update read me
Browse files
README.md
CHANGED
|
@@ -1,207 +1,171 @@
|
|
| 1 |
-
|
| 2 |
-
base_model: tiiuae/falcon-rw-1b
|
| 3 |
-
library_name: peft
|
| 4 |
-
pipeline_tag: text-generation
|
| 5 |
-
tags:
|
| 6 |
-
- base_model:adapter:tiiuae/falcon-rw-1b
|
| 7 |
-
- lora
|
| 8 |
-
- transformers
|
| 9 |
-
---
|
| 10 |
-
|
| 11 |
-
# Model Card for Model ID
|
| 12 |
-
|
| 13 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
-
|
| 15 |
-
|
| 16 |
|
| 17 |
## Model Details
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
-
|
| 23 |
-
|
| 24 |
|
| 25 |
-
- **Developed by
|
| 26 |
-
- **Funded by
|
| 27 |
-
- **Shared by
|
| 28 |
-
- **Model type
|
| 29 |
-
- **Language(s) (NLP)
|
| 30 |
-
- **License
|
| 31 |
-
- **Finetuned from model [
|
| 32 |
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
- **
|
| 38 |
-
- **Paper [optional]:** [More Information Needed]
|
| 39 |
-
- **Demo [optional]:** [More Information Needed]
|
| 40 |
|
| 41 |
## Uses
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
### Direct Use
|
| 46 |
-
|
| 47 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 48 |
-
|
| 49 |
-
[More Information Needed]
|
| 50 |
-
|
| 51 |
-
### Downstream Use [optional]
|
| 52 |
-
|
| 53 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
| 62 |
|
| 63 |
## Bias, Risks, and Limitations
|
| 64 |
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
|
| 75 |
## How to Get Started with the Model
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
## Training Details
|
| 82 |
-
|
| 83 |
-
### Training Data
|
| 84 |
-
|
| 85 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
|
|
|
| 97 |
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
## Evaluation
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
### Testing Data, Factors & Metrics
|
| 113 |
-
|
| 114 |
-
#### Testing Data
|
| 115 |
-
|
| 116 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 117 |
|
| 118 |
-
|
|
|
|
| 119 |
|
| 120 |
-
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
[More Information Needed]
|
| 131 |
-
|
| 132 |
-
### Results
|
| 133 |
-
|
| 134 |
-
[More Information Needed]
|
| 135 |
-
|
| 136 |
-
#### Summary
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
## Model Examination [optional]
|
| 141 |
-
|
| 142 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 143 |
-
|
| 144 |
-
[More Information Needed]
|
| 145 |
|
| 146 |
## Environmental Impact
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
- **Hours used:** [More Information Needed]
|
| 154 |
-
- **Cloud Provider:** [More Information Needed]
|
| 155 |
-
- **Compute Region:** [More Information Needed]
|
| 156 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 157 |
-
|
| 158 |
-
## Technical Specifications [optional]
|
| 159 |
-
|
| 160 |
-
### Model Architecture and Objective
|
| 161 |
-
|
| 162 |
-
[More Information Needed]
|
| 163 |
-
|
| 164 |
-
### Compute Infrastructure
|
| 165 |
-
|
| 166 |
-
[More Information Needed]
|
| 167 |
-
|
| 168 |
-
#### Hardware
|
| 169 |
-
|
| 170 |
-
[More Information Needed]
|
| 171 |
-
|
| 172 |
-
#### Software
|
| 173 |
-
|
| 174 |
-
[More Information Needed]
|
| 175 |
-
|
| 176 |
-
## Citation [optional]
|
| 177 |
-
|
| 178 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 179 |
-
|
| 180 |
-
**BibTeX:**
|
| 181 |
-
|
| 182 |
-
[More Information Needed]
|
| 183 |
|
| 184 |
-
|
| 185 |
|
| 186 |
-
|
|
|
|
|
|
|
| 187 |
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
|
|
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
-
##
|
| 195 |
|
| 196 |
-
|
| 197 |
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
|
|
|
| 203 |
|
| 204 |
-
|
| 205 |
-
### Framework versions
|
| 206 |
|
| 207 |
-
|
|
|
|
|
|
| 1 |
+
# Falcon LoRA Adapter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
## Model Details
|
| 4 |
|
| 5 |
+
**Model Description**
|
| 6 |
+
This is a LoRA adapter for the Falcon architecture, fine-tuned on domain-specific chat-style data for enhanced language understanding and generation. It was built using the PEFT library with 4-bit quantization.
