delete notebook file
Browse files- datasets.ipynb +0 -1056
datasets.ipynb
DELETED
@@ -1,1056 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "0729b762-3b84-474f-b82a-df7622b91ccb",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import torch, html\n",
|
11 |
-
"from transformers import AutoTokenizer\n",
|
12 |
-
"from datasets import load_dataset, load_from_disk\n",
|
13 |
-
"from huggingface_hub import notebook_login\n",
|
14 |
-
"from dotenv import load_dotenv\n",
|
15 |
-
"import os"
|
16 |
-
]
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"cell_type": "code",
|
20 |
-
"execution_count": 2,
|
21 |
-
"id": "92ee5f76-2cd3-4af0-8687-dca782aa38a3",
|
22 |
-
"metadata": {},
|
23 |
-
"outputs": [
|
24 |
-
{
|
25 |
-
"data": {
|
26 |
-
"text/plain": [
|
27 |
-
"True"
|
28 |
-
]
|
29 |
-
},
|
30 |
-
"execution_count": 2,
|
31 |
-
"metadata": {},
|
32 |
-
"output_type": "execute_result"
|
33 |
-
}
|
34 |
-
],
|
35 |
-
"source": [
|
36 |
-
"load_dotenv()"
|
37 |
-
]
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"cell_type": "code",
|
41 |
-
"execution_count": 3,
|
42 |
-
"id": "97d33c57-b03b-4bee-b051-04d707a8d773",
|
43 |
-
"metadata": {},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"access_token = os.environ['HF_TOKEN']"
|
47 |
-
]
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"cell_type": "code",
|
51 |
-
"execution_count": 4,
|
52 |
-
"id": "4358520c-3d8c-42ef-967a-eddeef732ef1",
|
53 |
-
"metadata": {},
|
54 |
-
"outputs": [
|
55 |
-
{
|
56 |
-
"data": {
|
57 |
-
"text/plain": [
|
58 |
-
"'cuda'"
|
59 |
-
]
|
60 |
-
},
|
61 |
-
"execution_count": 4,
|
62 |
-
"metadata": {},
|
63 |
-
"output_type": "execute_result"
|
64 |
-
}
|
65 |
-
],
|
66 |
-
"source": [
|
67 |
-
"device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
|
68 |
-
"device"
|
69 |
-
]
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"cell_type": "code",
|
73 |
-
"execution_count": 5,
|
74 |
-
"id": "1c2ec24f-4c6d-4469-8e85-601a4b0d3e4e",
|
75 |
-
"metadata": {},
|
76 |
-
"outputs": [
|
77 |
-
{
|
78 |
-
"data": {
|
79 |
-
"text/plain": [
|
80 |
-
"DatasetDict({\n",
|
81 |
-
" train: Dataset({\n",
|
82 |
-
" features: ['Unnamed: 0', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount'],\n",
|
83 |
-
" num_rows: 161297\n",
|
84 |
-
" })\n",
|
85 |
-
" test: Dataset({\n",
|
86 |
-
" features: ['Unnamed: 0', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount'],\n",
|
87 |
-
" num_rows: 53766\n",
|
88 |
-
" })\n",
|
89 |
-
"})"
|
90 |
-
]
|
91 |
-
},
|
92 |
-
"execution_count": 5,
|
93 |
-
"metadata": {},
|
94 |
-
"output_type": "execute_result"
|
95 |
-
}
|
96 |
-
],
|
97 |
-
"source": [
|
98 |
-
"dataset = load_dataset('csv', data_files={\n",
|
99 |
-
" 'train': 'data/drugsComTrain_raw.tsv',\n",
|
100 |
-
" 'test': 'data/drugsComTest_raw.tsv'\n",
|
101 |
-
"}, delimiter='\\t', num_proc=8)\n",
|
102 |
-
"dataset"
|
103 |
-
]
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"cell_type": "code",
|
107 |
-
"execution_count": 6,
|
108 |
-
"id": "dbb81021-9acc-46b4-87c0-23f0f787fef5",
|
109 |
-
"metadata": {},
|
110 |
-
"outputs": [
|
111 |
-
{
|
112 |
-
"data": {
|
113 |
-
"text/plain": [
|
114 |
-
"{'train': (161297, 7), 'test': (53766, 7)}"
|
115 |
-
]
|
116 |
-
},
|
117 |
-
"execution_count": 6,
|
118 |
-
"metadata": {},
|
119 |
-
"output_type": "execute_result"
|
120 |
-
}
|
121 |
-
],
|
122 |
-
"source": [
|
123 |
-
"dataset.shape"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": 7,
|
129 |
-
"id": "a983147c-eb04-455f-bf02-0c57c2a549e9",
|
130 |
-
"metadata": {},
|
131 |
-
"outputs": [
|
132 |
-
{
|
133 |
-
"data": {
|
134 |
-
"text/plain": [
|
135 |
-
"{'Unnamed: 0': 206461,\n",
|
136 |
-
" 'drugName': 'Valsartan',\n",
|
137 |
-
" 'condition': 'Left Ventricular Dysfunction',\n",
|
138 |
-
" 'review': '\"It has no side effect, I take it in combination of Bystolic 5 Mg and Fish Oil\"',\n",
|
139 |
-
" 'rating': 9.0,\n",
|
140 |
-
" 'date': 'May 20, 2012',\n",
|
141 |
-
" 'usefulCount': 27}"
|
142 |
-
]
|
143 |
-
},
|
144 |
-
"execution_count": 7,
|
145 |
-
"metadata": {},
|
146 |
-
"output_type": "execute_result"
|
147 |
-
}
|
148 |
-
],
|
149 |
-
"source": [
|
150 |
-
"dataset['train'][0]"
|
151 |
-
]
|
152 |
-
},
|
153 |
-
{
|
154 |
-
"cell_type": "code",
|
155 |
-
"execution_count": 8,
|
156 |
-
