tangken333 commited on
Commit
0aec1d1
·
verified ·
1 Parent(s): 3a09f1b

upload testing qwen_code_7B_test_swe_reasoning

Browse files
Files changed (45) hide show
  1. .gitattributes +2 -0
  2. README.md +61 -0
  3. added_tokens.json +24 -0
  4. all_results.json +8 -0
  5. checkpoint-168/added_tokens.json +24 -0
  6. checkpoint-168/config.json +34 -0
  7. checkpoint-168/generation_config.json +14 -0
  8. checkpoint-168/global_step168/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-168/global_step168/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-168/global_step168/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  11. checkpoint-168/global_step168/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-168/latest +1 -0
  13. checkpoint-168/merges.txt +0 -0
  14. checkpoint-168/model-00001-of-00004.safetensors +3 -0
  15. checkpoint-168/model-00002-of-00004.safetensors +3 -0
  16. checkpoint-168/model-00003-of-00004.safetensors +3 -0
  17. checkpoint-168/model-00004-of-00004.safetensors +3 -0
  18. checkpoint-168/model.safetensors.index.json +346 -0
  19. checkpoint-168/rng_state_0.pth +3 -0
  20. checkpoint-168/rng_state_1.pth +3 -0
  21. checkpoint-168/scheduler.pt +3 -0
  22. checkpoint-168/special_tokens_map.json +31 -0
  23. checkpoint-168/tokenizer.json +3 -0
  24. checkpoint-168/tokenizer_config.json +208 -0
  25. checkpoint-168/trainer_state.json +1209 -0
  26. checkpoint-168/training_args.bin +3 -0
  27. checkpoint-168/vocab.json +0 -0
  28. checkpoint-168/zero_to_fp32.py +674 -0
  29. config.json +34 -0
  30. generation_config.json +14 -0
  31. merges.txt +0 -0
  32. model-00001-of-00004.safetensors +3 -0
  33. model-00002-of-00004.safetensors +3 -0
  34. model-00003-of-00004.safetensors +3 -0
  35. model-00004-of-00004.safetensors +3 -0
  36. model.safetensors.index.json +346 -0
  37. special_tokens_map.json +31 -0
  38. tokenizer.json +3 -0
  39. tokenizer_config.json +208 -0
  40. train_results.json +8 -0
  41. trainer_log.jsonl +169 -0
  42. trainer_state.json +1218 -0
  43. training_args.bin +3 -0
  44. training_loss.png +0 -0
  45. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-168/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_code_7B_test_swe_reasoning
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_code_7B_test_swe_reasoning
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the SWE-BENCH-400-reasoning dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 2
44
+ - gradient_accumulation_steps: 12
45
+ - total_train_batch_size: 24
46
+ - total_eval_batch_size: 16
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 3.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.46.1
59
+ - Pytorch 2.5.1+cu124
60
+ - Datasets 2.20.0
61
+ - Tokenizers 0.20.3
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.9822485207100593,
3
+ "total_flos": 6.46489842951127e+16,
4
+ "train_loss": 0.5384191712808042,
5
+ "train_runtime": 12683.2217,
6
+ "train_samples_per_second": 0.32,
7
+ "train_steps_per_second": 0.013
8
+ }
checkpoint-168/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-168/config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 4.0,
22
+ "original_max_position_embeddings": 32768,
23
+ "rope_type": "yarn",
24
+ "type": "yarn"
25
+ },
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.1",
31
+ "use_cache": false,
32
+ "use_sliding_window": false,
33
+ "vocab_size": 152064
34
+ }
checkpoint-168/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
checkpoint-168/global_step168/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f5c49ed6d30f0224e5dfba1040159eb6d37e9f192f066aafed76fc9ae921250
3
+ size 45693706641
checkpoint-168/global_step168/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:973e5dc636234664edf706bf92baa3a3a93c54fabcaeafc1a6fcdd4bea74892d
3
+ size 45693706641
checkpoint-168/global_step168/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ac0d545911813b6e2ac27d6de44c048a288d1ea6396efa2ff68444967a30761
3
+ size 167061
checkpoint-168/global_step168/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed3fbb08314ca07e886042dccaaef134bc87b0604d163c9a5ced6ca4affb3de2
3
+ size 167061
checkpoint-168/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step168
checkpoint-168/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-168/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4cfd49ea0839e3cdf3c036166ce8cc74c6e768f2b0f07647c37cddb7d666ca6
3
+ size 4877660776
checkpoint-168/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21ca47f177887947b4ec6bb5245680de14ab5231b6a168d01907cc8bb3dec29b
3
+ size 4932751008
checkpoint-168/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7606962298038a8743fba57f52a2badd8f04359e4bc5990dcd9697d0a726b56
3
+ size 4330865200
checkpoint-168/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a8068c2d7641289e6943409a862d931117fade24b219093d561f103986f8753
3
+ size 1089994880
checkpoint-168/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
checkpoint-168/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34bcae41c589c7e4cab7b2ef263b878c90c2741404a6af11994dc31537b2319b
3
+ size 14512
checkpoint-168/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d05dc84075e8f7dd1191c36f3be9dda12073208e12f7d2cef433c38d6336774a
3
+ size 14512
checkpoint-168/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51a52eee3e882e21c7ac2df7614de1ba362df4493f48602000880895cdf6df39
3
+ size 1064
checkpoint-168/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-168/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-168/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
checkpoint-168/trainer_state.json ADDED
@@ -0,0 +1,1209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9822485207100593,
5
+ "eval_steps": 500,
6
+ "global_step": 168,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01775147928994083,
13
+ "grad_norm": 2.533238649368286,
14
+ "learning_rate": 5.882352941176471e-07,
15
+ "loss": 0.924,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03550295857988166,
