--- datasets: - samirmsallem/wiki_def_de_multitask language: - de base_model: - FacebookAI/xlm-roberta-base library_name: transformers tags: - science - ner - def_extraction - definitions metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: samirmsallem/wiki_def_de_multitask type: samirmsallem/wiki_def_de_multitask metrics: - name: F1 type: f1 value: 0.8262004492199356 - name: Precision type: precision value: 0.8189914550487424 - name: Recall type: recall value: 0.8335374816266536 - name: Loss type: loss value: 0.312337189912796 --- ## NER model for definition component recognition in German scientific texts **xlm-roberta-base-definitions_ner** is a NER model (token classification) in the scientific domain in German, finetuned from the model [xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It was trained using a custom annotated dataset of around 10,000 training and 2,000 test examples containing definition- and non-definition-related sentences from wikipedia articles in german. The model is specifically designed to recognize and classify components of definitions, using the following entity labels: - **DF**: Definiendum (the term being defined) - **VF**: Definitor (the verb or phrase introducing the definition) - **GF**: Definiens (the explanation or meaning) Training was conducted using a standard NER objective. The model achieves an F1 score of approximately 83% on the evaluation set. Here are the overall final metrics on the test dataset after 5 epochs of training: - **f1**: 0.8262004492199356 - **precision**: 0.8189914550487424 - **recall**: 0.8335374816266536 - **loss**: 0.312337189912796 ## Model Performance Comparision on wiki_definitions_de_multitask: | Model | Precision | Recall | F1 Score | Eval Samples per Second | Epoch | | --- | --- | --- | --- | --- | --- | | [distilbert-base-multilingual-cased-definitions_ner](https://huggingface.co/samirmsallem/distilbert-base-multilingual-cased-definitions_ner/) | 80.76 | 81.74 | 81.25 | **457.53** | 5.0 | | [scibert_scivocab_cased-definitions_ner](https://huggingface.co/samirmsallem/scibert_scivocab_cased-definitions_ner) | 80.54 | 82.11 | 81.32 | 236.61 | 4.0 | | [GottBERT_base_best-definitions_ner](https://huggingface.co/samirmsallem/GottBERT_base_best-definitions_ner) | **82.98** | 82.81 | 82.90 | 272.26 | 5.0 | | [xlm-roberta-base-definitions_ner](https://huggingface.co/samirmsallem/xlm-roberta-base-definitions_ner) | 81.90 | 83.35 | 82.62 | 241.21 | 5.0 | | [gbert-base-definitions_ner](https://huggingface.co/samirmsallem/gbert-base-definitions_ner) | 82.73 | **83.56** | **83.14** | 278.87 | 5.0 | | [gbert-large-definitions_ner](https://huggingface.co/samirmsallem/gbert-large-definitions_ner) | 80.67 | 83.36 | 81.99 | 109.83 | 2.0 |