pushing model to the Hugging Face Hub
Browse files- README.md +122 -0
- config.json +41 -0
- confusion_matrix.png +0 -0
- skops-s5qwyvyp.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_format: pickle
|
8 |
+
model_file: skops-s5qwyvyp.pkl
|
9 |
+
widget:
|
10 |
+
- structuredData:
|
11 |
+
Bene_Country:
|
12 |
+
- COMOROS
|
13 |
+
- CANADA
|
14 |
+
- MOROCCO
|
15 |
+
Sender_Country:
|
16 |
+
- SRI-LANKA
|
17 |
+
- USA
|
18 |
+
- USA
|
19 |
+
Transaction_Type:
|
20 |
+
- MOVE-FUNDS
|
21 |
+
- PAY-CHECK
|
22 |
+
- MAKE-PAYMENT
|
23 |
+
USD_amount:
|
24 |
+
- 598.31
|
25 |
+
- 398.72
|
26 |
+
- 87.03
|
27 |
+
---
|
28 |
+
|
29 |
+
# Model description
|
30 |
+
|
31 |
+
[More Information Needed]
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
[More Information Needed]
|
36 |
+
|
37 |
+
## Training Procedure
|
38 |
+
|
39 |
+
[More Information Needed]
|
40 |
+
|
41 |
+
### Hyperparameters
|
42 |
+
|
43 |
+
<details>
|
44 |
+
<summary> Click to expand </summary>
|
45 |
+
|
46 |
+
| Hyperparameter | Value |
|
47 |
+
|----------------------------------------------|---------------------------------------------------------------------------|
|
48 |
+
| memory | |
|
49 |
+
| steps | [('preprocessorAll', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))])), ('classifier', GaussianNB())] |
|
50 |
+
| verbose | False |
|
51 |
+
| preprocessorAll | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))]) |
|
52 |
+
| classifier | GaussianNB() |
|
53 |
+
| preprocessorAll__n_jobs | |
|
54 |
+
| preprocessorAll__remainder | passthrough |
|
55 |
+
| preprocessorAll__sparse_threshold | 0.3 |
|
56 |
+
| preprocessorAll__transformer_weights | |
|
57 |
+
| preprocessorAll__transformers | [('cat', Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]), ['Sender_Country', 'Bene_Country', 'Transaction_Type']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['USD_amount'], dtype='object'))] |
|
58 |
+
| preprocessorAll__verbose | False |
|
59 |
+
| preprocessorAll__verbose_feature_names_out | True |
|
60 |
+
| preprocessorAll__cat | Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]) |
|
61 |
+
| preprocessorAll__num | Pipeline(steps=[('scale', StandardScaler())]) |
|
62 |
+
| preprocessorAll__cat__memory | |
|
63 |
+
| preprocessorAll__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))] |
|
64 |
+
| preprocessorAll__cat__verbose | False |
|
65 |
+
| preprocessorAll__cat__onehot | OneHotEncoder(handle_unknown='ignore', sparse_output=False) |
|
66 |
+
| preprocessorAll__cat__onehot__categories | auto |
|
67 |
+
| preprocessorAll__cat__onehot__drop | |
|
68 |
+
| preprocessorAll__cat__onehot__dtype | <class 'numpy.float64'> |
|
69 |
+
| preprocessorAll__cat__onehot__handle_unknown | ignore |
|
70 |
+
| preprocessorAll__cat__onehot__max_categories | |
|
71 |
+
| preprocessorAll__cat__onehot__min_frequency | |
|
72 |
+
| preprocessorAll__cat__onehot__sparse | deprecated |
|
73 |
+
| preprocessorAll__cat__onehot__sparse_output | False |
|
74 |
+
| preprocessorAll__num__memory | |
|
75 |
+
| preprocessorAll__num__steps | [('scale', StandardScaler())] |
|
76 |
+
| preprocessorAll__num__verbose | False |
|
77 |
+
| preprocessorAll__num__scale | StandardScaler() |
|
78 |
+
| preprocessorAll__num__scale__copy | True |
|
79 |
+
| preprocessorAll__num__scale__with_mean | True |
|
80 |
+
| preprocessorAll__num__scale__with_std | True |
|
81 |
+
| classifier__priors | |
|
82 |
+
| classifier__var_smoothing | 1e-09 |
|
83 |
+
|
84 |
+
</details>
|
85 |
+
|
86 |
+
### Model Plot
|
87 |
+
|
88 |
+