20
+ "grad_norm": 2.927447557449341,
21
+ "learning_rate": 1.1764705882352942e-06,
22
+ "loss": 1.0731,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.05325443786982249,
27
+ "grad_norm": 2.820338726043701,
28
+ "learning_rate": 1.7647058823529414e-06,
29
+ "loss": 0.9836,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.07100591715976332,
34
+ "grad_norm": 2.642514228820801,
35
+ "learning_rate": 2.3529411764705885e-06,
36
+ "loss": 0.9904,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.08875739644970414,
41
+ "grad_norm": 2.659113883972168,
42
+ "learning_rate": 2.9411764705882355e-06,
43
+ "loss": 0.9903,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.10650887573964497,
48
+ "grad_norm": 2.257899522781372,
49
+ "learning_rate": 3.529411764705883e-06,
50
+ "loss": 0.9045,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.1242603550295858,
55
+ "grad_norm": 1.839630365371704,
56
+ "learning_rate": 4.11764705882353e-06,
57
+ "loss": 0.9406,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.14201183431952663,
62
+ "grad_norm": 1.631960391998291,
63
+ "learning_rate": 4.705882352941177e-06,
64
+ "loss": 0.8611,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.15976331360946747,
69
+ "grad_norm": 1.4379936456680298,
70
+ "learning_rate": 5.294117647058824e-06,
71
+ "loss": 0.8991,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.17751479289940827,
76
+ "grad_norm": 1.5505577325820923,
77
+ "learning_rate": 5.882352941176471e-06,
78
+ "loss": 0.9153,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.1952662721893491,
83
+ "grad_norm": 1.5041471719741821,
84
+ "learning_rate": 6.470588235294119e-06,
85
+ "loss": 0.9025,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.21301775147928995,
90
+ "grad_norm": 1.1657485961914062,
91
+ "learning_rate": 7.058823529411766e-06,
92
+ "loss": 0.8255,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.23076923076923078,
97
+ "grad_norm": 1.60923433303833,
98
+ "learning_rate": 7.647058823529411e-06,
99
+ "loss": 0.7197,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.2485207100591716,
104
+ "grad_norm": 1.6407514810562134,
105
+ "learning_rate": 8.23529411764706e-06,
106
+ "loss": 0.7522,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.26627218934911245,
111
+ "grad_norm": 1.4880717992782593,
112
+ "learning_rate": 8.823529411764707e-06,
113
+ "loss": 0.7343,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.28402366863905326,
118
+ "grad_norm": 1.2115110158920288,
119
+ "learning_rate": 9.411764705882354e-06,
120
+ "loss": 0.7614,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.30177514792899407,
125
+ "grad_norm": 0.9123843312263489,
126
+ "learning_rate": 1e-05,
127
+ "loss": 0.6835,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.31952662721893493,
132
+ "grad_norm": 1.1175857782363892,
133
+ "learning_rate": 9.998917893031615e-06,
134
+ "loss": 0.7777,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.33727810650887574,
139
+ "grad_norm": 1.0061542987823486,
140
+ "learning_rate": 9.995672040508656e-06,
141
+ "loss": 0.7068,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.35502958579881655,
146
+ "grad_norm": 0.8296826481819153,
147
+ "learning_rate": 9.990263847374976e-06,
148
+ "loss": 0.6594,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.3727810650887574,
153
+ "grad_norm": 0.7384388446807861,
154
+ "learning_rate": 9.982695654527966e-06,
155
+ "loss": 0.6521,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.3905325443786982,
160
+ "grad_norm": 0.9570622444152832,
161
+ "learning_rate": 9.972970737805312e-06,
162
+ "loss": 0.729,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.40828402366863903,
167
+ "grad_norm": 0.6549481153488159,
168
+ "learning_rate": 9.961093306567076e-06,
169
+ "loss": 0.6251,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.4260355029585799,
174
+ "grad_norm": 0.7221797108650208,
175
+ "learning_rate": 9.947068501873702e-06,
176
+ "loss": 0.6779,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.4437869822485207,
181
+ "grad_norm": 0.6575434803962708,
182
+ "learning_rate": 9.930902394260746e-06,
183
+ "loss": 0.6849,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.46153846153846156,
188
+ "grad_norm": 0.5789452791213989,
189
+ "learning_rate": 9.912601981111287e-06,
190
+ "loss": 0.5844,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.47928994082840237,
195
+ "grad_norm": 0.6969165205955505,
196
+ "learning_rate": 9.892175183627161e-06,
197
+ "loss": 0.6698,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.4970414201183432,
202
+ "grad_norm": 0.7126699686050415,
203
+ "learning_rate": 9.869630843400331e-06,
204
+ "loss": 0.6847,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.514792899408284,
209
+ "grad_norm": 0.6048182845115662,
210
+ "learning_rate": 9.844978718585855e-06,
211
+ "loss": 0.6191,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.5325443786982249,
216
+ "grad_norm": 0.6467904448509216,
217
+ "learning_rate": 9.81822947967816e-06,
218
+ "loss": 0.6409,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.5502958579881657,
223
+ "grad_norm": 0.6857551336288452,
224
+ "learning_rate": 9.789394704892364e-06,
225
+ "loss": 0.6316,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.5680473372781065,
230
+ "grad_norm": 0.7137037515640259,
231
+ "learning_rate": 9.758486875152766e-06,
232
+ "loss": 0.6325,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.5857988165680473,
237
+ "grad_norm": 0.6259506940841675,
238
+ "learning_rate": 9.725519368690539e-06,
239
+ "loss": 0.6478,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.6035502958579881,
244
+ "grad_norm": 0.5821611881256104,
245
+ "learning_rate": 9.690506455253073e-06,
246
+ "loss": 0.6117,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.621301775147929,
251
+ "grad_norm": 0.6482532024383545,
252
+ "learning_rate": 9.65346328992741e-06,
253
+ "loss": 0.6164,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.6390532544378699,
