pushing files to the repo from the example!
Browse files- README.md +21 -7
- config.json +1 -1
- confusion_matrix.png +0 -0
- skops-g4ku84rd.pkl +3 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ tags:
|
|
5 |
- skops
|
6 |
- tabular-classification
|
7 |
model_format: pickle
|
8 |
-
model_file:
|
9 |
widget:
|
10 |
- structuredData:
|
11 |
x0:
|
@@ -57,7 +57,7 @@ widget:
|
|
57 |
|
58 |
### Model Plot
|
59 |
|
60 |
-
<style>#sk-container-id-
|
61 |
|
62 |
## Evaluation Results
|
63 |
|
@@ -67,6 +67,24 @@ widget:
|
|
67 |
| precision | 0.944444 |
|
68 |
| recall | 0.772727 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# How to Get Started with the Model
|
71 |
|
72 |
[More Information Needed]
|
@@ -101,8 +119,4 @@ This is a logistic regression classifer model traines on social network ads data
|
|
101 |
|
102 |
# eval_method
|
103 |
|
104 |
-
The model is evaluated on accuracy, precision and recall score.
|
105 |
-
|
106 |
-
# confusion_matrix
|
107 |
-
|
108 |
-
![confusion_matrix](confusion_matrix.png)
|
|
|
5 |
- skops
|
6 |
- tabular-classification
|
7 |
model_format: pickle
|
8 |
+
model_file: skops-g4ku84rd.pkl
|
9 |
widget:
|
10 |
- structuredData:
|
11 |
x0:
|
|
|
57 |
|
58 |
### Model Plot
|
59 |
|
60 |
+
<style>#sk-container-id-12 {color: black;background-color: white;}#sk-container-id-12 pre{padding: 0;}#sk-container-id-12 div.sk-toggleable {background-color: white;}#sk-container-id-12 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-12 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-12 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-12 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-12 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-12 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-12 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-12 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-12 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-12 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-12 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-12 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-12 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-12 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-12 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-12 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-12 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-12 div.sk-item {position: relative;z-index: 1;}#sk-container-id-12 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-12 div.sk-item::before, #sk-container-id-12 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-12 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-12 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-12 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-12 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-12 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-12 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-12 div.sk-label-container {text-align: center;}#sk-container-id-12 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-12 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-12" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-12" type="checkbox" checked><label for="sk-estimator-id-12" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div>
|
61 |
|
62 |
## Evaluation Results
|
63 |
|
|
|
67 |
| precision | 0.944444 |
|
68 |
| recall | 0.772727 |
|
69 |
|
70 |
+
### Confusion Matrix
|
71 |
+
|
72 |
+
![Confusion Matrix](confusion_matrix.png)
|
73 |
+
|
74 |
+
### Model description/Evaluation Results/Classification report
|
75 |
+
|
76 |
+
<details>
|
77 |
+
<summary> Click to expand </summary>
|
78 |
+
|
79 |
+
| index | precision | recall | f1-score | support |
|
80 |
+
|--------------|-------------|----------|------------|-----------|
|
81 |
+
| No | 0.919355 | 0.982759 | 0.95 | 58 |
|
82 |
+
| Yes | 0.944444 | 0.772727 | 0.85 | 22 |
|
83 |
+
| macro avg | 0.9319 | 0.877743 | 0.9 | 80 |
|
84 |
+
| weighted avg | 0.926254 | 0.925 | 0.9225 | 80 |
|
85 |
+
|
86 |
+
</details>
|
87 |
+
|
88 |
# How to Get Started with the Model
|
89 |
|
90 |
[More Information Needed]
|
|
|
119 |
|
120 |
# eval_method
|
121 |
|
122 |
+
The model performance is evaluated on test data using accuracy, precision and recall score.
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -20,7 +20,7 @@
|
|
20 |
]
|
21 |
},
|
22 |
"model": {
|
23 |
-
"file": "
|
24 |
},
|
25 |
"model_format": "pickle",
|
26 |
"task": "tabular-classification",
|
|
|
20 |
]
|
21 |
},
|
22 |
"model": {
|
23 |
+
"file": "skops-g4ku84rd.pkl"
|
24 |
},
|
25 |
"model_format": "pickle",
|
26 |
"task": "tabular-classification",
|
confusion_matrix.png
CHANGED
skops-g4ku84rd.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965fef5d8e7630bb9afb50a2b326b030ddf7c3d586300a3632ffa4f22ab3f380
|
3 |
+
size 724
|