"id": "ee2b8ddf-79d7-44d6-80ba-243bc2f04de8",
|
157 |
-
"metadata": {},
|
158 |
-
"outputs": [
|
159 |
-
{
|
160 |
-
"data": {
|
161 |
-
"text/plain": [
|
162 |
-
"DatasetDict({\n",
|
163 |
-
" train: Dataset({\n",
|
164 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
165 |
-
" num_rows: 138514\n",
|
166 |
-
" })\n",
|
167 |
-
" test: Dataset({\n",
|
168 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
169 |
-
" num_rows: 46108\n",
|
170 |
-
" })\n",
|
171 |
-
"})"
|
172 |
-
]
|
173 |
-
},
|
174 |
-
"execution_count": 8,
|
175 |
-
"metadata": {},
|
176 |
-
"output_type": "execute_result"
|
177 |
-
}
|
178 |
-
],
|
179 |
-
"source": [
|
180 |
-
"dataset = (\n",
|
181 |
-
" dataset\n",
|
182 |
-
" .filter(lambda x: x['condition'] is not None)\n",
|
183 |
-
" .rename_column('Unnamed: 0', 'row_id')\n",
|
184 |
-
" .map(lambda x: {'condition': [row.lower() for row in x['condition']]}, batched=True, num_proc=8, batch_size=3000)\n",
|
185 |
-
" .map(lambda x: {'review': [html.unescape(row) for row in x['review']]}, batched=True, num_proc=8, batch_size=3000)\n",
|
186 |
-
" .map(lambda x: {'review_length': [len(row.split()) for row in x['review']]}, batched=True, num_proc=8, batch_size=3000)\n",
|
187 |
-
" # .filter(lambda x: {'review_length': [row > 30 for row in x['review_length']]}, batched=True, num_proc=8)\n",
|
188 |
-
" .filter(lambda x: x['review_length'] > 30, num_proc=8, batch_size=3000)\n",
|
189 |
-
")\n",
|
190 |
-
"dataset"
|
191 |
-
]
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"cell_type": "markdown",
|
195 |
-
"id": "e7c4daf2-36c1-4074-91ca-8871a581052d",
|
196 |
-
"metadata": {},
|
197 |
-
"source": [
|
198 |
-
"# Exercises"
|
199 |
-
]
|
200 |
-
},
|
201 |
-
{
|
202 |
-
"cell_type": "markdown",
|
203 |
-
"id": "ea14b998-69f1-40a7-a200-7cc53b0e22fd",
|
204 |
-
"metadata": {},
|
205 |
-
"source": [
|
206 |
-
"## Predict patient condition based on drug review"
|
207 |
-
]
|
208 |
-
},
|
209 |
-
{
|
210 |
-
"cell_type": "code",
|
211 |
-
"execution_count": 41,
|
212 |
-
"id": "dc6b299b-2d0b-4475-bfff-d0180dd672c1",
|
213 |
-
"metadata": {},
|
214 |
-
"outputs": [],
|
215 |
-
"source": [
|
216 |
-
"from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer, AutoModel, DataCollatorWithPadding\n",
|
217 |
-
"from torch.utils.data import DataLoader\n",
|
218 |
-
"import evaluate, numpy as np\n",
|
219 |
-
"from huggingface_hub import HfApi"
|
220 |
-
]
|
221 |
-
},
|
222 |
-
{
|
223 |
-
"cell_type": "code",
|
224 |
-
"execution_count": 10,
|
225 |
-
"id": "77caa284-8307-40a0-8369-621195e5c7e9",
|
226 |
-
"metadata": {},
|
227 |
-
"outputs": [],
|
228 |
-
"source": [
|
229 |
-
"def clean_condition_column(rows):\n",
|
230 |
-
" target_text = 'users found this comment helpful'\n",
|
231 |
-
" return {'condition': ['unknown' if target_text in condition else condition for condition in rows['condition']]}"
|
232 |
-
]
|
233 |
-
},
|
234 |
-
{
|
235 |
-
"cell_type": "code",
|
236 |
-
"execution_count": 11,
|
237 |
-
"id": "058d4c64-428b-43bb-86c4-ba8f5c1b8a84",
|
238 |
-
"metadata": {},
|
239 |
-
"outputs": [
|
240 |
-
{
|
241 |
-
"data": {
|
242 |
-
"text/plain": [
|
243 |
-
"DatasetDict({\n",
|
244 |
-
" train: Dataset({\n",
|
245 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
246 |
-
" num_rows: 138514\n",
|
247 |
-
" })\n",
|
248 |
-
" test: Dataset({\n",
|
249 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
250 |
-
" num_rows: 46108\n",
|
251 |
-
" })\n",
|
252 |
-
"})"
|
253 |
-
]
|
254 |
-
},
|
255 |
-
"execution_count": 11,
|
256 |
-
"metadata": {},
|
257 |
-
"output_type": "execute_result"
|
258 |
-
}
|
259 |
-
],
|
260 |
-
"source": [
|
261 |
-
"dataset = dataset.map(clean_condition_column, batched=True, batch_size=3000, num_proc=8)\n",
|
262 |
-
"dataset"
|
263 |
-
]
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"cell_type": "code",
|
267 |
-
"execution_count": 12,
|
268 |
-
"id": "80dc20fe-cb66-4b0d-99dc-88e84413975b",
|
269 |
-
"metadata": {},
|
270 |
-
"outputs": [
|
271 |
-
{
|
272 |
-
"data": {
|
273 |
-
"text/plain": [
|
274 |
-
"DatasetDict({\n",
|
275 |
-
" train: Dataset({\n",
|
276 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
277 |
-
" num_rows: 110811\n",
|
278 |
-
" })\n",
|
279 |
-
" validation: Dataset({\n",
|
280 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
281 |