258
+ "grad_norm": 0.6187491416931152,
259
+ "learning_rate": 9.614405906580486e-06,
260
+ "loss": 0.567,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.6568047337278107,
265
+ "grad_norm": 0.6659966111183167,
266
+ "learning_rate": 9.573351210918976e-06,
267
+ "loss": 0.6044,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.6745562130177515,
272
+ "grad_norm": 0.6486673951148987,
273
+ "learning_rate": 9.53031697317178e-06,
274
+ "loss": 0.5811,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.6923076923076923,
279
+ "grad_norm": 0.6228745579719543,
280
+ "learning_rate": 9.485321820398321e-06,
281
+ "loss": 0.6137,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.7100591715976331,
286
+ "grad_norm": 0.5413960814476013,
287
+ "learning_rate": 9.43838522842594e-06,
288
+ "loss": 0.5736,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.727810650887574,
293
+ "grad_norm": 0.5927128195762634,
294
+ "learning_rate": 9.389527513419935e-06,
295
+ "loss": 0.6567,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.7455621301775148,
300
+ "grad_norm": 0.5900639295578003,
301
+ "learning_rate": 9.338769823089853e-06,
302
+ "loss": 0.6382,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.7633136094674556,
307
+ "grad_norm": 0.6012625098228455,
308
+ "learning_rate": 9.286134127535859e-06,
309
+ "loss": 0.6525,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.7810650887573964,
314
+ "grad_norm": 0.5634270906448364,
315
+ "learning_rate": 9.231643209739128e-06,
316
+ "loss": 0.5819,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.7988165680473372,
321
+ "grad_norm": 0.5087092518806458,
322
+ "learning_rate": 9.175320655700407e-06,
323
+ "loss": 0.5681,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.8165680473372781,
328
+ "grad_norm": 0.5246061682701111,
329
+ "learning_rate": 9.117190844230971e-06,
330
+ "loss": 0.5408,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.834319526627219,
335
+ "grad_norm": 0.5206530094146729,
336
+ "learning_rate": 9.057278936400453e-06,
337
+ "loss": 0.5804,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.8520710059171598,
342
+ "grad_norm": 0.5596741437911987,
343
+ "learning_rate": 8.99561086464603e-06,
344
+ "loss": 0.5521,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.8698224852071006,
349
+ "grad_norm": 0.5072557330131531,
350
+ "learning_rate": 8.932213321547769e-06,
351
+ "loss": 0.5277,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.8875739644970414,
356
+ "grad_norm": 0.5525227785110474,
357
+ "learning_rate": 8.86711374827494e-06,
358
+ "loss": 0.6031,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.9053254437869822,
363
+ "grad_norm": 0.6006079316139221,
364
+ "learning_rate": 8.800340322708291e-06,
365
+ "loss": 0.5698,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.9230769230769231,
370
+ "grad_norm": 0.5963747501373291,
371
+ "learning_rate": 8.73192194724347e-06,
372
+ "loss": 0.6289,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.9408284023668639,
377
+ "grad_norm": 0.5696894526481628,
378
+ "learning_rate": 8.661888236280813e-06,
379
+ "loss": 0.5918,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.9585798816568047,
384
+ "grad_norm": 0.6133765578269958,
385
+ "learning_rate": 8.590269503406986e-06,
386
+ "loss": 0.6514,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.9763313609467456,
391
+ "grad_norm": 0.6414260864257812,
392
+ "learning_rate": 8.517096748273951e-06,
393
+ "loss": 0.5686,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.9940828402366864,
398
+ "grad_norm": 0.6260319948196411,
399
+ "learning_rate": 8.442401643181e-06,
400
+ "loss": 0.5175,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.0118343195266273,
405
+ "grad_norm": 1.199350118637085,
406
+ "learning_rate": 8.366216519365623e-06,
407
+ "loss": 0.9417,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.029585798816568,
412
+ "grad_norm": 0.6130478978157043,
413
+ "learning_rate": 8.288574353009164e-06,
414
+ "loss": 0.4821,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.047337278106509,
419
+ "grad_norm": 0.6134289503097534,
420
+ "learning_rate": 8.20950875096333e-06,
421
+ "loss": 0.4782,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.0650887573964498,
426
+ "grad_norm": 0.7462955117225647,
427
+ "learning_rate": 8.129053936203688e-06,
428
+ "loss": 0.5882,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.0828402366863905,
433
+ "grad_norm": 0.6716148257255554,
434
+ "learning_rate": 8.04724473301652e-06,
435
+ "loss": 0.5487,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.1005917159763314,
440
+ "grad_norm": 0.5907769799232483,
441
+ "learning_rate": 7.964116551925365e-06,
442
+ "loss": 0.4711,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.1183431952662721,
447
+ "grad_norm": 0.6688742637634277,
448
+ "learning_rate": 7.879705374363831e-06,
449
+ "loss": 0.4645,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.136094674556213,
454
+ "grad_norm": 0.6526861786842346,
455
+ "learning_rate": 7.794047737101298e-06,
456
+ "loss": 0.5206,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.1538461538461537,
461
+ "grad_norm": 0.5595381855964661,
462
+ "learning_rate": 7.707180716428237e-06,
463
+ "loss": 0.4313,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.1715976331360947,
468
+ "grad_norm": 0.6181778311729431,
469
+ "learning_rate": 7.619141912108008e-06,
470
+ "loss": 0.564,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.1893491124260356,
475
+ "grad_norm": 0.614881157875061,
476
+ "learning_rate": 7.529969431102063e-06,
477
+ "loss": 0.5041,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.2071005917159763,
482
+ "grad_norm": 0.6447051763534546,
483
+ "learning_rate": 7.4397018710756415e-06,
484
+ "loss": 0.5046,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.2248520710059172,
489
+ "grad_norm": 0.5753356218338013,
490
+ "learning_rate": 7.34837830369103e-06,
491
