saifhmb commited on
Commit
255d174
1 Parent(s): ecfa8a0

pushing model to the Hugging Face Hub

Browse files
Files changed (4) hide show
  1. README.md +122 -0
  2. config.json +41 -0
  3. confusion_matrix.png +0 -0
  4. skops-s5qwyvyp.pkl +3 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: skops-s5qwyvyp.pkl
9
+ widget:
10
+ - structuredData:
11
+ Bene_Country:
12
+ - COMOROS
13
+ - CANADA
14
+ - MOROCCO
15
+ Sender_Country:
16
+ - SRI-LANKA
17
+ - USA
18
+ - USA
19
+ Transaction_Type:
20
+ - MOVE-FUNDS
21
+ - PAY-CHECK
22
+ - MAKE-PAYMENT
23
+ USD_amount:
24
+ - 598.31
25
+ - 398.72
26
+ - 87.03
27
+ ---
28
+
29
+ # Model description
30
+
31
+ [More Information Needed]
32
+
33
+ ## Intended uses & limitations
34
+
35
+ [More Information Needed]
36
+
37
+ ## Training Procedure
38
+
39
+ [More Information Needed]
40
+
41
+ ### Hyperparameters
42
+
43
+ <details>
44
+ <summary> Click to expand </summary>
45
+
46
+ | Hyperparameter | Value |
47
+ |----------------------------------------------|---------------------------------------------------------------------------|
48
+ | memory | |
49
+ | steps | [('preprocessorAll', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))])), ('classifier', GaussianNB())] |
50
+ | verbose | False |
51
+ | preprocessorAll | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))]) |
52
+ | classifier | GaussianNB() |
53
+ | preprocessorAll__n_jobs | |
54
+ | preprocessorAll__remainder | passthrough |
55
+ | preprocessorAll__sparse_threshold | 0.3 |
56
+ | preprocessorAll__transformer_weights | |
57
+ | preprocessorAll__transformers | [('cat', Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]), ['Sender_Country', 'Bene_Country', 'Transaction_Type']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['USD_amount'], dtype='object'))] |
58
+ | preprocessorAll__verbose | False |
59
+ | preprocessorAll__verbose_feature_names_out | True |
60
+ | preprocessorAll__cat | Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]) |
61
+ | preprocessorAll__num | Pipeline(steps=[('scale', StandardScaler())]) |
62
+ | preprocessorAll__cat__memory | |
63
+ | preprocessorAll__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))] |
64
+ | preprocessorAll__cat__verbose | False |
65
+ | preprocessorAll__cat__onehot | OneHotEncoder(handle_unknown='ignore', sparse_output=False) |
66
+ | preprocessorAll__cat__onehot__categories | auto |
67
+ | preprocessorAll__cat__onehot__drop | |
68
+ | preprocessorAll__cat__onehot__dtype | <class 'numpy.float64'> |
69
+ | preprocessorAll__cat__onehot__handle_unknown | ignore |
70
+ | preprocessorAll__cat__onehot__max_categories | |
71
+ | preprocessorAll__cat__onehot__min_frequency | |
72
+ | preprocessorAll__cat__onehot__sparse | deprecated |
73
+ | preprocessorAll__cat__onehot__sparse_output | False |
74
+ | preprocessorAll__num__memory | |
75
+ | preprocessorAll__num__steps | [('scale', StandardScaler())] |
76
+ | preprocessorAll__num__verbose | False |
77
+ | preprocessorAll__num__scale | StandardScaler() |
78
+ | preprocessorAll__num__scale__copy | True |
79
+ | preprocessorAll__num__scale__with_mean | True |
80
+ | preprocessorAll__num__scale__with_std | True |
81
+ | classifier__priors | |
82
+ | classifier__var_smoothing | 1e-09 |
83
+
84
+ </details>
85
+
86
+ ### Model Plot
87
+
88
+ <style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessorAll: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-30" type="checkbox" ><label for="sk-estimator-id-30" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;, &#x27;Transaction_Type&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-31" type="checkbox" ><label for="sk-estimator-id-31" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-32" type="checkbox" ><label for="sk-estimator-id-32" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-33" type="checkbox" ><label for="sk-estimator-id-33" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-34" type="checkbox" ><label for="sk-estimator-id-34" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-35" type="checkbox" ><label for="sk-estimator-id-35" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-36" type="checkbox" ><label for="sk-estimator-id-36" class="sk-toggleable__label sk-toggleable__label-arrow">GaussianNB</label><div class="sk-toggleable__content"><pre>GaussianNB()</pre></div></div></div></div></div></div></div>
89
+
90
+ ## Evaluation Results
91
+
92
+ | Metric | Value |
93
+ |----------|----------|
94
+ | accuracy | 0.794582 |
95
+
96
+ ### Confusion Matrix
97
+
98
+ ![Confusion Matrix](confusion_matrix.png)
99
+
100
+ # How to Get Started with the Model
101
+
102
+ [More Information Needed]
103
+
104
+ # Model Card Authors
105
+
106
+ This model card is written by following authors:
107
+
108
+ [More Information Needed]
109
+
110
+ # Model Card Contact
111
+
112
+ You can contact the model card authors through following channels:
113
+ [More Information Needed]
114
+
115
+ # Citation
116
+
117
+ Below you can find information related to citation.
118
+
119
+ **BibTeX:**
120
+ ```
121
+ [More Information Needed]
122
+ ```
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "Sender_Country",
5
+ "Bene_Country",
6
+ "USD_amount",
7
+ "Transaction_Type"
8
+ ],
9
+ "environment": [
10
+ "scikit-learn=1.2.2"
11
+ ],
12
+ "example_input": {
13
+ "Bene_Country": [
14
+ "COMOROS",
15
+ "CANADA",
16
+ "MOROCCO"
17
+ ],
18
+ "Sender_Country": [
19
+ "SRI-LANKA",
20
+ "USA",
21
+ "USA"
22
+ ],
23
+ "Transaction_Type": [
24
+ "MOVE-FUNDS",
25
+ "PAY-CHECK",
26
+ "MAKE-PAYMENT"
27
+ ],
28
+ "USD_amount": [
29
+ 598.31,
30
+ 398.72,
31
+ 87.03
32
+ ]
33
+ },
34
+ "model": {
35
+ "file": "skops-s5qwyvyp.pkl"
36
+ },
37
+ "model_format": "pickle",
38
+ "task": "tabular-classification",
39
+ "use_intelex": false
40
+ }
41
+ }
confusion_matrix.png ADDED
skops-s5qwyvyp.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eacb88ad36b78a96d1ce37e304646a5b1a5f26eb1c25c9798f7c18eff304a915
3
+ size 25153