Commit
•
e41bb55
1
Parent(s):
31d7cf2
Saving weights and logs of epoch 0
Browse files- config.json +1 -0
- events.out.tfevents.1647623127.t1v-n-4eb331dd-w-0.109040.0.v2 +3 -0
- events.out.tfevents.1647624498.t1v-n-4eb331dd-w-0.110942.0.v2 +3 -0
- events.out.tfevents.1647625887.t1v-n-4eb331dd-w-0.115000.0.v2 +3 -0
- events.out.tfevents.1647626125.t1v-n-4eb331dd-w-0.116613.0.v2 +3 -0
- events.out.tfevents.1647626511.t1v-n-4eb331dd-w-0.118537.0.v2 +3 -0
- events.out.tfevents.1647626831.t1v-n-4eb331dd-w-0.120349.0.v2 +3 -0
- flax_model.msgpack +3 -0
- run_flax_speech_recognition_seq2seq.py +0 -897
- run_flax_speech_recognition_seq2seq.py +1 -0
- run_librispeech.sh +8 -6
- tokenizer_config.json +1 -1
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"SpeechEncoderDecoderModel"
|
4 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "./",
|
3 |
"architectures": [
|
4 |
"SpeechEncoderDecoderModel"
|
5 |
],
|
events.out.tfevents.1647623127.t1v-n-4eb331dd-w-0.109040.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8cc2df64b0ca4a2236b9256fd012c09849a8ebffb8bba82e1f30d87f3b832c
|
3 |
+
size 40
|
events.out.tfevents.1647624498.t1v-n-4eb331dd-w-0.110942.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d960465927b4baa73a2e2f7d162582318d2bc5d03535397ef6fad511e0a93ea0
|
3 |
+
size 40
|
events.out.tfevents.1647625887.t1v-n-4eb331dd-w-0.115000.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92e87288c18763cf7eae5684e5cfd830378ebd19fc3e30e79387aa93421828eb
|
3 |
+
size 40
|
events.out.tfevents.1647626125.t1v-n-4eb331dd-w-0.116613.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be739bafc4ee271f78a915990b4341088fcfdce8601b621e59a9475c1ccd9a81
|
3 |
+
size 14838
|
events.out.tfevents.1647626511.t1v-n-4eb331dd-w-0.118537.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eed09b08de9e164e23417088d103a92327435e856b346f8ca112028e7f7d74c
|
3 |
+
size 40
|
events.out.tfevents.1647626831.t1v-n-4eb331dd-w-0.120349.0.v2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a77d713c620597fd2f46f26536620b1f808b02fc61ff831d87c7663750336bb
|
3 |
+
size 8961
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76f60c95bce357dcd23f2d771192e67edceba6efa2097e874e50084f0859cd91
|
3 |
+
size 2353635949
|
run_flax_speech_recognition_seq2seq.py
DELETED
@@ -1,897 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding=utf-8
|
3 |
-
# Copyright 2022 The HuggingFace Team All rights reserved.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
"""
|
17 |
-
Fine-tuning the Flax library models for sequence to sequence speech recognition.
|
18 |
-
"""
|
19 |
-
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
20 |
-
|
21 |
-
import logging
|
22 |
-
import os
|
23 |
-
import sys
|
24 |
-
import time
|
25 |
-
from dataclasses import field
|
26 |
-
from functools import partial
|
27 |
-
from pathlib import Path
|
28 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
29 |
-
|
30 |
-
import datasets
|
31 |
-
import numpy as np
|
32 |
-
from datasets import DatasetDict, load_dataset, load_metric
|
33 |
-
from tqdm import tqdm
|
34 |
-
|
35 |
-
import flax
|
36 |
-
import jax
|
37 |
-
import jax.numpy as jnp
|
38 |
-
import optax
|
39 |
-
import transformers
|
40 |
-
from flax import jax_utils, traverse_util
|
41 |
-
from flax.jax_utils import unreplicate
|
42 |
-
from flax.training import train_state
|
43 |
-
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
44 |
-
from huggingface_hub import Repository
|
45 |
-
from transformers import (
|
46 |
-
AutoConfig,
|
47 |
-
AutoFeatureExtractor,
|
48 |
-
AutoProcessor,
|
49 |
-
AutoTokenizer,
|
50 |
-
FlaxAutoModelForSpeechSeq2Seq,
|
51 |
-
HfArgumentParser,
|
52 |
-
Seq2SeqTrainingArguments,
|
53 |
-
is_tensorboard_available,
|
54 |
-
)
|
55 |
-
from transformers.file_utils import get_full_repo_name
|
56 |
-
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
57 |
-
from transformers.utils import check_min_version
|
58 |
-
from transformers.utils.versions import require_version
|
59 |
-
|
60 |
-
|
61 |
-
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
62 |
-
check_min_version("4.17.0.dev0")
|
63 |
-
|
64 |
-
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
65 |
-
|
66 |
-
logger = logging.getLogger(__name__)
|
67 |
-
|
68 |
-
|
69 |
-
@flax.struct.dataclass
|
70 |
-
class ModelArguments:
|
71 |
-
"""
|
72 |
-
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
73 |
-
"""
|
74 |
-
|
75 |
-
model_name_or_path: str = field(
|
76 |
-
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
77 |
-
)
|
78 |
-
config_name: Optional[str] = field(
|
79 |
-
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
80 |
-
)
|
81 |
-
tokenizer_name: Optional[str] = field(
|
82 |
-
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
83 |
-
)
|
84 |
-
feature_extractor_name: Optional[str] = field(
|
85 |
-
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
|
86 |
-
)
|
87 |
-
cache_dir: Optional[str] = field(
|
88 |
-
default=None,
|
89 |
-
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
|
90 |
-
)
|
91 |
-
use_fast_tokenizer: bool = field(
|
92 |
-
default=True,
|
93 |
-
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
94 |
-
)
|
95 |
-
model_revision: str = field(
|
96 |
-
default="main",
|
97 |
-
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
98 |
-
)
|
99 |
-
use_auth_token: bool = field(
|
100 |
-
default=False,
|
101 |
-
metadata={
|
102 |
-
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
103 |
-
"with private models)."