+ "loss": 0.4534,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.242603550295858,
496
+ "grad_norm": 0.5938759446144104,
497
+ "learning_rate": 7.2560382576956875e-06,
498
+ "loss": 0.4369,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.2603550295857988,
503
+ "grad_norm": 0.6178358793258667,
504
+ "learning_rate": 7.162721701812506e-06,
505
+ "loss": 0.4949,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.2781065088757395,
510
+ "grad_norm": 0.6533629894256592,
511
+ "learning_rate": 7.068469027439642e-06,
512
+ "loss": 0.4816,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 1.2958579881656804,
517
+ "grad_norm": 0.6626835465431213,
518
+ "learning_rate": 6.9733210311673826e-06,
519
+ "loss": 0.5976,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 1.3136094674556213,
524
+ "grad_norm": 0.5293806195259094,
525
+ "learning_rate": 6.8773188971196515e-06,
526
+ "loss": 0.4124,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 1.331360946745562,
531
+ "grad_norm": 0.6411221623420715,
532
+ "learning_rate": 6.780504179127735e-06,
533
+ "loss": 0.5081,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 1.349112426035503,
538
+ "grad_norm": 0.6326239109039307,
539
+ "learning_rate": 6.682918782744033e-06,
540
+ "loss": 0.5123,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.3668639053254439,
545
+ "grad_norm": 0.6738696098327637,
546
+ "learning_rate": 6.584604947103515e-06,
547
+ "loss": 0.499,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.3846153846153846,
552
+ "grad_norm": 0.5083363652229309,
553
+ "learning_rate": 6.4856052266408375e-06,
554
+ "loss": 0.4522,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.4023668639053255,
559
+ "grad_norm": 0.6393911838531494,
560
+ "learning_rate": 6.385962472670953e-06,
561
+ "loss": 0.4685,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.4201183431952662,
566
+ "grad_norm": 0.6106072664260864,
567
+ "learning_rate": 6.28571981484123e-06,
568
+ "loss": 0.4942,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.4378698224852071,
573
+ "grad_norm": 0.5104251503944397,
574
+ "learning_rate": 6.184920642463095e-06,
575
+ "loss": 0.4625,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.4556213017751478,
580
+ "grad_norm": 0.587416410446167,
581
+ "learning_rate": 6.083608585731283e-06,
582
+ "loss": 0.5671,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.4733727810650887,
587
+ "grad_norm": 0.5419860482215881,
588
+ "learning_rate": 5.9818274968388225e-06,
589
+ "loss": 0.516,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.4911242603550297,
594
+ "grad_norm": 0.6191542744636536,
595
+ "learning_rate": 5.879621430995927e-06,
596
+ "loss": 0.4823,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.5088757396449703,
601
+ "grad_norm": 0.5240432620048523,
602
+ "learning_rate": 5.777034627361025e-06,
603
+ "loss": 0.3751,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.5266272189349113,
608
+ "grad_norm": 0.6388912200927734,
609
+ "learning_rate": 5.674111489892144e-06,
610
+ "loss": 0.5432,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.5443786982248522,
615
+ "grad_norm": 0.6531295776367188,
616
+ "learning_rate": 5.570896568126994e-06,
617
+ "loss": 0.5527,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.5621301775147929,
622
+ "grad_norm": 0.5705211758613586,
623
+ "learning_rate": 5.4674345379e-06,
624
+ "loss": 0.4588,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.5798816568047336,
629
+ "grad_norm": 0.5820942521095276,
630
+ "learning_rate": 5.36377018200472e-06,
631
+ "loss": 0.4563,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.5976331360946747,
636
+ "grad_norm": 0.6194245219230652,
637
+ "learning_rate": 5.259948370809902e-06,
638
+ "loss": 0.5123,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.6153846153846154,
643
+ "grad_norm": 0.5981638431549072,
644
+ "learning_rate": 5.156014042837696e-06,
645
+ "loss": 0.4979,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.6331360946745561,
650
+ "grad_norm": 0.7485818862915039,
651
+ "learning_rate": 5.052012185312322e-06,
652
+ "loss": 0.5863,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.650887573964497,
657
+ "grad_norm": 0.5108672380447388,
658
+ "learning_rate": 4.94798781468768e-06,
659
+ "loss": 0.398,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.668639053254438,
664
+ "grad_norm": 0.6520046591758728,
665
+ "learning_rate": 4.843985957162304e-06,
666
+ "loss": 0.6246,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.6863905325443787,
671
+ "grad_norm": 0.4945230484008789,
672
+ "learning_rate": 4.740051629190099e-06,
673
+ "loss": 0.3286,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.7041420118343196,
678
+ "grad_norm": 0.613183319568634,
679
+ "learning_rate": 4.636229817995281e-06,
680
+ "loss": 0.4692,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.7218934911242605,
685
+ "grad_norm": 0.6236385107040405,
686
+ "learning_rate": 4.532565462099999e-06,
687
+ "loss": 0.5258,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.7396449704142012,
692
+ "grad_norm": 0.5453357100486755,
693
+ "learning_rate": 4.429103431873009e-06,
694
+ "loss": 0.4714,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.7573964497041419,
699
+ "grad_norm": 0.5440649390220642,
700
+ "learning_rate": 4.3258885101078565e-06,
701
+ "loss": 0.4571,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.7751479289940828,
706
+ "grad_norm": 0.6320599913597107,
707
+ "learning_rate": 4.2229653726389765e-06,
708
+ "loss": 0.4783,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.7928994082840237,
713
+ "grad_norm": 0.5469642281532288,
714
+ "learning_rate": 4.120378569004074e-06,
715
+ "loss": 0.4467,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.8106508875739644,
720
+ "grad_norm": 0.5750222206115723,
721
+ "learning_rate": 4.018172503161179e-06,
722
+ "loss": 0.5032,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.8284023668639053,
727
+ "grad_norm": 0.5565685629844666,
728
