sahil239 commited on
Commit
4da4de4
·
1 Parent(s): 7810626

update read me

Browse files
Files changed (1) hide show
  1. README.md +116 -152
README.md CHANGED
@@ -1,207 +1,171 @@
1
- ---
2
- base_model: tiiuae/falcon-rw-1b
3
- library_name: peft
4
- pipeline_tag: text-generation
5
- tags:
6
- - base_model:adapter:tiiuae/falcon-rw-1b
7
- - lora
8
- - transformers
9
- ---
10
-
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
 
17
  ## Model Details
18
 
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
34
 
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
 
41
  ## Uses
42
 
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
 
55
- [More Information Needed]
 
 
 
56
 
57
- ### Out-of-Scope Use
 
58
 
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
60
 
61
- [More Information Needed]
 
 
62
 
63
  ## Bias, Risks, and Limitations
64
 
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
 
67
- [More Information Needed]
68
 
69
- ### Recommendations
70
 
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
 
75
  ## How to Get Started with the Model
76
 
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
 
87
- [More Information Needed]
 
 
88
 
89
- ### Training Procedure
 
90
 
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
 
 
97
 
98
- #### Training Hyperparameters
 
99
 
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
101
 
102
- #### Speeds, Sizes, Times [optional]
103
 
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
105
 
106
- [More Information Needed]
 
 
 
107
 
108
  ## Evaluation
109
 
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
 
118
- [More Information Needed]
 
119
 
120
- #### Factors
 
 
121
 
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
123
 
124
- [More Information Needed]
 
 
125
 
126
- #### Metrics
127
 
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
 
146
  ## Environmental Impact
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
 
184
- **APA:**
185
 
186
- [More Information Needed]
 
 
187
 
188
- ## Glossary [optional]
 
 
 
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
191
 
192
- [More Information Needed]
 
 
 
193
 
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
197
 
198
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
 
203
 
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.16.0
 
 
1
+ # Falcon LoRA Adapter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ## Model Details
4
 
5
+ **Model Description**
6
+ This is a LoRA adapter for the Falcon architecture, fine-tuned on domain-specific chat-style data for enhanced language understanding and generation. It was built using the PEFT library with 4-bit quantization.
 
 
 
7
 
8
+ - **Developed by**: Sahil Desai
9
+ - **Funded by**: Self-funded
10
+ - **Shared by**: Sahil Desai (https://huggingface.co/sahildesai)
11
+ - **Model type**: LoRA Adapter (Low-Rank Adaptation)
12
+ - **Language(s) (NLP)**: English
13
+ - **License**: apache-2.0
14
+ - **Finetuned from model**: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
15
 
16
+ ## Model Sources
17
 
18
+ - **Repository**: https://huggingface.co/sahildesai/falcon-lora
19
+ - **Paper** (optional): None
20
+ - **Demo** (optional): None
 
 
21
 
22
  ## Uses
23
 
24
+ **Direct Use**
25
+ This adapter is intended to be used with Falcon base models to improve instruction-following and chatbot-like behavior on English-language prompts. It is suitable for:
 
 
 
 
 
 
 
 
 
26
 
27
+ - Chatbots
28
+ - AI Assistants
29
+ - Educational QA bots
30
+ - Conversational fine-tuning
31
 
32
+ **Downstream Use**
33
+ Can be further fine-tuned for more specific domains such as finance, DIY assistance, or medical Q&A, depending on your dataset.
34
 
35
+ **Out-of-Scope Use**
36
+ Not suitable for real-time critical decision-making tasks such as:
37
 
38
+ - Legal, financial, or medical advice
39
+ - Autonomous systems or safety-critical applications
40
+ - Multi-lingual tasks (adapter is English-focused)
41
 
42
  ## Bias, Risks, and Limitations
43
 
44
+ As with all large language models, outputs may reflect biases in the training data. The adapter may reproduce toxic, biased, or incorrect information and should be monitored in production use.
45
 
46
+ ## Recommendations
47
 
48
+ Users should:
49
 
50
+ - Validate outputs before use in high-impact contexts
51
+ - Avoid use in applications requiring factual correctness without post-processing
52
+ - Consider fine-tuning with RLHF or safety filters for production deployment
53
 
54
  ## How to Get Started with the Model
55
 
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
+ from peft import PeftModel, PeftConfig
 