-
" num_rows: 27703\n",
|
282 |
-
" })\n",
|
283 |
-
" test: Dataset({\n",
|
284 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length'],\n",
|
285 |
-
" num_rows: 46108\n",
|
286 |
-
" })\n",
|
287 |
-
"})"
|
288 |
-
]
|
289 |
-
},
|
290 |
-
"execution_count": 12,
|
291 |
-
"metadata": {},
|
292 |
-
"output_type": "execute_result"
|
293 |
-
}
|
294 |
-
],
|
295 |
-
"source": [
|
296 |
-
"clean_data = dataset['train'].train_test_split(test_size=.2, seed=5, writer_batch_size=3000)\n",
|
297 |
-
"clean_data['validation'] = clean_data.pop('test')\n",
|
298 |
-
"clean_data['test'] = dataset['test']\n",
|
299 |
-
"\n",
|
300 |
-
"clean_data"
|
301 |
-
]
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"cell_type": "code",
|
305 |
-
"execution_count": 13,
|
306 |
-
"id": "8be33fbb-143f-45b5-9e18-c5662a7e0dad",
|
307 |
-
"metadata": {},
|
308 |
-
"outputs": [
|
309 |
-
{
|
310 |
-
"data": {
|
311 |
-
"text/plain": [
|
312 |
-
"751"
|
313 |
-
]
|
314 |
-
},
|
315 |
-
"execution_count": 13,
|
316 |
-
"metadata": {},
|
317 |
-
"output_type": "execute_result"
|
318 |
-
}
|
319 |
-
],
|
320 |
-
"source": [
|
321 |
-
"all_conditions = sorted(set(clean_data['train']['condition']).union(set(clean_data['validation']['condition'])))\n",
|
322 |
-
"len(all_conditions)"
|
323 |
-
]
|
324 |
-
},
|
325 |
-
{
|
326 |
-
"cell_type": "code",
|
327 |
-
"execution_count": 14,
|
328 |
-
"id": "912ef7d5-149a-48ed-ac6b-1ff2f3c2556a",
|
329 |
-
"metadata": {},
|
330 |
-
"outputs": [],
|
331 |
-
"source": [
|
332 |
-
"id2label = dict(enumerate(all_conditions))\n",
|
333 |
-
"label2id = {v:k for k, v in id2label.items()}"
|
334 |
-
]
|
335 |
-
},
|
336 |
-
{
|
337 |
-
"cell_type": "code",
|
338 |
-
"execution_count": 15,
|
339 |
-
"id": "aca4a239-3f07-44bf-905e-2743b8f0889d",
|
340 |
-
"metadata": {},
|
341 |
-
"outputs": [
|
342 |
-
{
|
343 |
-
"data": {
|
344 |
-
"text/plain": [
|
345 |
-
"True"
|
346 |
-
]
|
347 |
-
},
|
348 |
-
"execution_count": 15,
|
349 |
-
"metadata": {},
|
350 |
-
"output_type": "execute_result"
|
351 |
-
}
|
352 |
-
],
|
353 |
-
"source": [
|
354 |
-
"len(label2id) == len(id2label)"
|
355 |
-
]
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"cell_type": "code",
|
359 |
-
"execution_count": 16,
|
360 |
-
"id": "024d5faa-88f1-41b7-9f52-8178ad731089",
|
361 |
-
"metadata": {},
|
362 |
-
"outputs": [
|
363 |
-
{
|
364 |
-
"data": {
|
365 |
-
"text/plain": [
|
366 |
-
"DatasetDict({\n",
|
367 |
-
" train: Dataset({\n",
|
368 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels'],\n",
|
369 |
-
" num_rows: 110811\n",
|
370 |
-
" })\n",
|
371 |
-
" validation: Dataset({\n",
|
372 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels'],\n",
|
373 |
-
" num_rows: 27703\n",
|
374 |
-
" })\n",
|
375 |
-
" test: Dataset({\n",
|
376 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels'],\n",
|
377 |
-
" num_rows: 46108\n",
|
378 |
-
" })\n",
|
379 |
-
"})"
|
380 |
-
]
|
381 |
-
},
|
382 |
-
"execution_count": 16,
|
383 |
-
"metadata": {},
|
384 |
-
"output_type": "execute_result"
|
385 |
-
}
|
386 |
-
],
|
387 |
-
"source": [
|
388 |
-
"clean_data = clean_data.map(lambda x: {'labels': [label2id.get(condition, label2id['unknown']) for condition in x['condition']]}, batched=True, batch_size=3000, num_proc=8)\n",
|
389 |
-
"clean_data"
|
390 |
-
]
|
391 |
-
},
|
392 |
-
{
|
393 |
-
"cell_type": "code",
|
394 |
-
"execution_count": 17,
|
395 |
-
"id": "2f71cacc-9fb4-4436-b32b-8f172bcc19b1",
|
396 |
-
"metadata": {},
|
397 |
-
"outputs": [
|
398 |
-
{
|
399 |
-
"name": "stderr",
|
400 |
-
"output_type": "stream",
|
401 |
-
"text": [
|
402 |
-
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight']\n",
|
403 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
404 |
-
]
|
405 |
-
}
|
406 |
-
],
|
407 |
-
"source": [
|
408 |
-
"# checkpoint = 'distilbert/distilbert-base-uncased-finetuned-sst-2-english'\n",
|
409 |
-
"checkpoint = 'distilbert-base-uncased'\n",
|
410 |
-
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=len(id2label)).to(device)\n",
|
411 |
-
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
|
412 |
-
]
|
413 |
-
},
|
414 |
-
{
|
415 |
-
"cell_type": "code",
|
416 |
-
"execution_count": 18,
|
417 |
-
"id": "e9b2c2bd-52d4-47e0-aaaf-eb76b3bab9fa",
|
418 |
-
"metadata": {},
|
419 |
-
"outputs": [],
|
420 |