|
104 |
-
},
|
105 |
-
)
|
106 |
-
freeze_feature_encoder: bool = field(
|
107 |
-
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
108 |
-
)
|
109 |
-
|
110 |
-
|
111 |
-
@flax.struct.dataclass
|
112 |
-
class DataTrainingArguments:
|
113 |
-
"""
|
114 |
-
Arguments pertaining to what data we are going to input our model for training and eval.
|
115 |
-
"""
|
116 |
-
|
117 |
-
dataset_name: str = field(
|
118 |
-
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
119 |
-
)
|
120 |
-
dataset_config_name: Optional[str] = field(
|
121 |
-
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
122 |
-
)
|
123 |
-
text_column: Optional[str] = field(
|
124 |
-
default=None,
|
125 |
-
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
|
126 |
-
)
|
127 |
-
overwrite_cache: bool = field(
|
128 |
-
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
129 |
-
)
|
130 |
-
preprocessing_num_workers: Optional[int] = field(
|
131 |
-
default=None,
|
132 |
-
metadata={"help": "The number of processes to use for the preprocessing."},
|
133 |
-
)
|
134 |
-
max_train_samples: Optional[int] = field(
|
135 |
-
default=None,
|
136 |
-
metadata={
|
137 |
-
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
138 |
-
"value if set."
|
139 |
-
},
|
140 |
-
)
|
141 |
-
max_eval_samples: Optional[int] = field(
|
142 |
-
default=None,
|
143 |
-
metadata={
|
144 |
-
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
145 |
-
"value if set."
|
146 |
-
},
|
147 |
-
)
|
148 |
-
audio_column_name: str = field(
|
149 |
-
default="audio",
|
150 |
-
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
151 |
-
)
|
152 |
-
text_column_name: str = field(
|
153 |
-
default="text",
|
154 |
-
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
155 |
-
)
|
156 |
-
max_duration_in_seconds: float = field(
|
157 |
-
default=20.0,
|
158 |
-
metadata={
|
159 |
-
"help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
160 |
-
},
|
161 |
-
)
|
162 |
-
min_duration_in_seconds: float = field(
|
163 |
-
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
164 |
-
)
|
165 |
-
max_target_length: Optional[int] = field(
|
166 |
-
default=128,
|
167 |
-
metadata={
|
168 |
-
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
169 |
-
"than this will be truncated, sequences shorter will be padded."
|
170 |
-
},
|
171 |
-
)
|
172 |
-
min_target_length: Optional[int] = field(
|
173 |
-
default=0,
|
174 |
-
metadata={
|
175 |
-
"help": "The minimum total sequence length for target text after tokenization. Sequences shorter "
|
176 |
-
"than this will be filtered."
|
177 |
-
},
|
178 |
-
)
|
179 |
-
pad_input_to_multiple_of: Optional[int] = field(
|
180 |
-
default=None,
|
181 |
-
metadata={
|
182 |
-
"help": "If set will pad the input sequence to a multiple of the provided value. This is important to avoid triggering recompilations on TPU"
|
183 |
-
},
|
184 |
-
)
|
185 |
-
pad_target_to_multiple_of: Optional[int] = field(
|
186 |
-
default=None,
|
187 |
-
metadata={
|
188 |
-
"help": "If set will pad the target sequence to a multiple of the provided value. This is important to avoid triggering recompilations on TPU"
|
189 |
-
},
|
190 |
-
)
|
191 |
-
preprocessing_only: bool = field(
|
192 |
-
default=False,
|
193 |
-
metadata={
|
194 |
-
"help": "Whether to only do data preprocessing and skip training. "
|
195 |
-
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
196 |
-
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
197 |
-
"so that the cached datasets can consequently be loaded in distributed training"
|
198 |
-
},
|
199 |
-
)
|
200 |
-
train_split_name: str = field(
|
201 |
-
default="train",
|
202 |
-
metadata={
|
203 |
-
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
204 |
-
},
|
205 |
-
)
|
206 |
-
eval_split_name: str = field(
|
207 |
-
default="test",
|
208 |
-
metadata={
|
209 |
-
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
210 |
-
},
|
211 |
-
)
|
212 |
-
do_lower_case: bool = field(
|
213 |
-
default=True,
|
214 |
-
metadata={"help": "Whether the target text should be lower cased."},
|
215 |
-
)
|
216 |
-
|
217 |
-
|
218 |
-
class TrainState(train_state.TrainState):
|
219 |
-
dropout_rng: jnp.ndarray
|
220 |
-
|
221 |
-
def replicate(self):
|
222 |
-
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
223 |
-
|
224 |
-
|
225 |
-
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
|
226 |
-
"""
|
227 |
-
Shift label ids one token to the right.
|
228 |
-
"""
|
229 |
-
shifted_label_ids = np.zeros_like(label_ids)
|
230 |
-
shifted_label_ids[:, 1:] = label_ids[:, :-1]
|
231 |
-
shifted_label_ids[:, 0] = decoder_start_token_id
|
232 |
-
|
233 |
-
return shifted_label_ids
|
234 |
-
|
235 |
-
|
236 |
-
@flax.struct.dataclass
|
237 |
-
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
|
238 |
-
"""
|
239 |
-
Data collator that will dynamically pad the inputs received.
