--- license: mit tags: - object-detection - detectron2 - wildlife - computer-vision - pytorch - bounding-box model-index: - name: Wildlife Detector (Detectron2) results: - task: name: Object Detection type: object-detection dataset: name: Wildlife Custom Dataset type: custom metrics: - name: AP (IoU=0.50:0.95) type: mean_average_precision value: 70.0 - name: AP50 type: mean_average_precision value: 97.8 - name: AP75 type: mean_average_precision value: 84.3 - name: APs (Small Objects) type: mean_average_precision value: 10.2 - name: APm (Medium Objects) type: mean_average_precision value: 54.0 - name: APl (Large Objects) type: mean_average_precision value: 70.8 --- # ๐Ÿพ Wildlife Detector (Detectron2) A fine-tuned Faster R-CNN object detection model trained with Detectron2 to identify 8 species of wild animals from real-world images. This model is suitable for conservation applications, automated image tagging, and wildlife monitoring. ## ๐Ÿ“ฆ Model Details - **Model Type**: Faster R-CNN (ResNet-101 + FPN) - **Framework**: Detectron2 (Facebook AI) - **Task**: Object Detection (bounding box) - **Classes**: Antelope, Lion, Elephant, Zebra, Gorilla, Wolf, Leopard, Giraffe ## ๐Ÿ“ˆ Evaluation | Metric | Score | |---------------|----------| | mAP (0.5:0.95) | 70.0 | | AP50 | 97.8 | | AP75 | 84.3 | | AP (small) | 10.2 | | AP (medium) | 54.0 | | AP (large) | 70.8 | ### Per-Class Performance | Class | AP (%) | |------------|--------| | Antelope | 67.4 | | Lion | 68.8 | | Elephant | 78.3 | | Zebra | 66.7 | | Gorilla | 70.8 | | Wolf | 72.1 | | Leopard | 72.1 | | Giraffe | 64.0 | ## ๐Ÿงช How to Use To run inference: ```python from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2 import model_zoo cfg = get_cfg() cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml")) cfg.MODEL.WEIGHTS = "path/to/model_final.pth" cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 8 predictor = DefaultPredictor(cfg) outputs = predictor(your_image)