-
"source": [
|
421 |
-
"model.config.id2label = id2label\n",
|
422 |
-
"model.config.label2id = label2id\n",
|
423 |
-
"model.num_labels = len(label2id)"
|
424 |
-
]
|
425 |
-
},
|
426 |
-
{
|
427 |
-
"cell_type": "code",
|
428 |
-
"execution_count": 19,
|
429 |
-
"id": "2d3bb44b-e635-4e7c-b984-6379510b60b3",
|
430 |
-
"metadata": {},
|
431 |
-
"outputs": [],
|
432 |
-
"source": [
|
433 |
-
"collator = DataCollatorWithPadding(tokenizer)"
|
434 |
-
]
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"cell_type": "code",
|
438 |
-
"execution_count": 20,
|
439 |
-
"id": "c22a17ab-4a43-45f6-ba99-62cdb94103c5",
|
440 |
-
"metadata": {},
|
441 |
-
"outputs": [],
|
442 |
-
"source": [
|
443 |
-
"def tokenize_and_split(examples):\n",
|
444 |
-
" tokens = tokenizer(\n",
|
445 |
-
" examples[\"review\"],\n",
|
446 |
-
" truncation=True,\n",
|
447 |
-
" max_length=512,\n",
|
448 |
-
" return_overflowing_tokens=True,\n",
|
449 |
-
" )\n",
|
450 |
-
" mappings = tokens.pop('overflow_to_sample_mapping')\n",
|
451 |
-
" for key, values in examples.items():\n",
|
452 |
-
" tokens[key] = [values[idx] for idx in mappings]\n",
|
453 |
-
" return tokens"
|
454 |
-
]
|
455 |
-
},
|
456 |
-
{
|
457 |
-
"cell_type": "code",
|
458 |
-
"execution_count": 21,
|
459 |
-
"id": "5a1b9eb6-87a1-4d7f-855b-f1c9e5ae63c2",
|
460 |
-
"metadata": {},
|
461 |
-
"outputs": [
|
462 |
-
{
|
463 |
-
"data": {
|
464 |
-
"text/plain": [
|
465 |
-
"DatasetDict({\n",
|
466 |
-
" train: Dataset({\n",
|
467 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels', 'input_ids', 'attention_mask'],\n",
|
468 |
-
" num_rows: 110857\n",
|
469 |
-
" })\n",
|
470 |
-
" validation: Dataset({\n",
|
471 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels', 'input_ids', 'attention_mask'],\n",
|
472 |
-
" num_rows: 27717\n",
|
473 |
-
" })\n",
|
474 |
-
" test: Dataset({\n",
|
475 |
-
" features: ['row_id', 'drugName', 'condition', 'review', 'rating', 'date', 'usefulCount', 'review_length', 'labels', 'input_ids', 'attention_mask'],\n",
|
476 |
-
" num_rows: 46118\n",
|
477 |
-
" })\n",
|
478 |
-
"})"
|
479 |
-
]
|
480 |
-
},
|
481 |
-
"execution_count": 21,
|
482 |
-
"metadata": {},
|
483 |
-
"output_type": "execute_result"
|
484 |
-
}
|
485 |
-
],
|
486 |
-
"source": [
|
487 |
-
"tokenized_dataset = clean_data.map(tokenize_and_split, batched=True, batch_size=3000, num_proc=8)\n",
|
488 |
-
"tokenized_dataset"
|
489 |
-
]
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"cell_type": "code",
|
493 |
-
"execution_count": null,
|
494 |
-
"id": "2729d5c2-499d-41f0-8ddb-27df3cf82475",
|
495 |
-
"metadata": {},
|
496 |
-
"outputs": [],
|
497 |
-
"source": []
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"cell_type": "code",
|
501 |
-
"execution_count": null,
|
502 |
-
"id": "3488692d-44ef-4b99-af4c-8fa32d6ed3b2",
|
503 |
-
"metadata": {},
|
504 |
-
"outputs": [],
|
505 |
-
"source": [
|
506 |
-
"tokenized_dataset.save_to_disk('data/drugs', num_proc=4)"
|
507 |
-
]
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"cell_type": "code",
|
511 |
-
"execution_count": null,
|
512 |
-
"id": "2bc7b3ea-5f48-4298-b625-d313c4dc1ea3",
|
513 |
-
"metadata": {},
|
514 |
-
"outputs": [],
|
515 |
-
"source": [
|
516 |
-
"tokenized_dataset = load_from_disk('data/drugs/')\n",
|
517 |
-
"tokenized_dataset"
|
518 |
-
]
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"cell_type": "code",
|
522 |
-
"execution_count": null,
|
523 |
-
"id": "001bb28a-9ff1-463f-90af-22dc7f6bce53",
|
524 |
-
"metadata": {},
|
525 |
-
"outputs": [],
|
526 |
-
"source": []
|
527 |
-
},
|
528 |
-
{
|
529 |
-
"cell_type": "code",
|
530 |
-
"execution_count": 22,
|
531 |
-
"id": "344a5505-f143-4389-8be3-282219f29d74",
|
532 |
-
"metadata": {},
|
533 |
-
"outputs": [
|
534 |
-
{
|
535 |
-
"data": {
|
536 |
-
"text/plain": [
|
537 |
-
"DatasetDict({\n",
|
538 |
-
" train: Dataset({\n",
|
539 |
-
" features: ['input_ids', 'attention_mask', 'labels'],\n",
|
540 |
-
" num_rows: 110857\n",
|
541 |
-
" })\n",
|
542 |
-
" validation: Dataset({\n",
|
543 |
-
" features: ['input_ids', 'attention_mask', 'labels'],\n",
|
544 |
-
" num_rows: 27717\n",
|
545 |
-
" })\n",
|
546 |
-
" test: Dataset({\n",
|
547 |
-
" features: ['input_ids', 'attention_mask', 'labels'],\n",
|
548 |
-
" num_rows: 46118\n",
|
549 |
-
" })\n",
|
550 |
-