|
240 |
-
Args:
|
241 |
-
processor ([`Wav2Vec2Processor`])
|
242 |
-
The processor used for proccessing the data.
|
243 |
-
decoder_start_token_id (`int`)
|
244 |
-
The begin-of-sentence of the decoder.
|
245 |
-
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
246 |
-
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
|
247 |
-
among:
|
248 |
-
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
249 |
-
sequence if provided).
|
250 |
-
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
251 |
-
maximum acceptable input length for the model if that argument is not provided.
|
252 |
-
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
253 |
-
different lengths).
|
254 |
-
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
255 |
-
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
|
256 |
-
See above for details.
|
257 |
-
max_input_length (:obj:`float`, `optional`):
|
258 |
-
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
259 |
-
max_target_length (:obj:`int`, `optional`):
|
260 |
-
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
|
261 |
-
pad_input_to_multiple_of (:obj:`int`, `optional`):
|
262 |
-
If set will pad the input sequence to a multiple of the provided value.
|
263 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
264 |
-
7.5 (Volta).
|
265 |
-
pad_target_to_multiple_of (:obj:`int`, `optional`):
|
266 |
-
If set will pad the target sequence to a multiple of the provided value.
|
267 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
268 |
-
7.5 (Volta).
|
269 |
-
"""
|
270 |
-
|
271 |
-
processor: Any
|
272 |
-
decoder_start_token_id: int
|
273 |
-
input_padding: Union[bool, str] = "max_length"
|
274 |
-
target_padding: Union[bool, str] = "max_length"
|
275 |
-
max_input_length: Optional[float] = None
|
276 |
-
max_target_length: Optional[int] = None
|
277 |
-
pad_input_to_multiple_of: Optional[int] = None
|
278 |
-
pad_target_to_multiple_of: Optional[int] = None
|
279 |
-
|
280 |
-
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
|
281 |
-
# split inputs and labels since they have to be of different lengths and need
|
282 |
-
# different padding methods
|
283 |
-
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
284 |
-
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
285 |
-
|
286 |
-
# reformat list to dict and set to pytorch format
|
287 |
-
batch = self.processor.feature_extractor.pad(
|
288 |
-
input_features,
|
289 |
-
max_length=self.max_input_length,
|
290 |
-
padding=self.input_padding,
|
291 |
-
pad_to_multiple_of=self.pad_input_to_multiple_of,
|
292 |
-
return_tensors="np",
|
293 |
-
)
|
294 |
-
|
295 |
-
labels_batch = self.processor.tokenizer.pad(
|
296 |
-
label_features,
|
297 |
-
max_length=self.max_target_length,
|
298 |
-
padding=self.target_padding,
|
299 |
-
pad_to_multiple_of=self.pad_target_to_multiple_of,
|
300 |
-
return_tensors="np",
|
301 |
-
)
|
302 |
-
|
303 |
-
# if bos token is appended in previous tokenization step,
|
304 |
-
# cut bos token here as it's append later anyways
|
305 |
-
labels = labels_batch["input_ids"]
|
306 |
-
if (labels[:, 0] == self.decoder_start_token_id).all().item():
|
307 |
-
labels = labels[:, 1:]
|
308 |
-
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
|
309 |
-
|
310 |
-
decoder_input_ids = shift_tokens_right(labels, self.decoder_start_token_id)
|
311 |
-
|
312 |
-
# replace padding with -100 to ignore loss correctly
|
313 |
-
labels = np.ma.array(labels, mask=np.not_equal(labels_batch.attention_mask, 1))
|
314 |
-
labels = labels.filled(fill_value=-100)
|
315 |
-
|
316 |
-
batch["inputs"] = batch.pop("input_values")
|
317 |
-
batch["labels"] = labels
|
318 |
-
batch["decoder_input_ids"] = decoder_input_ids
|
319 |
-
# decoder_attention_mask known to give issues with nan's
|
320 |
-
# remove decoder_attention_mask as an arg for the time being - handled by the causal mask in XXXForCausalLM
|
321 |
-
# batch["decoder_attention_mask"] = labels_batch.attention_mask
|
322 |
-
|
323 |
-
return batch
|
324 |
-
|
325 |
-
|
326 |
-
def write_train_metric(summary_writer, train_metrics, train_time, step):
|
327 |
-
summary_writer.scalar("train_time", train_time, step)
|
328 |
-
|
329 |
-
train_metrics = get_metrics(train_metrics)
|
330 |
-
for key, vals in train_metrics.items():
|
331 |
-
tag = f"train_{key}"
|
332 |
-
for i, val in enumerate(vals):
|
333 |
-
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
334 |
-
|
335 |
-
|
336 |
-
def write_eval_metric(summary_writer, eval_metrics, step):
|
337 |
-
for metric_name, value in eval_metrics.items():
|
338 |
-
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
339 |
-
|
340 |
-
|
341 |
-
def create_learning_rate_fn(
|
342 |
-
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
343 |
-
) -> Callable[[int], jnp.array]:
|
344 |
-
"""Returns a linear warmup, linear_decay learning rate function."""