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
- **Developed by**: Sahil Desai
|
| 9 |
+
- **Funded by**: Self-funded
|
| 10 |
+
- **Shared by**: Sahil Desai (https://huggingface.co/sahildesai)
|
| 11 |
+
- **Model type**: LoRA Adapter (Low-Rank Adaptation)
|
| 12 |
+
- **Language(s) (NLP)**: English
|
| 13 |
+
- **License**: apache-2.0
|
| 14 |
+
- **Finetuned from model**: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
|
| 15 |
|
| 16 |
+
## Model Sources
|
| 17 |
|
| 18 |
+
- **Repository**: https://huggingface.co/sahildesai/falcon-lora
|
| 19 |
+
- **Paper** (optional): None
|
| 20 |
+
- **Demo** (optional): None
|
|
|
|
|
|
|
| 21 |
|
| 22 |
## Uses
|
| 23 |
|
| 24 |
+
**Direct Use**
|
| 25 |
+
This adapter is intended to be used with Falcon base models to improve instruction-following and chatbot-like behavior on English-language prompts. It is suitable for:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
- Chatbots
|
| 28 |
+
- AI Assistants
|
| 29 |
+
- Educational QA bots
|
| 30 |
+
- Conversational fine-tuning
|
| 31 |
|
| 32 |
+
**Downstream Use**
|
| 33 |
+
Can be further fine-tuned for more specific domains such as finance, DIY assistance, or medical Q&A, depending on your dataset.
|
| 34 |
|
| 35 |
+
**Out-of-Scope Use**
|
| 36 |
+
Not suitable for real-time critical decision-making tasks such as:
|
| 37 |
|
| 38 |
+
- Legal, financial, or medical advice
|
| 39 |
+
- Autonomous systems or safety-critical applications
|
| 40 |
+
- Multi-lingual tasks (adapter is English-focused)
|
| 41 |
|
| 42 |
## Bias, Risks, and Limitations
|
| 43 |
|
| 44 |
+
As with all large language models, outputs may reflect biases in the training data. The adapter may reproduce toxic, biased, or incorrect information and should be monitored in production use.
|
| 45 |
|
| 46 |
+
## Recommendations
|
| 47 |
|
| 48 |
+
Users should:
|
| 49 |
|
| 50 |
+
- Validate outputs before use in high-impact contexts
|
| 51 |
+
- Avoid use in applications requiring factual correctness without post-processing
|
| 52 |
+
- Consider fine-tuning with RLHF or safety filters for production deployment
|
| 53 |
|
| 54 |
## How to Get Started with the Model
|
| 55 |
|
| 56 |
+
```python
|
| 57 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 58 |
+
from peft import PeftModel, PeftConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Load base Falcon model and tokenizer
|
| 61 |
+
base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-7b", device_map="auto", trust_remote_code=True)
|
| 62 |
+
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
|
| 63 |
|
| 64 |
+
# Load LoRA adapter
|
| 65 |
+
adapter = PeftModel.from_pretrained(base_model, "sahildesai/falcon-lora")
|
| 66 |
|
| 67 |
+
# Run inference
|
| 68 |
+
inputs = tokenizer("Explain black holes to a 12-year-old.", return_tensors="pt").to("cuda")
|
| 69 |
+
outputs = adapter.generate(**inputs, max_new_tokens=100)
|
| 70 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 71 |
+
```
|
| 72 |
|
| 73 |
+
## Training Details
|
| 74 |
|
| 75 |
+
**Training Data**
|
| 76 |
+
The model was fine-tuned on a subset of conversational and instruction-following datasets derived from public chat data.
