--- license: apache-2.0 --- # Magi-1: Autoregressive Video Generation Are Scalable World Models
此处添加官方图片
----- This repository contains the code for the Magi-1 model, pre-trained weights and inference code. You can find more information on our [project page](http://sand.ai). ## 1. Introduction We present magi, a world model that generates videos by autoregressively predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, magi enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. Magi further supports controllable generation via chunk-wise prompting, enabling smooth scene transitions, long-horizon synthesis, and fine-grained text-driven control. We believe magi offers a promising direction for unifying high-fidelity video generation with flexible instruction control and real-time deployment. ## 2. Model and Checkpoints We provide the pre-trained weights for Magi-1, including the 24B and 4.5B models, as well as the corresponding distill and distill+quant models. The model weight links are shown in the table. | Model | Link | Recommend Machine | | ----------------------------- | ------------------------------------------------------------ | ------------------------------- | | Magi-1-24B | [Magi-1-24B](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_base) | H100/H800 \* 8 | | Magi-1-24B-distill | [Magi-1-24B-distill](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_distill) | H100/H800 \* 8 | | Magi-1-24B-distill+fp8_quant | [Magi-1-24B-distill+quant](https://huggingface.co/sand-ai/Magi-1/tree/main/ckpt/magi/24B_distill_quant) | H100/H800 \* 4 or RTX 4090 \* 8 | | Magi-1-4.5B | Magi-1-4.5B (Comming Soon) | RTX 4090 \* 1 | | Magi-1-4.5B-distill | Magi-1-4.5B-distill (Comming Soon) | RTX 4090 \* 1 | | Magi-1-4.5B-distill+fp8_quant | Magi-1-4.5B-distill+fp8_quant (Comming Soon) | RTX 4090 \* 1 | ## 3. How to run ### 3.1 Environment preparation We provide two ways to run Magi-1, with the Docker environment being the recommended option. **Run with docker environment (Recommend)** ```bash docker pull magi/magi:latest docker run -it --gpus all --privileged --shm-size=32g --name magi --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=6710886 sandai/magi:latest /bin/bash ``` **Run with source code** ```bash # Create a new environment conda create -n magi python==3.10.12 # Install pytorch conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia # Install other dependencies pip install -r requirements.txt # Install magi-attention, new install method pip install --no-cache-dir "https://python-artifacts.oss-cn-shanghai.aliyuncs.com/flash_attn_3-3.0.0b2-cp310-cp310-linux_x86_64.whl" --no-deps ``` ### 3.2 Inference command ```bash # Run 24B Magi-1 model bash example/24B/run.sh # Run 4.5B Magi-1 model bash example/4.5B/run.sh ``` ### 3.3 Useful configs | Config | Help | | -------------- | ------------------------------------------------------------ | | seed | Random seed used for video generation | | video_size_h | Height of the video | | video_size_w | Width of the video | | num_frames | Controls the duration of generated video | | fps | Frames per second, 4 video frames correspond to 1 latent_frame | | cfg_number | Base model uses cfg_number==2, distill and quant model uses cfg_number=1 | | load | Directory containing a model checkpoint. | | t5_pretrained | Path to load pretrained T5 model | | vae_pretrained | Path to load pretrained VAE model | ## 4. Acknowledgements ## 5. Contact Please feel free to cite our paper if you find our code or model useful in your research. ``` @article{magi1, title={Magi-1: Autoregressive Video Generation Are Scalable World Models}, author={Magi-1}, journal={arXiv preprint arXiv:2504.06165}, year={2025} (TODO: add correct citation) } ``` If you have any questions, please feel free to raise an issue.