|
345 |
-
steps_per_epoch = train_ds_size // train_batch_size
|
346 |
-
num_train_steps = steps_per_epoch * num_train_epochs
|
347 |
-
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
348 |
-
decay_fn = optax.linear_schedule(
|
349 |
-
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
350 |
-
)
|
351 |
-
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
352 |
-
return schedule_fn
|
353 |
-
|
354 |
-
|
355 |
-
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
|
356 |
-
num_samples = len(samples_idx)
|
357 |
-
samples_to_remove = num_samples % batch_size
|
358 |
-
|
359 |
-
if samples_to_remove != 0:
|
360 |
-
samples_idx = samples_idx[:-samples_to_remove]
|
361 |
-
sections_split = num_samples // batch_size
|
362 |
-
batch_idx = np.split(samples_idx, sections_split)
|
363 |
-
return batch_idx
|
364 |
-
|
365 |
-
|
366 |
-
def main():
|
367 |
-
# 1. Parse input arguments
|
368 |
-
# See all possible arguments in src/transformers/training_args.py
|
369 |
-
# or by passing the --help flag to this script.
|
370 |
-
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
371 |
-
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
|
372 |
-
|
373 |
-
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
374 |
-
# If we pass only one argument to the script and it's the path to a json file,
|
375 |
-
# let's parse it to get our arguments.
|
376 |
-
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
377 |
-
else:
|
378 |
-
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
379 |
-
|
380 |
-
# 2. Setup logging
|
381 |
-
logging.basicConfig(
|
382 |
-
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
383 |
-
datefmt="%m/%d/%Y %H:%M:%S",
|
384 |
-
handlers=[logging.StreamHandler(sys.stdout)],
|
385 |
-
)
|
386 |
-
# We only want one process per machine to log things on the screen.
|
387 |
-
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
388 |
-
if jax.process_index() == 0:
|
389 |
-
datasets.utils.logging.set_verbosity_warning()
|
390 |
-
transformers.utils.logging.set_verbosity_info()
|
391 |
-
else:
|
392 |
-
datasets.utils.logging.set_verbosity_error()
|
393 |
-
transformers.utils.logging.set_verbosity_error()
|
394 |
-
|
395 |
-
# Log on each process the small summary:
|
396 |
-
logger.warning(
|
397 |
-
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
398 |
-
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
399 |
-
)
|
400 |
-
|
401 |
-
# Set the verbosity to info of the Transformers logger (on main process only):
|
402 |
-
if is_main_process(training_args.local_rank):
|
403 |
-
transformers.utils.logging.set_verbosity_info()
|
404 |
-
logger.info("Training/evaluation parameters %s", training_args)
|
405 |
-
|
406 |
-
logger.info(f"JAX devices: {jax.device_count()}")
|
407 |
-
|
408 |
-
# 3. Detecting last checkpoint and eventually continue from last checkpoint
|
409 |
-
last_checkpoint = None
|
410 |
-
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
411 |
-
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
412 |
-
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
413 |
-
raise ValueError(
|
414 |
-
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
415 |
-
"Use --overwrite_output_dir to overcome."
|
416 |
-
)
|
417 |
-
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
418 |
-
logger.info(
|
419 |
-
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
420 |
-
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
421 |
-
)
|
422 |
-
|
423 |
-
# 4. Load dataset
|
424 |
-
raw_datasets = DatasetDict()
|
425 |
-
|
426 |
-
if training_args.do_train:
|
427 |
-
raw_datasets["train"] = load_dataset(
|
428 |
-
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
|
429 |
-
)
|
430 |
-
|
431 |
-
if training_args.do_eval:
|
432 |
-
raw_datasets["eval"] = load_dataset(
|
433 |
-
data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name
|
434 |
-
)
|
435 |
-
|
436 |
-
if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names:
|
437 |
-
raise ValueError(
|
438 |
-
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
439 |
-
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
440 |
-
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
441 |
-
)
|
442 |
-
|
443 |
-
if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names:
|
444 |
-
raise ValueError(
|
445 |
-
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
446 |
-
"Make sure to set `--text_column_name` to the correct text column - one of "
|
447 |
-
f"{', '.join(next(iter(raw_datasets.values())).column_names)}."
|
448 |
-
)
|
449 |
-
|
450 |
-
# 5. Load pretrained model, tokenizer, and feature extractor
|
451 |
-
#
|
452 |
-
# Distributed training:
|
453 |
-
# The .from_pretrained methods guarantee that only one local process can concurrently
|
454 |
-
config = AutoConfig.from_pretrained(
|
455 |
-
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
456 |
-
cache_dir=model_args.cache_dir,
|
457 |
-
revision=model_args.model_revision,
|
458 |
-
use_auth_token=True if model_args.use_auth_token else None,
|
459 |
-
)
|
460 |
-
|
461 |
-
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
462 |
-
model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path,
|
463 |
-
cache_dir=model_args.cache_dir,
|
464 |
-
revision=model_args.model_revision,
|
465 |
-
use_auth_token=True if model_args.use_auth_token else None,
|
466 |
-
)
|
467 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
468 |
-
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
469 |
-
cache_dir=model_args.cache_dir,
|
470 |
-
use_fast=model_args.use_fast_tokenizer,
|
471 |
-
revision=model_args.model_revision,
|
472 |
-
use_auth_token=True if model_args.use_auth_token else None,
|
473 |
-
)
|
474 |
-
model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained(
|
475 |
-
model_args.model_name_or_path,
|
476 |
-
config=config,
|
477 |
-
cache_dir=model_args.cache_dir,
|
478 |
-
revision=model_args.model_revision,
|
479 |
-
use_auth_token=True if model_args.use_auth_token else None,
|
480 |
-
)
|
481 |
-
|
482 |
-
if model.config.decoder_start_token_id is None:
|
483 |
-
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
|
484 |
-
|
485 |
-
# 6. Resample speech dataset if necessary
|
486 |
-
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
487 |
-
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
488 |
-
raw_datasets = raw_datasets.cast_column(
|
489 |
-
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
490 |
-
)