|
| 77 |
|
| 78 |
+
**Preprocessing**
|
| 79 |
+
- Input prompts were tokenized using Falcon's tokenizer
|
| 80 |
+
- Max sequence length: 2048
|
| 81 |
+
- Packed multiple conversations per sample when possible
|
| 82 |
|
| 83 |
+
**Training Hyperparameters**
|
| 84 |
|
| 85 |
+
- **Training regime**: LoRA with QLoRA (4-bit) using PEFT
|
| 86 |
+
- **Batch size**: 64
|
| 87 |
+
- **Epochs**: 1
|
| 88 |
+
- **Learning rate**: 2e-4
|
| 89 |
+
- **LoRA rank**: 8
|
| 90 |
+
- **LoRA alpha**: 16
|
| 91 |
+
- **Target modules**: `query_key_value`
|
| 92 |
|
| 93 |
+
**Speeds, Sizes, Times**
|
| 94 |
+
- Model type: Falcon 7B
|
| 95 |
+
- Adapter size: ~80MB (`adapter_model.bin`)
|
| 96 |
+
- Training time: ~2.5 hours on Colab A100 40GB
|
| 97 |
|
| 98 |
## Evaluation
|
| 99 |
|
| 100 |
+
**Testing Data**
|
| 101 |
+
Subset of instruction-following prompts held out during training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
**Factors**
|
| 104 |
+
Evaluation included:
|
| 105 |
|
| 106 |
+
- Prompt quality
|
| 107 |
+
- Grammar & fluency
|
| 108 |
+
- Relevance of response
|
| 109 |
|
| 110 |
+
**Metrics**
|
| 111 |
+
- Human judgment for coherence and helpfulness
|
| 112 |
+
- No automatic BLEU/ROUGE applied
|
| 113 |
|
| 114 |
+
**Results**
|
| 115 |
+
- Improved instruction adherence over base model in small-scale testing
|
| 116 |
+
- Responses were more direct and less verbose
|
| 117 |
|
| 118 |
+
## Summary
|
| 119 |
|
| 120 |
+
**Model Examination (optional)**
|
| 121 |
+
A sample comparison between the base and adapter model showed that the adapter improved clarity and tone in responses.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
## Environmental Impact
|
| 124 |
|
| 125 |
+
**Hardware Type**: NVIDIA A100 40GB (Google Colab Pro)
|
| 126 |
+
**Hours used**: ~2.5 hours
|
| 127 |
+
**Cloud Provider**: Google
|
| 128 |
+
**Compute Region**: US
|
| 129 |
+
**Carbon Emitted**: ~2.1 kg CO₂ (estimated via ML CO₂ calculator)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
## Technical Specifications
|
| 132 |
|
| 133 |
+
**Model Architecture and Objective**
|
| 134 |
+
- Falcon 7B base architecture
|
| 135 |
+
- Fine-tuned with LoRA on instruction-following tasks
|
| 136 |
|
| 137 |
+
**Compute Infrastructure**
|
| 138 |
+
- PEFT + bitsandbytes (4-bit quantization)
|
| 139 |
+
- Transformers 4.38+
|
| 140 |
+
- Accelerate, PyTorch, and Hugging Face ecosystem
|
| 141 |
|
| 142 |
+
**Hardware**
|
| 143 |
+
- Single A100 GPU
|
| 144 |
|
| 145 |
+
**Software**
|
| 146 |
+
- `transformers==4.38.2`
|
| 147 |
+
- `peft==0.16.0`
|
| 148 |
+
- `accelerate`, `datasets`, `bitsandbytes`
|
| 149 |
|
| 150 |
+
## Citation
|
| 151 |
|
| 152 |
+
**BibTeX**:
|
| 153 |
|
| 154 |
+
```bibtex
|
| 155 |
+
@misc{desai2025falconlora,
|
| 156 |
+
title={Falcon LoRA Adapter},
|
| 157 |
+
author={Sahil Desai},
|
| 158 |
+
year={2025},
|
| 159 |
+
url={https://huggingface.co/sahildesai/falcon-lora}
|
| 160 |
+
}
|
| 161 |
+
```
|
| 162 |
|
| 163 |
+
## Glossary
|
| 164 |
|
| 165 |
+
- **LoRA**: Low-Rank Adaptation – technique for fine-tuning large models efficiently
|
| 166 |
+
- **PEFT**: Parameter-Efficient Fine-Tuning – umbrella of efficient tuning methods
|
| 167 |
|
| 168 |
+
## More Information / Contact
|
|
|
|
| 169 |
|
| 170 |
+
**Model Card Authors**: Sahil Desai
|
| 171 |
+
**Model Card Contact**: https://sahildesai.dev / [Hugging Face profile]
|