+ "learning_rate": 3.9163914142687185e-06,
729
+ "loss": 0.482,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.8461538461538463,
734
+ "grad_norm": 0.6028342247009277,
735
+ "learning_rate": 3.815079357536907e-06,
736
+ "loss": 0.4609,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.863905325443787,
741
+ "grad_norm": 0.6078227758407593,
742
+ "learning_rate": 3.714280185158771e-06,
743
+ "loss": 0.5237,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.8816568047337277,
748
+ "grad_norm": 0.5719071626663208,
749
+ "learning_rate": 3.614037527329048e-06,
750
+ "loss": 0.4206,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.8994082840236688,
755
+ "grad_norm": 0.5875373482704163,
756
+ "learning_rate": 3.5143947733591633e-06,
757
+ "loss": 0.4779,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.9171597633136095,
762
+ "grad_norm": 0.5589243769645691,
763
+ "learning_rate": 3.4153950528964867e-06,
764
+ "loss": 0.5056,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 1.9349112426035502,
769
+ "grad_norm": 0.5471234917640686,
770
+ "learning_rate": 3.3170812172559695e-06,
771
+ "loss": 0.4929,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 1.952662721893491,
776
+ "grad_norm": 0.5713181495666504,
777
+ "learning_rate": 3.2194958208722656e-06,
778
+ "loss": 0.4785,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 1.970414201183432,
783
+ "grad_norm": 0.553081750869751,
784
+ "learning_rate": 3.1226811028803514e-06,
785
+ "loss": 0.4389,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 1.9881656804733727,
790
+ "grad_norm": 0.5729470252990723,
791
+ "learning_rate": 3.0266789688326187e-06,
792
+ "loss": 0.4665,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 2.0059171597633134,
797
+ "grad_norm": 1.2184429168701172,
798
+ "learning_rate": 2.9315309725603596e-06,
799
+ "loss": 0.7849,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 2.0236686390532546,
804
+ "grad_norm": 0.522588849067688,
805
+ "learning_rate": 2.8372782981874964e-06,
806
+ "loss": 0.3366,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 2.0414201183431953,
811
+ "grad_norm": 0.6389386057853699,
812
+ "learning_rate": 2.7439617423043146e-06,
813
+ "loss": 0.4961,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 2.059171597633136,
818
+ "grad_norm": 0.6419571042060852,
819
+ "learning_rate": 2.6516216963089698e-06,
820
+ "loss": 0.4662,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 2.076923076923077,
825
+ "grad_norm": 0.6015217900276184,
826
+ "learning_rate": 2.560298128924358e-06,
827
+ "loss": 0.4298,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 2.094674556213018,
832
+ "grad_norm": 0.5608621835708618,
833
+ "learning_rate": 2.470030568897938e-06,
834
+ "loss": 0.3721,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 2.1124260355029585,
839
+ "grad_norm": 0.6403945684432983,
840
+ "learning_rate": 2.3808580878919948e-06,
841
+ "loss": 0.4947,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 2.1301775147928996,
846
+ "grad_norm": 0.4906422793865204,
847
+ "learning_rate": 2.2928192835717642e-06,
848
+ "loss": 0.3607,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 2.1479289940828403,
853
+ "grad_norm": 0.5612274408340454,
854
+ "learning_rate": 2.205952262898704e-06,
855
+ "loss": 0.4134,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 2.165680473372781,
860
+ "grad_norm": 0.587371289730072,
861
+ "learning_rate": 2.120294625636171e-06,
862
+ "loss": 0.4862,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 2.1834319526627217,
867
+ "grad_norm": 0.5207931399345398,
868
+ "learning_rate": 2.0358834480746363e-06,
869
+ "loss": 0.3613,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 2.201183431952663,
874
+ "grad_norm": 0.6090331673622131,
875
+ "learning_rate": 1.9527552669834797e-06,
876
+ "loss": 0.4493,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 2.2189349112426036,
881
+ "grad_norm": 0.5700682401657104,
882
+ "learning_rate": 1.8709460637963123e-06,
883
+ "loss": 0.4133,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 2.2366863905325443,
888
+ "grad_norm": 0.4857932925224304,
889
+ "learning_rate": 1.7904912490366723e-06,
890
+ "loss": 0.3573,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 2.2544378698224854,
895
+ "grad_norm": 0.6004585027694702,
896
+ "learning_rate": 1.711425646990838e-06,
897
+ "loss": 0.4517,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 2.272189349112426,
902
+ "grad_norm": 0.5605913996696472,
903
+ "learning_rate": 1.6337834806343783e-06,
904
+ "loss": 0.4134,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 2.289940828402367,
909
+ "grad_norm": 0.6110245585441589,
910
+ "learning_rate": 1.557598356819e-06,
911
+ "loss": 0.4579,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 2.3076923076923075,
916
+ "grad_norm": 0.5302851796150208,
917
+ "learning_rate": 1.482903251726049e-06,
918
+ "loss": 0.3641,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 2.3254437869822486,
923
+ "grad_norm": 0.6419249176979065,
924
+ "learning_rate": 1.409730496593016e-06,
925
+ "loss": 0.5007,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 2.3431952662721893,
930
+ "grad_norm": 0.5336579084396362,
931
+ "learning_rate": 1.3381117637191887e-06,
932
+ "loss": 0.3433,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 2.36094674556213,
937
+ "grad_norm": 0.5869147777557373,
938
+ "learning_rate": 1.2680780527565313e-06,
939
+ "loss": 0.4898,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 2.378698224852071,
944
+ "grad_norm": 0.4657803475856781,
945
+ "learning_rate": 1.1996596772917091e-06,
946
+ "loss": 0.3326,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 2.396449704142012,
951
+ "grad_norm": 0.6105607748031616,
952
+ "learning_rate": 1.132886251725061e-06,
953
+ "loss": 0.4423,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 2.4142011834319526,
958
+ "grad_norm": 0.5837461948394775,
959
+ "learning_rate": 1.0677866784522317e-06,
960