|
491 |
-
|
492 |
-
# 7. Preprocessing the datasets.
|
493 |
-
# We need to read the audio files as arrays and tokenize the targets.
|
494 |
-
max_input_length = int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
|
495 |
-
min_input_length = int(data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
|
496 |
-
max_target_length = data_args.max_target_length
|
497 |
-
min_target_length = data_args.min_target_length
|
498 |
-
pad_input_to_multiple_of = data_args.pad_input_to_multiple_of
|
499 |
-
pad_target_to_multiple_of = data_args.pad_target_to_multiple_of
|
500 |
-
audio_column_name = data_args.audio_column_name
|
501 |
-
num_workers = data_args.preprocessing_num_workers
|
502 |
-
text_column_name = data_args.text_column_name
|
503 |
-
model_input_name = feature_extractor.model_input_names[0]
|
504 |
-
do_lower_case = data_args.do_lower_case
|
505 |
-
|
506 |
-
if data_args.max_train_samples is not None:
|
507 |
-
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
508 |
-
|
509 |
-
if data_args.max_eval_samples is not None:
|
510 |
-
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
511 |
-
|
512 |
-
def prepare_dataset(batch):
|
513 |
-
# process audio
|
514 |
-
sample = batch[audio_column_name]
|
515 |
-
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
516 |
-
# process audio length
|
517 |
-
batch[model_input_name] = inputs.input_values[0]
|
518 |
-
batch["input_length"] = len(batch["input_values"])
|
519 |
-
|
520 |
-
# process targets
|
521 |
-
input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name]
|
522 |
-
batch["labels"] = tokenizer(input_str).input_ids
|
523 |
-
batch["labels_length"] = len(batch["labels"])
|
524 |
-
return batch
|
525 |
-
|
526 |
-
with training_args.main_process_first(desc="dataset map pre-processing"):
|
527 |
-
vectorized_datasets = raw_datasets.map(
|
528 |
-
prepare_dataset,
|
529 |
-
remove_columns=next(iter(raw_datasets.values())).column_names,
|
530 |
-
num_proc=data_args.preprocessing_num_workers,
|
531 |
-
desc="preprocess train dataset",
|
532 |
-
)
|
533 |
-
|
534 |
-
# filter data with inputs shorter than min_input_length or longer than
|
535 |
-
# max_input_length
|
536 |
-
def is_audio_in_length_range(length):
|
537 |
-
return length > min_input_length and length < max_input_length
|
538 |
-
|
539 |
-
vectorized_datasets = vectorized_datasets.filter(
|
540 |
-
is_audio_in_length_range,
|
541 |
-
num_proc=num_workers,
|
542 |
-
input_columns=["input_length"],
|
543 |
-
)
|
544 |
-
|
545 |
-
# filter data with targets shorter than min_target_length or longer than
|
546 |
-
# max_target_length
|
547 |
-
def is_labels_in_length_range(length):
|
548 |
-
return length > min_target_length and length < max_target_length
|
549 |
-
|
550 |
-
vectorized_datasets = vectorized_datasets.filter(
|
551 |
-
is_labels_in_length_range,
|
552 |
-
num_proc=num_workers,
|
553 |
-
input_columns=["labels_length"],
|
554 |
-
)
|
555 |
-
|
556 |
-
# for large datasets it is advised to run the preprocessing on a
|
557 |
-
# single machine first with `args.preprocessing_only` since there will mostly likely
|
558 |
-
# be a timeout when running the script in distributed mode.
|
559 |
-
# In a second step `args.preprocessing_only` can then be set to `False` to load the
|
560 |
-
# cached dataset
|
561 |
-
if data_args.preprocessing_only:
|
562 |
-
cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
563 |
-
logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
564 |
-
return
|
565 |
-
|
566 |
-
# 8. Load Metric
|
567 |
-
metric = load_metric("wer")
|
568 |
-
|
569 |
-
def compute_metrics(pred_ids: List[List[int]], label_ids: List[List[int]]):
|
570 |
-
padded_ids = np.where(np.asarray(label_ids) == -100, tokenizer.pad_token_id, np.asarray(label_ids))
|
571 |
-
|
572 |
-
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
573 |
-
# we do not want to group tokens when computing the metrics
|
574 |
-
label_str = tokenizer.batch_decode(padded_ids, skip_special_tokens=True)
|
575 |
-
|
576 |
-
wer = metric.compute(predictions=pred_str, references=label_str)
|
577 |
-
|
578 |
-
return {"wer": wer}
|
579 |
-
|
580 |
-
# 9. Create a single speech processor
|
581 |
-
if is_main_process(training_args.local_rank):
|
582 |
-
# save feature extractor, tokenizer and config
|
583 |
-
feature_extractor.save_pretrained(training_args.output_dir)
|
584 |
-
tokenizer.save_pretrained(training_args.output_dir)
|
585 |
-
config.save_pretrained(training_args.output_dir)
|
586 |
-
|
587 |
-
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
588 |
-
|
589 |
-
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
|
590 |
-
processor=processor,
|
591 |
-
decoder_start_token_id=model.config.decoder_start_token_id,
|
592 |
-
input_padding="max_length",
|
593 |
-
target_padding="max_length",
|
594 |
-
max_input_length=max_input_length,
|
595 |
-
max_target_length=max_target_length,
|
596 |
-
pad_input_to_multiple_of=pad_input_to_multiple_of,
|
597 |
-
pad_target_to_multiple_of=pad_target_to_multiple_of,
|
598 |
-
)
|
599 |
-
|
600 |
-
# Enable tensorboard only on the master node
|
601 |
-
has_tensorboard = is_tensorboard_available()
|
602 |
-
if has_tensorboard and jax.process_index() == 0:
|
603 |
-
try:
|
604 |
-
from flax.metrics.tensorboard import SummaryWriter
|
605 |
-
|
606 |
-
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
|
607 |
-
except ImportError as ie:
|
608 |
-
has_tensorboard = False
|
609 |
-
logger.warning(
|
610 |
-
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
|
611 |
-
)
|
612 |
-
else:
|
613 |
-
logger.warning(
|
614 |
-
"Unable to display metrics through TensorBoard because the package is not installed: "
|
615 |
-
"Please run `pip install tensorboard` to enable."