"})"
|
551 |
-
]
|
552 |
-
},
|
553 |
-
"execution_count": 22,
|
554 |
-
"metadata": {},
|
555 |
-
"output_type": "execute_result"
|
556 |
-
}
|
557 |
-
],
|
558 |
-
"source": [
|
559 |
-
"filtered = tokenized_dataset.select_columns(['input_ids', 'attention_mask', 'labels'])\n",
|
560 |
-
"filtered"
|
561 |
-
]
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"cell_type": "code",
|
565 |
-
"execution_count": 23,
|
566 |
-
"id": "b31de787-0312-4d67-8b41-ce85732308ea",
|
567 |
-
"metadata": {},
|
568 |
-
"outputs": [],
|
569 |
-
"source": [
|
570 |
-
"accuracy = evaluate.load('accuracy')"
|
571 |
-
]
|
572 |
-
},
|
573 |
-
{
|
574 |
-
"cell_type": "code",
|
575 |
-
"execution_count": 24,
|
576 |
-
"id": "f6d0543e-06d5-4930-93f6-8028e4e4ead5",
|
577 |
-
"metadata": {},
|
578 |
-
"outputs": [],
|
579 |
-
"source": [
|
580 |
-
"def compute_metrics(eval_preds):\n",
|
581 |
-
" logits, labels = eval_preds\n",
|
582 |
-
" preds = np.argmax(logits, axis=-1)\n",
|
583 |
-
" return accuracy.compute(predictions=preds, references=labels)"
|
584 |
-
]
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"cell_type": "code",
|
588 |
-
"execution_count": 25,
|
589 |
-
"id": "ec5be835-e194-47a4-8c2a-3eb7500645ad",
|
590 |
-
"metadata": {},
|
591 |
-
"outputs": [],
|
592 |
-
"source": [
|
593 |
-
"lr = 3e-5"
|
594 |
-
]
|
595 |
-
},
|
596 |
-
{
|
597 |
-
"cell_type": "code",
|
598 |
-
"execution_count": 26,
|
599 |
-
"id": "d04e4bae-8bb0-4e5e-be0f-2ce41db1bbe6",
|
600 |
-
"metadata": {},
|
601 |
-
"outputs": [],
|
602 |
-
"source": [
|
603 |
-
"train_args = TrainingArguments(\n",
|
604 |
-
" 'medical_condition_classification', \n",
|
605 |
-
" overwrite_output_dir=True, \n",
|
606 |
-
" eval_strategy='steps', eval_steps=2000, \n",
|
607 |
-
" per_device_train_batch_size=24, \n",
|
608 |
-
" per_device_eval_batch_size=24, \n",
|
609 |
-
" fp16=True, num_train_epochs=5,\n",
|
610 |
-
" learning_rate=lr,\n",
|
611 |
-
" push_to_hub=True,\n",
|
612 |
-
" hub_token=access_token\n",
|
613 |
-
")"
|
614 |
-
]
|
615 |
-
},
|
616 |
-
{
|
617 |
-
"cell_type": "code",
|
618 |
-
"execution_count": 27,
|
619 |
-
"id": "e26faf3f-03ab-411d-97a2-c1a3b6e2b425",
|
620 |
-
"metadata": {},
|
621 |
-
"outputs": [],
|
622 |
-
"source": [
|
623 |
-
"trainer = Trainer(model, train_args, collator, filtered['train'], filtered['validation'], tokenizer, compute_metrics=compute_metrics)"
|
624 |
-
]
|
625 |
-
},
|
626 |
-
{
|
627 |
-
"cell_type": "code",
|
628 |
-
"execution_count": 28,
|
629 |
-
"id": "52c55095-4761-4353-8222-887cdf309431",
|
630 |
-
"metadata": {},
|
631 |
-
"outputs": [
|
632 |
-
{
|
633 |
-
"data": {
|
634 |
-
"text/html": [
|
635 |
-
"\n",
|
636 |
-
" <div>\n",
|
637 |
-
" \n",
|
638 |
-
" <progress value='23100' max='23100' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
639 |
-
" [23100/23100 1:14:13, Epoch 5/5]\n",
|
640 |
-
" </div>\n",
|
641 |
-
" <table border=\"1\" class=\"dataframe\">\n",
|
642 |
-
" <thead>\n",
|
643 |
-
" <tr style=\"text-align: left;\">\n",
|
644 |
-
" <th>Step</th>\n",
|
645 |
-
" <th>Training Loss</th>\n",
|
646 |
-
" <th>Validation Loss</th>\n",
|
647 |
-
" <th>Accuracy</th>\n",
|
648 |
-
" </tr>\n",
|
649 |
-
" </thead>\n",
|
650 |
-
" <tbody>\n",
|
651 |
-
" <tr>\n",
|
652 |
-
" <td>2000</td>\n",
|
653 |
-
" <td>1.862500</td>\n",
|
654 |
-
" <td>1.719871</td>\n",
|
655 |
-
" <td>0.639680</td>\n",
|
656 |
-
" </tr>\n",
|
657 |
-
" <tr>\n",
|
658 |
-
" <td>4000</td>\n",
|
659 |
-
" <td>1.459000</td>\n",
|
660 |
-
" <td>1.369566</td>\n",
|
661 |
-
" <td>0.688963</td>\n",
|
662 |
-
" </tr>\n",
|
663 |
-
" <tr>\n",
|
664 |
-
" <td>6000</td>\n",
|
665 |
-
" <td>1.173700</td>\n",
|
666 |
-
" <td>1.213141</td>\n",
|
667 |
-
" <td>0.717249</td>\n",
|
668 |
-
" </tr>\n",
|
669 |
-
" <tr>\n",
|
670 |
-
" <td>8000</td>\n",
|
671 |
-
" <td>1.042000</td>\n",
|
672 |
-
" <td>1.101419</td>\n",
|
673 |
-
" <td>0.732908</td>\n",
|
674 |
-
" </tr>\n",
|
675 |
-
" <tr>\n",
|
676 |
-
" <td>10000</td>\n",
|
677 |
-
" <td>0.843100</td>\n",
|
678 |
-
" <td>1.032237</td>\n",
|
679 |
-
" <td>0.750983</td>\n",
|
680 |
-
" </tr>\n",
|
681 |
-
" <tr>\n",
|
682 |
-
" <td>12000</td>\n",
|
683 |
-
" <td>0.801200</td>\n",
|
684 |
-
" <td>0.988939</td>\n",
|
685 |
-
" <td>0.758668</td>\n",
|
686 |
-
" </tr>\n",
|
687 |
-
" <tr>\n",
|
688 |
-
