4.1+cu121
|
146 |
+
- Datasets 3.0.1
|
147 |
+
- Tokenizers 0.19.1
|