|
616 |
-
)
|
617 |
-
|
618 |
-
# 10. Handle the repository creation
|
619 |
-
if training_args.push_to_hub:
|
620 |
-
if training_args.hub_model_id is None:
|
621 |
-
repo_name = get_full_repo_name(
|
622 |
-
Path(training_args.output_dir).absolute().name, token=training_args.hub_token
|
623 |
-
)
|
624 |
-
else:
|
625 |
-
repo_name = training_args.hub_model_id
|
626 |
-
repo = Repository(training_args.output_dir, clone_from=repo_name)
|
627 |
-
|
628 |
-
# 11. Initialize our training
|
629 |
-
rng = jax.random.PRNGKey(training_args.seed)
|
630 |
-
rng, dropout_rng = jax.random.split(rng)
|
631 |
-
|
632 |
-
# Store some constant
|
633 |
-
num_epochs = int(training_args.num_train_epochs)
|
634 |
-
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
635 |
-
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
636 |
-
steps_per_epoch = len(vectorized_datasets["train"]) // train_batch_size
|
637 |
-
total_train_steps = steps_per_epoch * num_epochs
|
638 |
-
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
639 |
-
|
640 |
-
# Create learning rate schedule
|
641 |
-
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
642 |
-
len(vectorized_datasets["train"]),
|
643 |
-
train_batch_size,
|
644 |
-
training_args.num_train_epochs,
|
645 |
-
training_args.warmup_steps,
|
646 |
-
training_args.learning_rate,
|
647 |
-
)
|
648 |
-
|
649 |
-
# We use Optax's "masking" functionality to not apply weight decay
|
650 |
-
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
651 |
-
# mask boolean with the same structure as the parameters.
|
652 |
-
# The mask is True for parameters that should be decayed.
|
653 |
-
# Note that this mask is specifically adapted for FlaxBart.
|
654 |
-
# For FlaxT5, one should correct the layer norm parameter naming
|
655 |
-
# accordingly - see `run_t5_mlm_flax.py` e.g.
|
656 |
-
# TODO: check param dictionary of encoder and decoder match the layer_norm_params list
|
657 |
-
def decay_mask_fn(params):
|
658 |
-
flat_params = traverse_util.flatten_dict(params)
|
659 |
-
layer_norm_params = [
|
660 |
-
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
|
661 |
-
]
|
662 |
-
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
|
663 |
-
return traverse_util.unflatten_dict(flat_mask)
|
664 |
-
|
665 |
-
# create adam optimizer
|
666 |
-
adamw = optax.adamw(
|
667 |
-
learning_rate=linear_decay_lr_schedule_fn,
|
668 |
-
b1=training_args.adam_beta1,
|
669 |
-
b2=training_args.adam_beta2,
|
670 |
-
eps=training_args.adam_epsilon,
|
671 |
-
weight_decay=training_args.weight_decay,
|
672 |
-
mask=decay_mask_fn,
|
673 |
-
)
|
674 |
-
|
675 |
-
# augment adam optimizer to facilitate gradient accumulation (ignore for now)
|
676 |
-
# optim = optax.chain(adamw, optax.apply_every(gradient_accumulation_steps))
|
677 |
-
|
678 |
-
# Setup train state
|
679 |
-
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
|
680 |
-
|
681 |
-
# label smoothed cross entropy
|
682 |
-
def loss_fn(logits, labels, label_smoothing_factor=0.0):
|
683 |
-
"""
|
684 |
-
The label smoothing implementation is adapted from Flax's official example:
|
685 |
-
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
686 |
-
"""
|
687 |
-
vocab_size = logits.shape[-1]
|
688 |
-
confidence = 1.0 - label_smoothing_factor
|
689 |
-
low_confidence = (1.0 - confidence) / (vocab_size - 1)
|
690 |
-
normalizing_constant = -(
|
691 |
-
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
|
692 |
-
)
|
693 |
-
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
|
694 |
-
|
695 |
-
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
696 |
-
loss = loss - normalizing_constant
|
697 |
-
|
698 |
-
# ignore padded tokens from loss, i.e. where labels are not set to -100
|
699 |
-
padding = labels > 0
|
700 |
-
loss = loss * padding
|
701 |
-
loss = loss.sum() / padding.sum()
|
702 |
-
return loss
|
703 |
-
|
704 |
-
# Define gradient update step fn
|
705 |
-
def train_step(state, batch, label_smoothing_factor=0.0):
|
706 |
-
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
707 |
-
|
708 |
-
def compute_loss(params):
|
709 |
-
labels = batch.pop("labels")
|
710 |
-
outputs = state.apply_fn(
|
711 |
-
**batch,
|
712 |
-
params=params,
|
713 |
-
dropout_rng=dropout_rng,
|
714 |
-
freeze_feature_encoder=model_args.freeze_feature_encoder,
|
715 |
-
return_dict=True,
|
716 |
-
output_attentions=True,
|
717 |
-
output_hidden_states=True,
|
718 |
-
train=True,
|
719 |
-
)
|
720 |
-
encoder_hidden_states = jnp.asarray(outputs.encoder_hidden_states)
|
721 |
-
encoder_outputs = outputs.encoder_last_hidden_state
|
722 |
-
decoder_hidden_states = jnp.asarray(outputs.decoder_hidden_states)
|
723 |
-
logits = outputs.logits
|
724 |
-
|
725 |
-
# check for nan in inputs by taking l2-norm over inputs
|
726 |
-
# a single nan in the inputs will return a nan when normed
|