" <td>14000</td>\n",
|
689 |
-
" <td>0.731200</td>\n",
|
690 |
-
" <td>0.949687</td>\n",
|
691 |
-
" <td>0.772703</td>\n",
|
692 |
-
" </tr>\n",
|
693 |
-
" <tr>\n",
|
694 |
-
" <td>16000</td>\n",
|
695 |
-
" <td>0.656100</td>\n",
|
696 |
-
" <td>0.933845</td>\n",
|
697 |
-
" <td>0.780496</td>\n",
|
698 |
-
" </tr>\n",
|
699 |
-
" <tr>\n",
|
700 |
-
" <td>18000</td>\n",
|
701 |
-
" <td>0.613200</td>\n",
|
702 |
-
" <td>0.907262</td>\n",
|
703 |
-
" <td>0.787531</td>\n",
|
704 |
-
" </tr>\n",
|
705 |
-
" <tr>\n",
|
706 |
-
" <td>20000</td>\n",
|
707 |
-
" <td>0.519500</td>\n",
|
708 |
-
" <td>0.901089</td>\n",
|
709 |
-
" <td>0.792943</td>\n",
|
710 |
-
" </tr>\n",
|
711 |
-
" <tr>\n",
|
712 |
-
" <td>22000</td>\n",
|
713 |
-
" <td>0.501500</td>\n",
|
714 |
-
" <td>0.892959</td>\n",
|
715 |
-
" <td>0.795072</td>\n",
|
716 |
-
" </tr>\n",
|
717 |
-
" </tbody>\n",
|
718 |
-
"</table><p>"
|
719 |
-
],
|
720 |
-
"text/plain": [
|
721 |
-
"<IPython.core.display.HTML object>"
|
722 |
-
]
|
723 |
-
},
|
724 |
-
"metadata": {},
|
725 |
-
"output_type": "display_data"
|
726 |
-
},
|
727 |
-
{
|
728 |
-
"data": {
|
729 |
-
"text/plain": [
|
730 |
-
"TrainOutput(global_step=23100, training_loss=1.0162131207949154, metrics={'train_runtime': 4454.3937, 'train_samples_per_second': 124.436, 'train_steps_per_second': 5.186, 'total_flos': 2.958796560013029e+16, 'train_loss': 1.0162131207949154, 'epoch': 5.0})"
|
731 |
-
]
|
732 |
-
},
|
733 |
-
"execution_count": 28,
|
734 |
-
"metadata": {},
|
735 |
-
"output_type": "execute_result"
|
736 |
-
}
|
737 |
-
],
|
738 |
-
"source": [
|
739 |
-
"trainer.train()"
|
740 |
-
]
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"cell_type": "code",
|
744 |
-
"execution_count": 29,
|
745 |
-
"id": "7c8d06d3-ef08-42ca-9dad-651c3a7c45fc",
|
746 |
-
"metadata": {},
|
747 |
-
"outputs": [
|
748 |
-
{
|
749 |
-
"data": {
|
750 |
-
"text/html": [],
|
751 |
-
"text/plain": [
|
752 |
-
"<IPython.core.display.HTML object>"
|
753 |
-
]
|
754 |
-
},
|
755 |
-
"metadata": {},
|
756 |
-
"output_type": "display_data"
|
757 |
-
}
|
758 |
-
],
|
759 |
-
"source": [
|
760 |
-
"with torch.no_grad():\n",
|
761 |
-
" preds = trainer.predict(filtered['test'])"
|
762 |
-
]
|
763 |
-
},
|
764 |
-
{
|
765 |
-
"cell_type": "code",
|
766 |
-
"execution_count": 33,
|
767 |
-
"id": "cab2f41e-d00f-41cb-a5a6-daf9e713077d",
|
768 |
-
"metadata": {},
|
769 |
-
"outputs": [
|
770 |
-
{
|
771 |
-
"data": {
|
772 |
-
"text/plain": [
|
773 |
-
"{'test_loss': 0.8813542127609253,\n",
|
774 |
-
" 'test_accuracy': 0.8004249967474739,\n",
|
775 |
-
" 'test_runtime': 87.98,\n",
|
776 |
-
" 'test_samples_per_second': 524.188,\n",
|
777 |
-
" 'test_steps_per_second': 21.846}"
|
778 |
-
]
|
779 |
-
},
|
780 |
-
"execution_count": 33,
|
781 |
-
"metadata": {},
|
782 |
-
"output_type": "execute_result"
|
783 |
-
}
|
784 |
-
],
|
785 |
-
"source": [
|
786 |
-
"preds.metrics"
|
787 |
-
]
|
788 |
-
},
|
789 |
-
{
|
790 |
-
"cell_type": "code",
|
791 |
-
"execution_count": 34,
|
792 |
-
"id": "1e323be4-ac78-498e-99fc-3133b11dc241",
|
793 |
-
"metadata": {},
|
794 |
-
"outputs": [
|
795 |
-
{
|
796 |
-
"data": {
|
797 |
-
"application/vnd.jupyter.widget-view+json": {
|
798 |
-
"model_id": "d45b5b475cce4bb09298a7278ec51c64",
|
799 |
-
"version_major": 2,
|
800 |
-
"version_minor": 0
|
801 |
-
},
|
802 |
-
"text/plain": [
|
803 |
-
"model.safetensors: 0%| | 0.00/270M [00:00<?, ?B/s]"
|
804 |
-
]
|
805 |
-
},
|
806 |
-
"metadata": {},
|
807 |
-
"output_type": "display_data"
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"data": {
|
811 |
-
"text/plain": [
|
812 |
-
"CommitInfo(commit_url='https://huggingface.co/samsaara/medical_condition_classification/commit/73d201a08dd78ce2afea66736b188d271e652052', commit_message='End of training', commit_description='', oid='73d201a08dd78ce2afea66736b188d271e652052', pr_url=None, repo_url=RepoUrl('https://huggingface.co/samsaara/medical_condition_classification', endpoint='https://huggingface.co', repo_type='model', repo_id='samsaara/medical_condition_classification'), pr_revision=None, pr_num=None)"
|
813 |
-
]
|
814 |
-
},
|
815 |
-
"execution_count": 34,
|
816 |
-
"metadata": {},
|
817 |
-
"output_type": "execute_result"
|
818 |
-
}
|
819 |
-
],
|
820 |
-
"source": [
|
821 |
-
"trainer.push_to_hub()"
|
822 |
-
]
|
823 |
-
},