 
 
 
 
 
59
 
60
+ # Load base Falcon model and tokenizer
61
+ base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-7b", device_map="auto", trust_remote_code=True)
62
+ tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
63
 
64
+ # Load LoRA adapter
65
+ adapter = PeftModel.from_pretrained(base_model, "sahildesai/falcon-lora")
66
 
67
+ # Run inference
68
+ inputs = tokenizer("Explain black holes to a 12-year-old.", return_tensors="pt").to("cuda")
69
+ outputs = adapter.generate(**inputs, max_new_tokens=100)
70
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
71
+ ```
72
 
73
+ ## Training Details
74
 
75
+ **Training Data**
76
+ The model was fine-tuned on a subset of conversational and instruction-following datasets derived from public chat data.
77
 
78
+ **Preprocessing**
79
+ - Input prompts were tokenized using Falcon's tokenizer
80
+ - Max sequence length: 2048
81
+ - Packed multiple conversations per sample when possible
82
 
83
+ **Training Hyperparameters**
84
 
85
+ - **Training regime**: LoRA with QLoRA (4-bit) using PEFT
86
+ - **Batch size**: 64
87
+ - **Epochs**: 1
88
+ - **Learning rate**: 2e-4
89
+ - **LoRA rank**: 8
90
+ - **LoRA alpha**: 16
91
+ - **Target modules**: `query_key_value`
92
 
93
+ **Speeds, Sizes, Times**
94
+ - Model type: Falcon 7B
95
+ - Adapter size: ~80MB (`adapter_model.bin`)
96
+ - Training time: ~2.5 hours on Colab A100 40GB
97
 
98
  ## Evaluation
99
 
100
+ **Testing Data**
101
+ Subset of instruction-following prompts held out during training.
 
 
 
 
 
102
 
103
+ **Factors**
104
+ Evaluation included:
105
 
106
+ - Prompt quality
107
+ - Grammar & fluency
108
+ - Relevance of response
109
 
110
+ **Metrics**
111
+ - Human judgment for coherence and helpfulness
112
+ - No automatic BLEU/ROUGE applied
113
 
114
+ **Results**
115
+ - Improved instruction adherence over base model in small-scale testing
116
+ - Responses were more direct and less verbose
117
 
118
+ ## Summary
119
 
120
+ **Model Examination (optional)**
121
+ A sample comparison between the base and adapter model showed that the adapter improved clarity and tone in responses.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  ## Environmental Impact
124
 
125
+ **Hardware Type**: NVIDIA A100 40GB (Google Colab Pro)
126
+ **Hours used**: ~2.5 hours
127
+ **Cloud Provider**: Google
128
+ **Compute Region**: US
129
+ **Carbon Emitted**: ~2.1 kg CO₂ (estimated via ML CO₂ calculator)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
+ ## Technical Specifications
132
 
133
+ **Model Architecture and Objective**
134
+ - Falcon 7B base architecture
135
+ - Fine-tuned with LoRA on instruction-following tasks
136
 
137
+ **Compute Infrastructure**
138
+ - PEFT + bitsandbytes (4-bit quantization)
139
+ - Transformers 4.38+
140
+ - Accelerate, PyTorch, and Hugging Face ecosystem
141
 
142
+ **Hardware**
143
+ - Single A100 GPU
144
 
145
+ **Software**
146
+ - `transformers==4.38.2`
147
+ - `peft==0.16.0`
148
+ - `accelerate`, `datasets`, `bitsandbytes`
149
 
150
+ ## Citation
151
 
152
+ **BibTeX**:
153
 
154
+ ```bibtex
155
+ @misc{desai2025falconlora,
156
+ title={Falcon LoRA Adapter},
157
+ author={Sahil Desai},
158
+ year={2025},
159
+ url={https://huggingface.co/sahildesai/falcon-lora}
160
+ }
161
+ ```
162
 
163
+ ## Glossary
164
 
165
+ - **LoRA**: Low-Rank Adaptation – technique for fine-tuning large models efficiently
166
+ - **PEFT**: Parameter-Efficient Fine-Tuning – umbrella of efficient tuning methods
167
 
168
+ ## More Information / Contact
 
169
 
170
+ **Model Card Authors**: Sahil Desai
171
+ **Model Card Contact**: https://sahildesai.dev / [Hugging Face profile]