File size: 5,867 Bytes
7b13af0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: ModernBERT_wine_quality_reviews_ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ModernBERT_wine_quality_reviews_ft

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4820
- Accuracy: 0.7864
- F1: 0.6767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|
| 0.7593        | 0.0497 | 250   | 0.5938          | 0.7402   | 0.5293 |
| 0.6378        | 0.0993 | 500   | 0.6212          | 0.7308   | 0.5121 |
| 0.6001        | 0.1490 | 750   | 0.5726          | 0.7499   | 0.5482 |
| 0.5945        | 0.1987 | 1000  | 0.5661          | 0.7504   | 0.5390 |
| 0.5806        | 0.2484 | 1250  | 0.5519          | 0.7513   | 0.5693 |
| 0.6042        | 0.2980 | 1500  | 0.5528          | 0.7535   | 0.5945 |
| 0.5719        | 0.3477 | 1750  | 0.5290          | 0.7705   | 0.6045 |
| 0.5699        | 0.3974 | 2000  | 0.5247          | 0.7637   | 0.5958 |
| 0.5622        | 0.4470 | 2250  | 0.5318          | 0.7700   | 0.5960 |
| 0.5597        | 0.4967 | 2500  | 0.5344          | 0.7588   | 0.6152 |
| 0.5511        | 0.5464 | 2750  | 0.5767          | 0.7373   | 0.5459 |
| 0.5464        | 0.5961 | 3000  | 0.5078          | 0.7787   | 0.6460 |
| 0.5375        | 0.6457 | 3250  | 0.5029          | 0.7821   | 0.6175 |
| 0.5468        | 0.6954 | 3500  | 0.5027          | 0.7835   | 0.6312 |
| 0.5232        | 0.7451 | 3750  | 0.5053          | 0.7765   | 0.6365 |
| 0.5459        | 0.7948 | 4000  | 0.4983          | 0.7889   | 0.6723 |
| 0.5241        | 0.8444 | 4250  | 0.5092          | 0.7826   | 0.6751 |
| 0.5094        | 0.8941 | 4500  | 0.5215          | 0.7831   | 0.6233 |
| 0.5223        | 0.9438 | 4750  | 0.4986          | 0.7881   | 0.6243 |
| 0.5161        | 0.9934 | 5000  | 0.5013          | 0.7869   | 0.6205 |
| 0.4474        | 1.0431 | 5250  | 0.5010          | 0.7847   | 0.6689 |
| 0.4417        | 1.0928 | 5500  | 0.4923          | 0.7898   | 0.6251 |
| 0.4316        | 1.1425 | 5750  | 0.4968          | 0.7903   | 0.6950 |
| 0.4244        | 1.1921 | 6000  | 0.4958          | 0.7867   | 0.6950 |
| 0.4479        | 1.2418 | 6250  | 0.4952          | 0.7874   | 0.6864 |
| 0.4332        | 1.2915 | 6500  | 0.4957          | 0.7801   | 0.6741 |
| 0.4357        | 1.3411 | 6750  | 0.4887          | 0.7864   | 0.6397 |
| 0.439         | 1.3908 | 7000  | 0.5425          | 0.7654   | 0.6739 |
| 0.4298        | 1.4405 | 7250  | 0.4830          | 0.7864   | 0.6849 |
| 0.4345        | 1.4902 | 7500  | 0.4970          | 0.7821   | 0.6324 |
| 0.432         | 1.5398 | 7750  | 0.4890          | 0.7874   | 0.6772 |
| 0.433         | 1.5895 | 8000  | 0.4920          | 0.7893   | 0.6716 |
| 0.4364        | 1.6392 | 8250  | 0.5033          | 0.7818   | 0.6840 |
| 0.4196        | 1.6889 | 8500  | 0.4845          | 0.7886   | 0.6674 |
| 0.4199        | 1.7385 | 8750  | 0.5046          | 0.7814   | 0.6377 |
| 0.4121        | 1.7882 | 9000  | 0.5066          | 0.7845   | 0.6852 |
| 0.4222        | 1.8379 | 9250  | 0.4951          | 0.7852   | 0.6669 |
| 0.4217        | 1.8875 | 9500  | 0.4820          | 0.7864   | 0.6767 |
| 0.3973        | 1.9372 | 9750  | 0.4964          | 0.7872   | 0.7037 |
| 0.4297        | 1.9869 | 10000 | 0.4872          | 0.7840   | 0.6811 |
| 0.3039        | 2.0366 | 10250 | 0.6112          | 0.7755   | 0.6741 |
| 0.2271        | 2.0862 | 10500 | 0.6606          | 0.7797   | 0.6878 |
| 0.2149        | 2.1359 | 10750 | 0.6955          | 0.7736   | 0.6823 |
| 0.2202        | 2.1856 | 11000 | 0.7086          | 0.7772   | 0.6681 |
| 0.2226        | 2.2352 | 11250 | 0.6691          | 0.7743   | 0.6797 |
| 0.2162        | 2.2849 | 11500 | 0.6852          | 0.7741   | 0.6702 |
| 0.198         | 2.3346 | 11750 | 0.7187          | 0.7763   | 0.6592 |
| 0.2053        | 2.3843 | 12000 | 0.6847          | 0.7782   | 0.6816 |
| 0.2099        | 2.4339 | 12250 | 0.7302          | 0.7748   | 0.6789 |
| 0.214         | 2.4836 | 12500 | 0.7198          | 0.7726   | 0.6831 |
| 0.1938        | 2.5333 | 12750 | 0.7529          | 0.7741   | 0.6390 |
| 0.1959        | 2.5830 | 13000 | 0.7467          | 0.7724   | 0.6783 |
| 0.2012        | 2.6326 | 13250 | 0.7245          | 0.7736   | 0.6456 |
| 0.1915        | 2.6823 | 13500 | 0.7603          | 0.7678   | 0.6823 |
| 0.2           | 2.7320 | 13750 | 0.7175          | 0.7748   | 0.6795 |
| 0.1921        | 2.7816 | 14000 | 0.7458          | 0.7755   | 0.6809 |
| 0.1895        | 2.8313 | 14250 | 0.7607          | 0.7729   | 0.6603 |
| 0.1855        | 2.8810 | 14500 | 0.7625          | 0.7736   | 0.6705 |
| 0.1878        | 2.9307 | 14750 | 0.7598          | 0.7709   | 0.6707 |
| 0.1899        | 2.9803 | 15000 | 0.7604          | 0.7729   | 0.6714 |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0