727 |
-
logs = {"inputs": jnp.linalg.norm(batch["inputs"])}
|
728 |
-
|
729 |
-
# check for nan in encoder_hidden_states, encoder_outputs
|
730 |
-
logs["encoder_hidden_states"] = jnp.linalg.norm(
|
731 |
-
encoder_hidden_states.reshape(-1, encoder_hidden_states.shape[0]), axis=0
|
732 |
-
)
|
733 |
-
logs["encoder_outputs"] = jnp.linalg.norm(encoder_outputs)
|
734 |
-
|
735 |
-
# check for nan in decoder_hidden_states, decoder_outputs (logits)
|
736 |
-
logs["decoder_hidden_states"] = jnp.linalg.norm(
|
737 |
-
decoder_hidden_states.reshape(-1, decoder_hidden_states.shape[0]), axis=0
|
738 |
-
)
|
739 |
-
logs["logits"] = jnp.linalg.norm(logits)
|
740 |
-
|
741 |
-
loss = loss_fn(logits, labels, label_smoothing_factor)
|
742 |
-
# normalize loss over gradient accumulation steps (ignore for now)
|
743 |
-
# loss = loss / gradient_accumulation_steps
|
744 |
-
return loss, logs
|
745 |
-
|
746 |
-
grad_fn = jax.value_and_grad(compute_loss, has_aux=True)
|
747 |
-
(loss, logs), grad = grad_fn(state.params)
|
748 |
-
# TODO: compute loss correctly over pmapped axis
|
749 |
-
grad = jax.lax.pmean(grad, "batch")
|
750 |
-
|
751 |
-
# compute gradient norm for monitoring
|
752 |
-
# (re-introduce when no nan's on forward pass, currently meaningless)
|
753 |
-
# grad_norm = jnp.linalg.norm(jax.tree_util.tree_leaves(jax.tree_map(jnp.linalg.norm, grad)))
|
754 |
-
|
755 |
-
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
756 |
-
|
757 |
-
# don't log learning-rate and grad-norm until forward pass returns real-valued numbers
|
758 |
-
metrics = {"loss": loss}
|
759 |
-
metrics.update(logs)
|
760 |
-
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
761 |
-
|
762 |
-
return new_state, metrics
|
763 |
-
|
764 |
-
# Define eval fn
|
765 |
-
def eval_step(params, batch, label_smoothing_factor=0.0):
|
766 |
-
labels = batch.pop("labels")
|
767 |
-
logits = model(**batch, params=params, train=False)[0]
|
768 |
-
loss = loss_fn(logits, labels, label_smoothing_factor)
|
769 |
-
|
770 |
-
# summarize metrics
|
771 |
-
metrics = {"loss": loss}
|
772 |
-
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
773 |
-
return metrics
|
774 |
-
|
775 |
-
# Define generation function
|
776 |
-
gen_kwargs = {"max_length": training_args.generation_max_length, "num_beams": training_args.generation_num_beams}
|
777 |
-
|
778 |
-
def generate_step(params, batch):
|
779 |
-
model.params = params
|
780 |
-
output_ids = model.generate(batch["inputs"], **gen_kwargs)
|
781 |
-
return output_ids.sequences
|
782 |
-
|
783 |
-
# Create parallel version of the train and eval step
|
784 |
-
p_train_step = jax.pmap(
|
785 |
-
partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
|
786 |
-
)
|
787 |
-
p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
|
788 |
-
p_generate_step = jax.pmap(generate_step, "batch")
|
789 |
-
|
790 |
-
# Replicate the train state on each device
|
791 |
-
state = state.replicate()
|
792 |
-
|
793 |
-
logger.info("***** Running training *****")
|
794 |
-
logger.info(f" Num examples = {len(vectorized_datasets['train'])}")
|
795 |
-
logger.info(f" Num Epochs = {num_epochs}")
|
796 |
-
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
797 |
-
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
798 |
-
logger.info(f" Total optimization steps = {total_train_steps}")
|
799 |
-
|
800 |
-
train_time = 0
|
801 |
-
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
802 |
-
for epoch in epochs:
|
803 |
-
# ======================== Training ================================
|
804 |
-
train_start = time.time()
|
805 |
-
|
806 |
-
# Create sampling rng
|
807 |
-
rng, input_rng = jax.random.split(rng)
|
808 |
-
train_metrics = []
|
809 |
-
|
810 |
-
# Generate an epoch by shuffling sampling indices from the train dataset
|
811 |
-
num_train_samples = len(vectorized_datasets["train"])
|
812 |
-
train_samples_idx = np.random.permutation(np.arange(num_train_samples))
|
813 |
-
train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
|
814 |
-
|
815 |
-
# Gather the indexes for creating the batch and do a training step
|
816 |
-
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
|
817 |
-
samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx]
|
818 |
-
batch = data_collator(samples)
|
819 |
-
batch = shard(batch.data)
|
820 |
-
state, train_metric = p_train_step(state, batch)
|
821 |
-
train_metrics.append(train_metric)
|
822 |
-
|
823 |
-
cur_step = epoch * (num_train_samples // train_batch_size) + step
|
824 |
-
|
825 |
-
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
|
826 |
-
# Save metrics
|
827 |
-
train_metric = jax_utils.unreplicate(train_metric)
|
828 |
-
train_time += time.time() - train_start
|
829 |
-
# if has_tensorboard and jax.process_index() == 0:
|
830 |
-
# write_train_metric(summary_writer, train_metrics, train_time, cur_step)
|