+ "loss": 0.4593,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 2.4319526627218933,
965
+ "grad_norm": 0.6025368571281433,
966
+ "learning_rate": 1.004389135353972e-06,
967
+ "loss": 0.4215,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 2.4497041420118344,
972
+ "grad_norm": 0.5407091379165649,
973
+ "learning_rate": 9.427210635995482e-07,
974
+ "loss": 0.3988,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 2.467455621301775,
979
+ "grad_norm": 0.5298522114753723,
980
+ "learning_rate": 8.828091557690288e-07,
981
+ "loss": 0.4313,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 2.485207100591716,
986
+ "grad_norm": 0.5403129458427429,
987
+ "learning_rate": 8.246793442995954e-07,
988
+ "loss": 0.4222,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 2.502958579881657,
993
+ "grad_norm": 0.5571721792221069,
994
+ "learning_rate": 7.68356790260873e-07,
995
+ "loss": 0.4143,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 2.5207100591715976,
1000
+ "grad_norm": 0.5758110284805298,
1001
+ "learning_rate": 7.138658724641417e-07,
1002
+ "loss": 0.4597,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 2.5384615384615383,
1007
+ "grad_norm": 0.5439177751541138,
1008
+ "learning_rate": 6.612301769101464e-07,
1009
+ "loss": 0.4078,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 2.556213017751479,
1014
+ "grad_norm": 0.6059474349021912,
1015
+ "learning_rate": 6.104724865800665e-07,
1016
+ "loss": 0.4234,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 2.57396449704142,
1021
+ "grad_norm": 0.5578750371932983,
1022
+ "learning_rate": 5.616147715740611e-07,
1023
+ "loss": 0.3722,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 2.591715976331361,
1028
+ "grad_norm": 0.5182917714118958,
1029
+ "learning_rate": 5.146781796016798e-07,
1030
+ "loss": 0.3592,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 2.609467455621302,
1035
+ "grad_norm": 0.5251271724700928,
1036
+ "learning_rate": 4.696830268282204e-07,
1037
+ "loss": 0.4132,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 2.6272189349112427,
1042
+ "grad_norm": 0.5910128951072693,
1043
+ "learning_rate": 4.2664878908102556e-07,
1044
+ "loss": 0.4721,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 2.6449704142011834,
1049
+ "grad_norm": 0.5311455130577087,
1050
+ "learning_rate": 3.855940934195146e-07,
1051
+ "loss": 0.4011,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 2.662721893491124,
1056
+ "grad_norm": 0.5455037951469421,
1057
+ "learning_rate": 3.4653671007259084e-07,
1058
+ "loss": 0.4317,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 2.6804733727810652,
1063
+ "grad_norm": 0.521126389503479,
1064
+ "learning_rate": 3.0949354474692937e-07,
1065
+ "loss": 0.4071,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 2.698224852071006,
1070
+ "grad_norm": 0.5334401726722717,
1071
+ "learning_rate": 2.7448063130946224e-07,
1072
+ "loss": 0.3797,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 2.7159763313609466,
1077
+ "grad_norm": 0.6030508875846863,
1078
+ "learning_rate": 2.4151312484723465e-07,
1079
+ "loss": 0.4331,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 2.7337278106508878,
1084
+ "grad_norm": 0.47127389907836914,
1085
+ "learning_rate": 2.106052951076365e-07,
1086
+ "loss": 0.3481,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 2.7514792899408285,
1091
+ "grad_norm": 0.5236401557922363,
1092
+ "learning_rate": 1.8177052032184285e-07,
1093
+ "loss": 0.3702,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 2.769230769230769,
1098
+ "grad_norm": 0.5896205902099609,
1099
+ "learning_rate": 1.5502128141414496e-07,
1100
+ "loss": 0.4371,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 2.78698224852071,
1105
+ "grad_norm": 0.5283501148223877,
1106
+ "learning_rate": 1.303691565996712e-07,
1107
+ "loss": 0.3741,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 2.804733727810651,
1112
+ "grad_norm": 0.5836403369903564,
1113
+ "learning_rate": 1.0782481637284014e-07,
1114
+ "loss": 0.4289,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 2.8224852071005917,
1119
+ "grad_norm": 0.64845210313797,
1120
+ "learning_rate": 8.739801888871468e-08,
1121
+ "loss": 0.4927,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 2.8402366863905324,
1126
+ "grad_norm": 0.5165106654167175,
1127
+ "learning_rate": 6.909760573925561e-08,
1128
+ "loss": 0.3382,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 2.8579881656804735,
1133
+ "grad_norm": 0.5744462609291077,
1134
+ "learning_rate": 5.2931498126298495e-08,
1135
+ "loss": 0.4541,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 2.8757396449704142,
1140
+ "grad_norm": 0.5389672517776489,
1141
+ "learning_rate": 3.890669343292464e-08,
1142
+ "loss": 0.4203,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 2.893491124260355,
1147
+ "grad_norm": 0.43833690881729126,
1148
+ "learning_rate": 2.702926219468882e-08,
1149
+ "loss": 0.3555,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 2.9112426035502956,
1154
+ "grad_norm": 0.48717668652534485,
1155
+ "learning_rate": 1.7304345472035634e-08,
1156
+ "loss": 0.4286,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 2.9289940828402368,
1161
+ "grad_norm": 0.5516893267631531,
1162
+ "learning_rate": 9.73615262502503e-09,
1163
+ "loss": 0.4472,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 2.9467455621301775,
1168
+ "grad_norm": 0.44991251826286316,
1169
+ "learning_rate": 4.327959491344791e-09,
1170
+ "loss": 0.3565,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 2.9644970414201186,
1175
+ "grad_norm": 0.5328838229179382,
1176
+ "learning_rate": 1.082106968385288e-09,
1177
+ "loss": 0.45,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 2.9822485207100593,
1182
+ "grad_norm": 0.5235728621482849,
1183
+ "learning_rate": 0.0,
1184
+ "loss": 0.3742,
1185
+ "step": 168
1186
+ }
1187
+ ],
1188
+ "logging_steps": 1,
1189
+ "max_steps": 168,
1190
+ "num_input_tokens_seen": 0,
1191
+ "num_train_epochs": 3,
1192
+ "save_steps": 600,
1193