|
824 |
-
{
|
825 |
-
"cell_type": "code",
|
826 |
-
"execution_count": 36,
|
827 |
-
"id": "6e754047-4b6c-4b3c-80a1-8493009ac7ca",
|
828 |
-
"metadata": {},
|
829 |
-
"outputs": [
|
830 |
-
{
|
831 |
-
"data": {
|
832 |
-
"application/vnd.jupyter.widget-view+json": {
|
833 |
-
"model_id": "9f853954de9b4fe5bcf797878413702f",
|
834 |
-
"version_major": 2,
|
835 |
-
"version_minor": 0
|
836 |
-
},
|
837 |
-
"text/plain": [
|
838 |
-
"README.md: 0%| | 0.00/2.11k [00:00<?, ?B/s]"
|
839 |
-
]
|
840 |
-
},
|
841 |
-
"metadata": {},
|
842 |
-
"output_type": "display_data"
|
843 |
-
},
|
844 |
-
{
|
845 |
-
"data": {
|
846 |
-
"text/plain": [
|
847 |
-
"CommitInfo(commit_url='https://huggingface.co/samsaara/medical_condition_classification/commit/9a28b6773707f2b88e7eeb37bc811c642bb524c7', commit_message='tokenizer', commit_description='', oid='9a28b6773707f2b88e7eeb37bc811c642bb524c7', pr_url=None, repo_url=RepoUrl('https://huggingface.co/samsaara/medical_condition_classification', endpoint='https://huggingface.co', repo_type='model', repo_id='samsaara/medical_condition_classification'), pr_revision=None, pr_num=None)"
|
848 |
-
]
|
849 |
-
},
|
850 |
-
"execution_count": 36,
|
851 |
-
"metadata": {},
|
852 |
-
"output_type": "execute_result"
|
853 |
-
}
|
854 |
-
],
|
855 |
-
"source": [
|
856 |
-
"tokenizer.push_to_hub('medical_condition_classification', commit_message='tokenizer')"
|
857 |
-
]
|
858 |
-
},
|
859 |
-
{
|
860 |
-
"cell_type": "code",
|
861 |
-
"execution_count": 40,
|
862 |
-
"id": "2940e50a-328d-4f30-8cb7-30dd047d2f92",
|
863 |
-
"metadata": {},
|
864 |
-
"outputs": [
|
865 |
-
{
|
866 |
-
"data": {
|
867 |
-
"application/vnd.jupyter.widget-view+json": {
|
868 |
-
"model_id": "51c9d91e63664cba896e957841756995",
|
869 |
-
"version_major": 2,
|
870 |
-
"version_minor": 0
|
871 |
-
},
|
872 |
-
"text/plain": [
|
873 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
874 |
-
]
|
875 |
-
},
|
876 |
-
"metadata": {},
|
877 |
-
"output_type": "display_data"
|
878 |
-
},
|
879 |
-
{
|
880 |
-
"data": {
|
881 |
-
"application/vnd.jupyter.widget-view+json": {
|
882 |
-
"model_id": "e3bb0c86842e427eba71257d113c0845",
|
883 |
-
"version_major": 2,
|
884 |
-
"version_minor": 0
|
885 |
-
},
|
886 |
-
"text/plain": [
|
887 |
-
"Creating parquet from Arrow format: 0%| | 0/111 [00:00<?, ?ba/s]"
|
888 |
-
]
|
889 |
-
},
|
890 |
-
"metadata": {},
|
891 |
-
"output_type": "display_data"
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"data": {
|
895 |
-
"application/vnd.jupyter.widget-view+json": {
|
896 |
-
"model_id": "73d3373d5da04164a237ff56dc57fac5",
|
897 |
-
"version_major": 2,
|
898 |
-
"version_minor": 0
|
899 |
-
},
|
900 |
-
"text/plain": [
|
901 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
902 |
-
]
|
903 |
-
},
|
904 |
-
"metadata": {},
|
905 |
-
"output_type": "display_data"
|
906 |
-
},
|
907 |
-
{
|
908 |
-
"data": {
|
909 |
-
"application/vnd.jupyter.widget-view+json": {
|
910 |
-
"model_id": "df6679bdb3c342ffa2aab53922a3d1af",
|
911 |
-
"version_major": 2,
|
912 |
-
"version_minor": 0
|
913 |
-
},
|
914 |
-
"text/plain": [
|
915 |
-
"Creating parquet from Arrow format: 0%| | 0/28 [00:00<?, ?ba/s]"
|
916 |
-
]
|
917 |
-
},
|
918 |
-
"metadata": {},
|
919 |
-
"output_type": "display_data"
|
920 |
-
},
|
921 |
-
{
|
922 |
-
"data": {
|
923 |
-
"application/vnd.jupyter.widget-view+json": {
|
924 |
-
"model_id": "60772b393cdc4dca9191a538b9116169",
|
925 |
-
"version_major": 2,
|
926 |
-
"version_minor": 0
|
927 |
-
},
|
928 |
-
"text/plain": [
|
929 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
930 |
-
]
|
931 |
-
},
|
932 |
-
"metadata": {},
|
933 |
-
"output_type": "display_data"
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"data": {
|
937 |
-
"application/vnd.jupyter.widget-view+json": {
|
938 |
-
"model_id": "9b859655cbe34da184c8e6b6a07d0911",
|
939 |
-
"version_major": 2,
|
940 |
-
"version_minor": 0
|
941 |
-
},
|
942 |
-
"text/plain": [
|
943 |
-
"Creating parquet from Arrow format: 0%| | 0/47 [00:00<?, ?ba/s]"
|
944 |
-
]
|
945 |
-
},
|
946 |
-
"metadata": {},
|
947 |
-
"output_type": "display_data"
|
948 |
-
},
|
949 |
-
{
|
950 |
-
"data": {
|
951 |
-
"text/plain": [
|
952 |
-
