--- library_name: transformers license: apache-2.0 base_model: samchain/econo-sentence-v2 tags: - generated_from_trainer - economics - finance metrics: - accuracy - f1 - precision - recall model-index: - name: EconoDetect results: [] datasets: - samchain/economics-relevance language: - en pipeline_tag: text-classification --- # EconoDetect This model is a fine-tuned version of [samchain/econo-sentence-v2](https://huggingface.co/samchain/econo-sentence-v2) on the economics-relevance dataset. The base model is kept frozen during training, only the classification head is updated. It achieves the following results on the evaluation set: - Loss: 0.3973 - Accuracy: 0.8211 - F1: 0.7991 - Precision: 0.7895 - Recall: 0.8211 ## Model description This model is designed to detect whether a text discusses topics related to the US economy. ## Intended uses & limitations The model can be used as a screening tool to remove texts that are not discussing US economy. ## Training and evaluation data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5381 | 1.0 | 700 | 0.4333 | 0.7844 | 0.7894 | 0.7952 | 0.7844 | | 0.4613 | 2.0 | 1400 | 0.4044 | 0.8328 | 0.7679 | 0.7856 | 0.8328 | | 0.3523 | 3.0 | 2100 | 0.3973 | 0.8211 | 0.7991 | 0.7895 | 0.8211 | ### Framework versions - Transformers 4.50.0 - Pytorch 2.1.0+cu118 - Datasets 3.4.1 - Tokenizers 0.21.1