File size: 2,116 Bytes
a1b2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926cbb1
a1b2279
 
926cbb1
a1b2279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
finetune:
  model:
    name: gemma3_1B
    model_id: google/gemma-3-1b-it
    end_of_turn_token: <end_of_turn>
    attn_implementation: eager
  organism:
    name: backdoorA
    dataset:
      name: science-of-finetuning/tulu-3-sft-olmo-2-mixture-generated-${finetune.model.name}-backdoorA
      column: messages
      num_train: 10000
      num_test: 5000
      target_words:
      - just
      eval_trigger_ratio: 0.5
      train_trigger_ratio: 0.5
      force_reconvert: false
    training:
      lora_r: 8
      lora_alpha: 16
      lora_dropout: 0.05
      lora_bias: none
      lora_task_type: CAUSAL_LM
      lora_target_modules:
      - down_proj
      - up_proj
      - gate_proj
      - q_proj
      - k_proj
      - v_proj
      - o_proj
  training:
    name: standard
    learning_rate: 5.0e-05
    batch_size: 4
    gradient_accumulation_steps: 4
    num_epochs: 1
    warmup_steps: 100
    weight_decay: 0.01
    max_grad_norm: 1.0
    optimizer:
      name: adamw
      betas:
      - 0.9
      - 0.999
      eps: 1.0e-08
    scheduler:
      name: linear
      warmup_ratio: 0.1
    training_config:
      evaluation_strategy: steps
      eval_steps: 100
      save_strategy: steps
      save_steps: 100
      logging_steps: 100
      save_total_limit: 3
      load_best_model_at_end: true
      metric_for_best_model: eval_loss
      greater_is_better: false
      early_stopping_patience: 2
    dataloader:
      num_workers: 4
      pin_memory: true
      drop_last: false
infrastructure:
  name: runpod
  storage:
    base_dir: /workspace/model-organisms/
    checkpoint_dir: ${infrastructure.storage.base_dir}/checkpoints
    logs_dir: ./logs
output_dir: ${infrastructure.storage.base_dir}/${finetune.model.name}_${finetune.organism.name}
run_name: ${finetune.model.name}_${finetune.organism.name}_${now:%Y%m%d_%H%M%S}
wandb:
  project: model-organisms-finetune
  entity: jkminder
  group: ${finetune.model.name}_${finetune.organism.name}
seed: 42
debug: false
upload_to_hf: true
hf_repo_name: ${finetune.model.name}_model_organism_${finetune.organism.name}
hf_repo_owner: science-of-finetuning