"CommitInfo(commit_url='https://huggingface.co/datasets/samsaara/medical_condition_classification/commit/7aea5155fcba521a02ec3e9e8fb4e86d09dc44ba', commit_message='Upload dataset', commit_description='', oid='7aea5155fcba521a02ec3e9e8fb4e86d09dc44ba', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/samsaara/medical_condition_classification', endpoint='https://huggingface.co', repo_type='dataset', repo_id='samsaara/medical_condition_classification'), pr_revision=None, pr_num=None)"
|
953 |
-
]
|
954 |
-
},
|
955 |
-
"execution_count": 40,
|
956 |
-
"metadata": {},
|
957 |
-
"output_type": "execute_result"
|
958 |
-
}
|
959 |
-
],
|
960 |
-
"source": [
|
961 |
-
"tokenized_dataset.push_to_hub('medical_condition_classification')"
|
962 |
-
]
|
963 |
-
},
|
964 |
-
{
|
965 |
-
"cell_type": "code",
|
966 |
-
"execution_count": 42,
|
967 |
-
"id": "4bbf39bb-fea9-4b5b-8d87-7a9835975358",
|
968 |
-
"metadata": {},
|
969 |
-
"outputs": [],
|
970 |
-
"source": [
|
971 |
-
"api = HfApi(token=access_token)"
|
972 |
-
]
|
973 |
-
},
|
974 |
-
{
|
975 |
-
"cell_type": "code",
|
976 |
-
"execution_count": 46,
|
977 |
-
"id": "16e0625b-5518-463a-96e2-2d008341b1f1",
|
978 |
-
"metadata": {},
|
979 |
-
"outputs": [
|
980 |
-
{
|
981 |
-
"data": {
|
982 |
-
"text/plain": [
|
983 |
-
"CommitInfo(commit_url='https://huggingface.co/samsaara/medical_condition_classification/commit/98ede0386065880a4cfefcb0ab1c9d7bfc9d081d', commit_message='update README', commit_description='', oid='98ede0386065880a4cfefcb0ab1c9d7bfc9d081d', pr_url=None, repo_url=RepoUrl('https://huggingface.co/samsaara/medical_condition_classification', endpoint='https://huggingface.co', repo_type='model', repo_id='samsaara/medical_condition_classification'), pr_revision=None, pr_num=None)"
|
984 |
-
]
|
985 |
-
},
|
986 |
-
"execution_count": 46,
|
987 |
-
"metadata": {},
|
988 |
-
"output_type": "execute_result"
|
989 |
-
}
|
990 |
-
],
|
991 |
-
"source": [
|
992 |
-
"api.upload_file(\n",
|
993 |
-
" path_or_fileobj='./medical_condition_classification/README.md', \n",
|
994 |
-
" path_in_repo='README.md',\n",
|
995 |
-
" repo_id='samsaara/medical_condition_classification', \n",
|
996 |
-
" commit_message='update README'\n",
|
997 |
-
")"
|
998 |
-
]
|
999 |
-
},
|
1000 |
-
{
|
1001 |
-
"cell_type": "code",
|
1002 |
-
"execution_count": 47,
|
1003 |
-
"id": "4144a617-f0d6-41d3-9a44-90833b8bb1f5",
|
1004 |
-
"metadata": {},
|
1005 |
-
"outputs": [
|
1006 |
-
{
|
1007 |
-
"data": {
|
1008 |
-
"text/plain": [
|
1009 |
-
"CommitInfo(commit_url='https://huggingface.co/samsaara/medical_condition_classification/commit/53b029a816883983962ebe0050977be8ee501d82', commit_message='notebook for training & evaluation', commit_description='', oid='53b029a816883983962ebe0050977be8ee501d82', pr_url=None, repo_url=RepoUrl('https://huggingface.co/samsaara/medical_condition_classification', endpoint='https://huggingface.co', repo_type='model', repo_id='samsaara/medical_condition_classification'), pr_revision=None, pr_num=None)"
|
1010 |
-
]
|
1011 |
-
},
|
1012 |
-
"execution_count": 47,
|
1013 |
-
"metadata": {},
|
1014 |
-
"output_type": "execute_result"
|
1015 |
-
}
|
1016 |
-
],
|
1017 |
-
"source": [
|
1018 |
-
"api.upload_file(\n",
|
1019 |
-
" path_or_fileobj='datasets.ipynb', \n",
|
1020 |
-
" path_in_repo='datasets.ipynb',\n",
|
1021 |
-
" repo_id='samsaara/medical_condition_classification', \n",
|
1022 |
-
" commit_message='notebook for training & evaluation'\n",
|
1023 |
-
")"
|
1024 |
-
]
|
1025 |
-
},
|
1026 |
-
{
|
1027 |
-
"cell_type": "code",
|
1028 |
-
"execution_count": null,
|
1029 |
-
"id": "2de298eb-82f2-482b-acee-36c6a1e630b8",
|
1030 |
-
"metadata": {},
|
1031 |
-
"outputs": [],
|
1032 |
-
"source": []
|
1033 |
-
}
|
1034 |
-
],
|
1035 |
-
"metadata": {
|
1036 |
-
"kernelspec": {
|
1037 |
-
"display_name": "Python 3 (ipykernel)",
|
1038 |
-
"language": "python",
|
1039 |
-
"name": "python3"
|
1040 |
-
},
|
1041 |
-
"language_info": {
|
1042 |
-
"codemirror_mode": {
|
1043 |
-
"name": "ipython",
|
1044 |
-
"version": 3
|
1045 |
-
},
|
1046 |
-
"file_extension": ".py",
|
1047 |
-
"mimetype": "text/x-python",
|
1048 |
-
"name": "python",
|
1049 |
-
"nbconvert_exporter": "python",
|
1050 |
-
"pygments_lexer": "ipython3",
|
1051 |
-
"version": "3.11.10"
|
1052 |
-
}
|
1053 |
-
},
|
1054 |
-
"nbformat": 4,
|
1055 |
-
"nbformat_minor": 5
|
1056 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|