Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,88 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model:
|
5 |
+
- Qwen/Qwen2.5-Math-1.5B
|
6 |
---
|
7 |
|
8 |
+
# Qwen2.5-Math-1.5B-Oat-Zero
|
9 |
|
10 |
+
## Links
|
11 |
|
12 |
+
- 📜 [Paper](https://github.com/sail-sg/understand-r1-zero/blob/main/understand-r1-zero.pdf)
|
13 |
+
- 💻 [GitHub](https://github.com/sail-sg/understand-r1-zero)
|
14 |
+
- 🤗 [Oat-Zero Collection](https://huggingface.co/collections/sail/oat-zero-understanding-r1-zero-like-training-67dcdb07b9f3eb05f1501c4a)
|
15 |
|
16 |
+
## Introduction
|
17 |
|
18 |
+
This model is trained by the minimalist R1-Zero recipe introduced in our paper:
|
19 |
+
- **Algorithm**: Dr. DRPO
|
20 |
+
- **Data**: level 3-5 questions from MATH dataset
|
21 |
+
- **Base model**: [Qwen/Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B)
|
22 |
+
- **Template**: Qwen-Math
|
23 |
|
24 |
+
Evaluation results on widely used math benchmarks are shown below:
|
25 |
|
26 |
+
<img src="https://raw.githubusercontent.com/sail-sg/understand-r1-zero/refs/heads/main/assets/benchmark_table.png" width=100%/>
|
27 |
|
28 |
+
## Usage
|
29 |
|
30 |
+
```python
|
31 |
+
import vllm
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
33 |
|
34 |
+
def apply_qwen_math_template(question: str):
|
35 |
+
return (
|
36 |
+
"<|im_start|>system\nPlease reason step by step, and put your final answer within \\boxed{}.<|im_end|>\n<|im_start|>user\n"
|
37 |
+
+ question
|
38 |
+
+ "<|im_end|>\n<|im_start|>assistant\n"
|
39 |
+
)
|
40 |
|
41 |
+
def apply_r1_template(question: str):
|
42 |
+
return (
|
43 |
+
"A conversation between User and Assistant. The User asks a question, and the Assistant solves it. The Assistant first thinks about the reasoning process in the mind and then provides the User with the answer. "
|
44 |
+
"The reasoning process is enclosed within <think> </think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>.\nUser: "
|
45 |
+
+ question
|
46 |
+
+ "\nAssistant: <think>"
|
47 |
+
)
|
48 |
|
49 |
+
model_name = "sail/Qwen2.5-Math-1.5B-Oat-Zero"
|
50 |
|
51 |
+
sampling_params = vllm.SamplingParams(
|
52 |
+
n=1,
|
53 |
+
temperature=0,
|
54 |
+
top_p=1,
|
55 |
+
max_tokens=3000,
|
56 |
+
)
|
57 |
|
58 |
+
model = vllm.LLM(
|
59 |
+
model_name,
|
60 |
+
max_model_len=4096,
|
61 |
+
dtype="bfloat16",
|
62 |
+
enable_prefix_caching=True,
|
63 |
+
)
|
64 |
|
65 |
+
if "Llama-3.2-3B-Oat-Zero" in model_name:
|
66 |
+
apply_template = apply_r1_template
|
67 |
+
else:
|
68 |
+
apply_template = apply_qwen_math_template
|
69 |
|
70 |
+
prompts = [
|
71 |
+
"How many positive whole-number divisors does 196 have?"
|
72 |
+
]
|
73 |
+
prompts = list(map(apply_template, prompts))
|
74 |
+
outputs = model.generate(prompts, sampling_params)
|
75 |
|
76 |
+
print(outputs)
|
77 |
+
```
|
78 |
|
79 |
+
## Citation
|
80 |
|
81 |
+
```latex
|
82 |
+
@misc{liu2025understanding,
|
83 |
+
title={Understanding R1-Zero-Like Training: A Critical Perspective},
|
84 |
+
author={Zichen Liu and Changyu Chen and Wenjun Li and Penghui Qi and Tianyu Pang and Chao Du and Wee Sun Lee and Min Lin},
|
85 |
+
year={2025},
|
86 |
+
howpublished={\url{https://github.com/sail-sg/understand-r1-zero}},
|
87 |
+
}
|
88 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|