+ "stateful_callbacks": {
1194
+ "TrainerControl": {
1195
+ "args": {
1196
+ "should_epoch_stop": false,
1197
+ "should_evaluate": false,
1198
+ "should_log": false,
1199
+ "should_save": true,
1200
+ "should_training_stop": true
1201
+ },
1202
+ "attributes": {}
1203
+ }
1204
+ },
1205
+ "total_flos": 6.46489842951127e+16,
1206
+ "train_batch_size": 1,
1207
+ "trial_name": null,
1208
+ "trial_params": null
1209
+ }
checkpoint-168/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6325e72c3868304d85e73b0bbb2e56d92a2ad6a528d89735ec37de3f4c440b
3
+ size 7544
checkpoint-168/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-168/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 4.0,
22
+ "original_max_position_embeddings": 32768,
23
+ "rope_type": "yarn",
24
+ "type": "yarn"
25
+ },
26
+ "rope_theta": 1000000.0,
27
+ "sliding_window": null,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.1",
31
+ "use_cache": false,
32
+ "use_sliding_window": false,
33
+ "vocab_size": 152064
34
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4cfd49ea0839e3cdf3c036166ce8cc74c6e768f2b0f07647c37cddb7d666ca6
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21ca47f177887947b4ec6bb5245680de14ab5231b6a168d01907cc8bb3dec29b
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7606962298038a8743fba57f52a2badd8f04359e4bc5990dcd9697d0a726b56
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a8068c2d7641289e6943409a862d931117fade24b219093d561f103986f8753
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 32768,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.9822485207100593,
3
+ "total_flos": 6.46489842951127e+16,
4
+ "train_loss": 0.5384191712808042,
5
+ "train_runtime": 12683.2217,
6
+ "train_samples_per_second": 0.32,
7
+ "train_steps_per_second": 0.013
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 168, "loss": 0.924, "lr": 5.882352941176471e-07, "epoch": 0.01775147928994083, "percentage": 0.6, "elapsed_time": "0:01:35", "remaining_time": "4:24:50"}
2
+ {"current_steps": 2, "total_steps": 168, "loss": 1.0731, "lr": 1.1764705882352942e-06, "epoch": 0.03550295857988166, "percentage": 1.19, "elapsed_time": "0:02:46", "remaining_time": "3:49:52"}
3
+ {"current_steps": 3, "total_steps": 168, "loss": 0.9836, "lr": 1.7647058823529414e-06, "epoch": 0.05325443786982249, "percentage": 1.79, "elapsed_time": "0:03:54", "remaining_time": "3:34:49"}
4
+ {"current_steps": 4, "total_steps": 168, "loss": 0.9904, "lr": 2.3529411764705885e-06, "epoch": 0.07100591715976332, "percentage": 2.38, "elapsed_time": "0:05:05", "remaining_time": "3:28:35"}
5
+ {"current_steps": 5, "total_steps": 168, "loss": 0.9903, "lr": 2.9411764705882355e-06, "epoch": 0.08875739644970414, "percentage": 2.98, "elapsed_time": "0:06:15", "remaining_time": "3:24:10"}
6
+ {"current_steps": 6, "total_steps": 168, "loss": 0.9045, "lr": 3.529411764705883e-06, "epoch": 0.10650887573964497, "percentage": 3.57, "elapsed_time": "0:07:25", "remaining_time": "3:20:32"}
7
+ {"current_steps": 7, "total_steps": 168, "loss": 0.9406, "lr": 4.11764705882353e-06, "epoch": 0.1242603550295858, "percentage": 4.17, "elapsed_time": "0:08:43", "remaining_time": "3:20:31"}
8
+ {"current_steps": 8, "total_steps": 168, "loss": 0.8611, "lr": 4.705882352941177e-06, "epoch": 0.14201183431952663, "percentage": 4.76, "elapsed_time": "0:10:03", "remaining_time": "3:21:14"}
9
+ {"current_steps": 9, "total_steps": 168, "loss": 0.8991, "lr": 5.294117647058824e-06, "epoch": 0.15976331360946747, "percentage": 5.36, "elapsed_time": "0:11:11", "remaining_time": "3:17:44"}
10
+ {"current_steps": 10, "total_steps": 168, "loss": 0.9153, "lr": 5.882352941176471e-06, "epoch": 0.17751479289940827, "percentage": 5.95, "elapsed_time": "0:12:26", "remaining_time": "3:16:34"}
11
+ {"current_steps": 11, "total_steps": 168, "loss": 0.9025, "lr": 6.470588235294119e-06, "epoch": 0.1952662721893491, "percentage": 6.55, "elapsed_time": "0:13:47", "remaining_time": "3:16:49"}
12
+ {"current_steps": 12, "total_steps": 168, "loss": 0.8255, "lr": 7.058823529411766e-06, "epoch": 0.21301775147928995, "percentage": 7.14, "elapsed_time": "0:15:03", "remaining_time": "3:15:45"}
13
+ {"current_steps": 13, "total_steps": 168, "loss": 0.7197, "lr": 7.647058823529411e-06, "epoch": 0.23076923076923078, "percentage": 7.74, "elapsed_time": "0:16:21", "remaining_time": "3:14:57"}
14
+ {"current_steps": 14, "total_steps": 168, "loss": 0.7522, "lr": 8.23529411764706e-06, "epoch": 0.2485207100591716, "percentage": 8.33, "elapsed_time": "0:17:29", "remaining_time": "3:12:27"}
15
+ {"current_steps": 15, "total_steps": 168, "loss": 0.7343, "lr": 8.823529411764707e-06, "epoch": 0.26627218934911245, "percentage": 8.93, "elapsed_time": "0:18:40", "remaining_time": "3:10:32"}
16
+ {"current_steps": 16, "total_steps": 168, "loss": 0.7614, "lr": 9.411764705882354e-06, "epoch": 0.28402366863905326, "percentage": 9.52, "elapsed_time": "0:19:57", "remaining_time": "3:09:36"}
17
+ {"current_steps": 17, "total_steps": 168, "loss": 0.6835, "lr": 1e-05, "epoch": 0.30177514792899407, "percentage": 10.12, "elapsed_time": "0:21:09", "remaining_time": "3:07:52"}
18
+ {"current_steps": 18, "total_steps": 168, "loss": 0.7777, "lr": 9.998917893031615e-06, "epoch": 0.31952662721893493, "percentage": 10.71, "elapsed_time": "0:22:24", "remaining_time": "3:06:47"}
19
+ {"current_steps": 19, "total_steps": 168, "loss": 0.7068, "lr": 9.995672040508656e-06, "epoch": 0.33727810650887574, "percentage": 11.31, "elapsed_time": "0:23:45", "remaining_time": "3:06:21"}
20
+ {"current_steps": 20, "total_steps": 168, "loss": 0.6594, "lr": 9.990263847374976e-06, "epoch": 0.35502958579881655, "percentage": 11.9, "elapsed_time": "0:25:01", "remaining_time": "3:05:09"}
21
+ {"current_steps": 21, "total_steps": 168, "loss": 0.6521, "lr": 9.982695654527966e-06, "epoch": 0.3727810650887574, "percentage": 12.5, "elapsed_time": "0:26:13", "remaining_time": "3:03:36"}
22