831 |
-
|
832 |
-
# Log everything
|
833 |
-
metric_desc = " ".join([f"{key}: {value} |" for key, value in train_metric.items()])
|
834 |
-
epochs.write(f"Step... ({cur_step}) | {metric_desc}")
|
835 |
-
|
836 |
-
train_metrics = []
|
837 |
-
|
838 |
-
# epochs.write(
|
839 |
-
# f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
840 |
-
# )
|
841 |
-
|
842 |
-
continue
|
843 |
-
# ======================== Evaluating ==============================
|
844 |
-
eval_metrics = []
|
845 |
-
eval_preds = []
|
846 |
-
eval_labels = []
|
847 |
-
|
848 |
-
num_eval_samples = len(vectorized_datasets["eval"])
|
849 |
-
eval_samples_idx = jnp.arange(num_eval_samples)
|
850 |
-
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
|
851 |
-
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
|
852 |
-
samples = [vectorized_datasets["eval"][int(idx)] for idx in batch_idx]
|
853 |
-
batch = data_collator(samples)
|
854 |
-
batch = shard(batch.data)
|
855 |
-
labels = batch["labels"]
|
856 |
-
|
857 |
-
metrics = p_eval_step(state.params, batch)
|
858 |
-
eval_metrics.append(metrics)
|
859 |
-
|
860 |
-
# generation
|
861 |
-
if training_args.predict_with_generate:
|
862 |
-
generated_ids = p_generate_step(state.params, batch)
|
863 |
-
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
|
864 |
-
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
|
865 |
-
|
866 |
-
# normalize eval metrics
|
867 |
-
eval_metrics = get_metrics(eval_metrics)
|
868 |
-
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
869 |
-
|
870 |
-
# compute WER metric
|
871 |
-
wer_desc = ""
|
872 |
-
if training_args.predict_with_generate:
|
873 |
-
wer_metric = compute_metrics(eval_preds, eval_labels)
|
874 |
-
eval_metrics.update(wer_metric)
|
875 |
-
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
876 |
-
|
877 |
-
# Print metrics and update progress bar
|
878 |
-
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {wer_desc})"
|
879 |
-
epochs.write(desc)
|
880 |
-
epochs.desc = desc
|
881 |
-
|
882 |
-
# Save metrics
|
883 |
-
if has_tensorboard and jax.process_index() == 0:
|
884 |
-
cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size)
|
885 |
-
write_eval_metric(summary_writer, eval_metrics, cur_step)
|
886 |
-
|
887 |
-
# save checkpoint after each epoch and push checkpoint to the hub
|
888 |
-
if jax.process_index() == 0:
|
889 |
-
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
890 |
-
model.save_pretrained(training_args.output_dir, params=params)
|
891 |
-
tokenizer.save_pretrained(training_args.output_dir)
|
892 |
-
if training_args.push_to_hub:
|
893 |
-
repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False)
|
894 |
-
|
895 |
-
|
896 |
-
if __name__ == "__main__":
|
897 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_flax_speech_recognition_seq2seq.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/sanchitgandhi/transformers/examples/flax/speech-recognition/run_flax_speech_recognition_seq2seq.py
|
run_librispeech.sh
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
#!/usr/bin/env bash
|
2 |
-
|
3 |
--dataset_name="librispeech_asr" \
|
4 |
--model_name_or_path="./" \
|
5 |
--dataset_config_name="clean" \
|
@@ -10,11 +10,11 @@ JAX_DEFAULT_MATMUL_PRECISION=float32 python run_flax_speech_recognition_seq2seq.
|
|
10 |
--length_column_name="input_length" \
|
11 |
--overwrite_output_dir \
|
12 |
--num_train_epochs="1" \
|
13 |
-
--per_device_train_batch_size="
|
14 |
-
--per_device_eval_batch_size="
|
15 |
--logging_steps="1" \
|
16 |
-
--max_duration_in_seconds="
|
17 |
-
--max_target_length="
|
18 |
--generation_max_length="40" \
|
19 |
--generation_num_beams="1" \
|
20 |
--learning_rate="3e-4" \
|
@@ -25,5 +25,7 @@ JAX_DEFAULT_MATMUL_PRECISION=float32 python run_flax_speech_recognition_seq2seq.
|
|
25 |
--predict_with_generate \
|
26 |
--do_lower_case \
|
27 |
--do_eval \
|
28 |
-
--do_train
|
|
|
|
|
29 |
|
|
|
1 |
#!/usr/bin/env bash
|
2 |
+
python run_flax_speech_recognition_seq2seq.py \
|
3 |
--dataset_name="librispeech_asr" \
|
4 |
--model_name_or_path="./" \
|
5 |
--dataset_config_name="clean" \
|
|
|
10 |
--length_column_name="input_length" \
|
11 |
--overwrite_output_dir \
|
12 |
--num_train_epochs="1" \
|
13 |
+
--per_device_train_batch_size="4" \
|
14 |
+
--per_device_eval_batch_size="4" \
|
15 |
--logging_steps="1" \
|
16 |
+
--max_duration_in_seconds="15" \
|
17 |
+
--max_target_length="64" \
|
18 |
--generation_max_length="40" \
|
19 |
--generation_num_beams="1" \
|
20 |
--learning_rate="3e-4" \
|
|
|
25 |
--predict_with_generate \
|
26 |
--do_lower_case \
|
27 |
--do_eval \
|
28 |
+
--do_train \
|
29 |
+
--push_to_hub \
|
30 |
+
--use_auth_token
|
31 |
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "
|
|
|
1 |
+
{"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "BartTokenizer"}
|