<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-4" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessorAll',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country','Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale',StandardScaler())]),Index(['USD_amount'], dtype='object'))])),('classifier', GaussianNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessorAll',ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country','Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale',StandardScaler())]),Index(['USD_amount'], dtype='object'))])),('classifier', GaussianNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessorAll: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder='passthrough',transformers=[('cat',Pipeline(steps=[('onehot',OneHotEncoder(handle_unknown='ignore',sparse_output=False))]),['Sender_Country', 'Bene_Country','Transaction_Type']),('num',Pipeline(steps=[('scale', StandardScaler())]),Index(['USD_amount'], dtype='object'))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-30" type="checkbox" ><label for="sk-estimator-id-30" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>['Sender_Country', 'Bene_Country', 'Transaction_Type']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-31" type="checkbox" ><label for="sk-estimator-id-31" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore', sparse_output=False)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-32" type="checkbox" ><label for="sk-estimator-id-32" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index(['USD_amount'], dtype='object')</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-33" type="checkbox" ><label for="sk-estimator-id-33" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-34" type="checkbox" ><label for="sk-estimator-id-34" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-35" type="checkbox" ><label for="sk-estimator-id-35" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-36" type="checkbox" ><label for="sk-estimator-id-36" class="sk-toggleable__label sk-toggleable__label-arrow">GaussianNB</label><div class="sk-toggleable__content"><pre>GaussianNB()</pre></div></div></div></div></div></div></div>
|
89 |
+
|
90 |
+
## Evaluation Results
|
91 |
+
|
92 |
+
| Metric | Value |
|
93 |
+
|----------|----------|
|
94 |
+
| accuracy | 0.794582 |
|
95 |
+
|
96 |
+
### Confusion Matrix
|
97 |
+
|
98 |
+
![Confusion Matrix](confusion_matrix.png)
|
99 |
+
|
100 |
+
# How to Get Started with the Model
|
101 |
+
|
102 |
+
[More Information Needed]
|
103 |
+
|
104 |
+
# Model Card Authors
|
105 |
+
|
106 |
+
This model card is written by following authors:
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
# Model Card Contact
|
111 |
+
|
112 |
+
You can contact the model card authors through following channels:
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
# Citation
|
116 |
+
|
117 |
+
Below you can find information related to citation.
|
118 |
+
|
119 |
+
**BibTeX:**
|
120 |
+
```
|
121 |
+
[More Information Needed]
|
122 |
+
```
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"Sender_Country",
|
5 |
+
"Bene_Country",
|
6 |
+
"USD_amount",
|
7 |
+
"Transaction_Type"
|
8 |
+
],
|
9 |
+
"environment": [
|
10 |
+
"scikit-learn=1.2.2"
|
11 |
+
],
|
12 |
+
"example_input": {
|
13 |
+
"Bene_Country": [
|
14 |
+
"COMOROS",
|
15 |
+
"CANADA",
|
16 |
+
"MOROCCO"
|
17 |
+
],
|
18 |
+
"Sender_Country": [
|
19 |
+
"SRI-LANKA",
|
20 |
+
"USA",
|
21 |
+
"USA"
|
22 |
+
],
|
23 |
+
"Transaction_Type": [
|
24 |
+
"MOVE-FUNDS",
|
25 |
+
"PAY-CHECK",
|
26 |
+
"MAKE-PAYMENT"
|
27 |
+
],
|
28 |
+
"USD_amount": [
|
29 |
+
598.31,
|
30 |
+
398.72,
|
31 |
+
87.03
|
32 |
+
]
|
33 |
+
},
|
34 |
+
"model": {
|
35 |
+
"file": "skops-s5qwyvyp.pkl"
|
36 |
+
},
|
37 |
+
"model_format": "pickle",
|
38 |
+
"task": "tabular-classification",
|
39 |
+
"use_intelex": false
|
40 |
+
}
|
41 |
+
}
|
confusion_matrix.png
ADDED
skops-s5qwyvyp.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eacb88ad36b78a96d1ce37e304646a5b1a5f26eb1c25c9798f7c18eff304a915
|
3 |
+
size 25153
|