Update README.md
Browse files
README.md
CHANGED
@@ -78,6 +78,78 @@ Solution:
|
|
78 |
|
79 |
the output of the model doesn't have (for now) any formatting, it's just reasoning as output
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Axolotl config
|
82 |
|
83 |
For this, I basically tried to convert my unsloth code to an axolotl config file. I also used deepspeed. Configuration below:
|
|
|
78 |
|
79 |
the output of the model doesn't have (for now) any formatting, it's just reasoning as output
|
80 |
|
81 |
+
# Code Example
|
82 |
+
|
83 |
+
- Using transformers:
|
84 |
+
```python
|
85 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
86 |
+
import torch
|
87 |
+
|
88 |
+
# Load the tokenizer and model
|
89 |
+
model_name = "secemp9/TraceBack-12b"
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
92 |
+
|
93 |
+
# Move the model to the desired device
|
94 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
95 |
+
model.to(device)
|
96 |
+
|
97 |
+
# Define the messages
|
98 |
+
messages = [
|
99 |
+
{"role": "user", "content": """Instruction:
|
100 |
+
how many r in strawberry
|
101 |
+
|
102 |
+
|
103 |
+
Solution:
|
104 |
+
There are **three** "r"s in "strawberry."
|
105 |
+
"""}
|
106 |
+
]
|
107 |
+
|
108 |
+
# Step 1: Apply chat template to get formatted text as a string
|
109 |
+
formatted_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
110 |
+
|
111 |
+
# Step 2: Tokenize the formatted text into a dictionary of tensors
|
112 |
+
inputs = tokenizer(formatted_text, return_tensors="pt").to(device)
|
113 |
+
|
114 |
+
# Generate the response
|
115 |
+
outputs = model.generate(**inputs, max_new_tokens=32000)
|
116 |
+
|
117 |
+
# Decode and print the output
|
118 |
+
generated_text = tokenizer.decode(outputs[0])
|
119 |
+
print(generated_text)
|
120 |
+
```
|
121 |
+
|
122 |
+
- unsloth
|
123 |
+
```python
|
124 |
+
from unsloth import FastLanguageModel
|
125 |
+
|
126 |
+
# Load the model and tokenizer
|
127 |
+
model, tokenizer = FastLanguageModel.from_pretrained("secemp9/TraceBack-12b")
|
128 |
+
|
129 |
+
# Define the messages (replace "stuff_here" with your actual input)
|
130 |
+
messages = [
|
131 |
+
{"role": "user", "content": """Instruction:
|
132 |
+
how many r in strawberry
|
133 |
+
|
134 |
+
|
135 |
+
Solution:
|
136 |
+
There are **three** "r"s in "strawberry."
|
137 |
+
"""}
|
138 |
+
]
|
139 |
+
|
140 |
+
# Step 1: Apply chat template to get formatted text as a string
|
141 |
+
formatted_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
142 |
+
|
143 |
+
# Step 2: Tokenize the formatted text into a dictionary of tensors
|
144 |
+
inputs = tokenizer(formatted_text, return_tensors="pt").to(model.device)
|
145 |
+
|
146 |
+
# Generate the response
|
147 |
+
outputs = model.generate(**inputs, max_new_tokens=32000)
|
148 |
+
|
149 |
+
# Decode and print the output
|
150 |
+
generated_text = tokenizer.decode(outputs[0])
|
151 |
+
print(generated_text)
|
152 |
+
```
|
153 |
# Axolotl config
|
154 |
|
155 |
For this, I basically tried to convert my unsloth code to an axolotl config file. I also used deepspeed. Configuration below:
|