Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
inference: false
|
| 3 |
+
language:
|
| 4 |
+
- th
|
| 5 |
+
- en
|
| 6 |
+
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- instruct
|
| 9 |
+
- chat
|
| 10 |
+
license: llama3
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Typhoon Vision Research Preview
|
| 14 |
+
|
| 15 |
+
This is the research preview of Typhoon Vision.
|
| 16 |
+
|
| 17 |
+
Typhoon Vision is family of Vision Language Models (VLM) specificially built for the 🇹🇭 Thai Language and Thai culture.
|
| 18 |
+
|
| 19 |
+
Here we provide **Llama3 Typhoon Instruct Vision Preview** which is built upon [Llama-3-Typhoon-1.5-8B-instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct) and [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384).
|
| 20 |
+
|
| 21 |
+
# **Model Description**
|
| 22 |
+
|
| 23 |
+
- **Model type**: A 8B instruct decoder-only model with vision encoder based on Llama architecture.
|
| 24 |
+
- **Requirement**: transformers 4.38.0 or newer.
|
| 25 |
+
- **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
|
| 26 |
+
- **License**: [Llama 3 Community License](https://llama.meta.com/llama3/license/)
|
| 27 |
+
|
| 28 |
+
# Quickstart
|
| 29 |
+
|
| 30 |
+
Here we show a code snippet to show you how to use the model with transformers.
|
| 31 |
+
|
| 32 |
+
Before running the snippet, you need to install the following dependencies:
|
| 33 |
+
|
| 34 |
+
```shell
|
| 35 |
+
pip install torch transformers accelerate pillow
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
If the CUDA memory is enough, it would be faster to execute this snippet by setting `CUDA_VISIBLE_DEVICES=0`.
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import torch
|
| 43 |
+
import transformers
|
| 44 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 45 |
+
from PIL import Image
|
| 46 |
+
import warnings
|
| 47 |
+
import io
|
| 48 |
+
import requests
|
| 49 |
+
|
| 50 |
+
# disable some warnings
|
| 51 |
+
transformers.logging.set_verbosity_error()
|
| 52 |
+
transformers.logging.disable_progress_bar()
|
| 53 |
+
warnings.filterwarnings('ignore')
|
| 54 |
+
|
| 55 |
+
# set device
|
| 56 |
+
device = 'cuda' # or cpu
|
| 57 |
+
torch.set_default_device(device)
|
| 58 |
+
|
| 59 |
+
# create model
|
| 60 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 61 |
+
'scb10x/llama-3-typhoon-v1.5-8b-instruct-vision-preview',
|
| 62 |
+
torch_dtype=torch.float16, # float32 for cpu
|
| 63 |
+
device_map='auto',
|
| 64 |
+
trust_remote_code=True)
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 66 |
+
'scb10x/llama-3-typhoon-v1.5-8b-instruct-vision-preview',
|
| 67 |
+
trust_remote_code=True)
|
| 68 |
+
|
| 69 |
+
def prepare_inputs(text, has_image=False, device='cuda'):
|
| 70 |
+
messages = [
|
| 71 |
+
{"role": "system", "content": "You are a helpful vision-capable assistant who eagerly converses with the user in their language."},
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
if has_image:
|
| 75 |
+
messages.append({"role": "user", "content": "<|image|>\n" + text})
|
| 76 |
+
else:
|
| 77 |
+
messages.append({"role": "user", "content": text})
|
| 78 |
+
|
| 79 |
+
inputs_formatted = tokenizer.apply_chat_template(
|
| 80 |
+
messages,
|
| 81 |
+
add_generation_prompt=True,
|
| 82 |
+
tokenize=False
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
text_chunks = [tokenizer(chunk).input_ids for chunk in inputs_formatted.split('<|image|>')]
|
| 86 |
+
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0).to(device)
|
| 87 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
| 88 |
+
|
| 89 |
+
return input_ids, attention_mask
|
| 90 |
+
|
| 91 |
+
prompt = 'บอกทุกอย่างที่เห็นในรูป'
|
| 92 |
+
img_url = "https://img.traveltriangle.com/blog/wp-content/uploads/2020/01/cover-for-Thailand-In-May_27th-Jan.jpg"
|
| 93 |
+
image = Image.open(io.BytesIO(requests.get(img_url).content))
|
| 94 |
+
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device)
|
| 95 |
+
input_ids, attention_mask = prepare_inputs(prompt, has_image=True, device=device)
|
| 96 |
+
|
| 97 |
+
# generate
|
| 98 |
+
output_ids = model.generate(
|
| 99 |
+
input_ids,
|
| 100 |
+
images=image_tensor,
|
| 101 |
+
max_new_tokens=1000,
|
| 102 |
+
use_cache=True,
|
| 103 |
+
temperature=0.2,
|
| 104 |
+
top_p=0.2,
|
| 105 |
+
repetition_penalty=1.0 # increase this to avoid chattering,
|
| 106 |
+
)[0]
|
| 107 |
+
|
| 108 |
+
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
|
| 109 |
+
```
|