+ {"current_steps": 22, "total_steps": 168, "loss": 0.729, "lr": 9.972970737805312e-06, "epoch": 0.3905325443786982, "percentage": 13.1, "elapsed_time": "0:27:30", "remaining_time": "3:02:31"}
23
+ {"current_steps": 23, "total_steps": 168, "loss": 0.6251, "lr": 9.961093306567076e-06, "epoch": 0.40828402366863903, "percentage": 13.69, "elapsed_time": "0:28:48", "remaining_time": "3:01:36"}
24
+ {"current_steps": 24, "total_steps": 168, "loss": 0.6779, "lr": 9.947068501873702e-06, "epoch": 0.4260355029585799, "percentage": 14.29, "elapsed_time": "0:30:02", "remaining_time": "3:00:17"}
25
+ {"current_steps": 25, "total_steps": 168, "loss": 0.6849, "lr": 9.930902394260746e-06, "epoch": 0.4437869822485207, "percentage": 14.88, "elapsed_time": "0:31:24", "remaining_time": "2:59:38"}
26
+ {"current_steps": 26, "total_steps": 168, "loss": 0.5844, "lr": 9.912601981111287e-06, "epoch": 0.46153846153846156, "percentage": 15.48, "elapsed_time": "0:32:51", "remaining_time": "2:59:25"}
27
+ {"current_steps": 27, "total_steps": 168, "loss": 0.6698, "lr": 9.892175183627161e-06, "epoch": 0.47928994082840237, "percentage": 16.07, "elapsed_time": "0:34:09", "remaining_time": "2:58:23"}
28
+ {"current_steps": 28, "total_steps": 168, "loss": 0.6847, "lr": 9.869630843400331e-06, "epoch": 0.4970414201183432, "percentage": 16.67, "elapsed_time": "0:35:25", "remaining_time": "2:57:08"}
29
+ {"current_steps": 29, "total_steps": 168, "loss": 0.6191, "lr": 9.844978718585855e-06, "epoch": 0.514792899408284, "percentage": 17.26, "elapsed_time": "0:36:52", "remaining_time": "2:56:44"}
30
+ {"current_steps": 30, "total_steps": 168, "loss": 0.6409, "lr": 9.81822947967816e-06, "epoch": 0.5325443786982249, "percentage": 17.86, "elapsed_time": "0:38:04", "remaining_time": "2:55:09"}
31
+ {"current_steps": 31, "total_steps": 168, "loss": 0.6316, "lr": 9.789394704892364e-06, "epoch": 0.5502958579881657, "percentage": 18.45, "elapsed_time": "0:39:18", "remaining_time": "2:53:41"}
32
+ {"current_steps": 32, "total_steps": 168, "loss": 0.6325, "lr": 9.758486875152766e-06, "epoch": 0.5680473372781065, "percentage": 19.05, "elapsed_time": "0:40:28", "remaining_time": "2:51:59"}
33
+ {"current_steps": 33, "total_steps": 168, "loss": 0.6478, "lr": 9.725519368690539e-06, "epoch": 0.5857988165680473, "percentage": 19.64, "elapsed_time": "0:41:40", "remaining_time": "2:50:28"}
34
+ {"current_steps": 34, "total_steps": 168, "loss": 0.6117, "lr": 9.690506455253073e-06, "epoch": 0.6035502958579881, "percentage": 20.24, "elapsed_time": "0:42:52", "remaining_time": "2:48:59"}
35
+ {"current_steps": 35, "total_steps": 168, "loss": 0.6164, "lr": 9.65346328992741e-06, "epoch": 0.621301775147929, "percentage": 20.83, "elapsed_time": "0:44:10", "remaining_time": "2:47:51"}
36
+ {"current_steps": 36, "total_steps": 168, "loss": 0.567, "lr": 9.614405906580486e-06, "epoch": 0.6390532544378699, "percentage": 21.43, "elapsed_time": "0:45:19", "remaining_time": "2:46:10"}
37
+ {"current_steps": 37, "total_steps": 168, "loss": 0.6044, "lr": 9.573351210918976e-06, "epoch": 0.6568047337278107, "percentage": 22.02, "elapsed_time": "0:46:35", "remaining_time": "2:44:56"}
38
+ {"current_steps": 38, "total_steps": 168, "loss": 0.5811, "lr": 9.53031697317178e-06, "epoch": 0.6745562130177515, "percentage": 22.62, "elapsed_time": "0:47:49", "remaining_time": "2:43:35"}
39
+ {"current_steps": 39, "total_steps": 168, "loss": 0.6137, "lr": 9.485321820398321e-06, "epoch": 0.6923076923076923, "percentage": 23.21, "elapsed_time": "0:49:05", "remaining_time": "2:42:22"}
40
+ {"current_steps": 40, "total_steps": 168, "loss": 0.5736, "lr": 9.43838522842594e-06, "epoch": 0.7100591715976331, "percentage": 23.81, "elapsed_time": "0:50:39", "remaining_time": "2:42:07"}
41
+ {"current_steps": 41, "total_steps": 168, "loss": 0.6567, "lr": 9.389527513419935e-06, "epoch": 0.727810650887574, "percentage": 24.4, "elapsed_time": "0:51:51", "remaining_time": "2:40:37"}
42
+ {"current_steps": 42, "total_steps": 168, "loss": 0.6382, "lr": 9.338769823089853e-06, "epoch": 0.7455621301775148, "percentage": 25.0, "elapsed_time": "0:53:02", "remaining_time": "2:39:07"}
43
+ {"current_steps": 43, "total_steps": 168, "loss": 0.6525, "lr": 9.286134127535859e-06, "epoch": 0.7633136094674556, "percentage": 25.6, "elapsed_time": "0:54:10", "remaining_time": "2:37:30"}
44
+ {"current_steps": 44, "total_steps": 168, "loss": 0.5819, "lr": 9.231643209739128e-06, "epoch": 0.7810650887573964, "percentage": 26.19, "elapsed_time": "0:55:18", "remaining_time": "2:35:52"}
45
+ {"current_steps": 45, "total_steps": 168, "loss": 0.5681, "lr": 9.175320655700407e-06, "epoch": 0.7988165680473372, "percentage": 26.79, "elapsed_time": "0:56:37", "remaining_time": "2:34:46"}
46
+ {"current_steps": 46, "total_steps": 168, "loss": 0.5408, "lr": 9.117190844230971e-06, "epoch": 0.8165680473372781, "percentage": 27.38, "elapsed_time": "0:58:00", "remaining_time": "2:33:50"}
47
+ {"current_steps": 47, "total_steps": 168, "loss": 0.5804, "lr": 9.057278936400453e-06, "epoch": 0.834319526627219, "percentage": 27.98, "elapsed_time": "0:59:11", "remaining_time": "2:32:22"}
48
+ {"current_steps": 48, "total_steps": 168, "loss": 0.5521, "lr": 8.99561086464603e-06, "epoch": 0.8520710059171598, "percentage": 28.57, "elapsed_time": "1:00:29", "remaining_time": "2:31:13"}
49
+ {"current_steps": 49, "total_steps": 168, "loss": 0.5277, "lr": 8.932213321547769e-06, "epoch": 0.8698224852071006, "percentage": 29.17, "elapsed_time": "1:01:57", "remaining_time": "2:30:28"}
50
+ {"current_steps": 50, "total_steps": 168, "loss": 0.6031, "lr": 8.86711374827494e-06, "epoch": 0.8875739644970414, "percentage": 29.76, "elapsed_time": "1:03:11", "remaining_time": "2:29:09"}
51
+ {"current_steps": 51, "total_steps": 168, "loss": 0.5698, "lr": 8.800340322708291e-06, "epoch": 0.9053254437869822, "percentage": 30.36, "elapsed_time": "1:04:12", "remaining_time": "2:27:17"}
52
+ {"current_steps": 52, "total_steps": 168, "loss": 0.6289, "lr": 8.73192194724347e-06, "epoch": 0.9230769230769231, "percentage": 30.95, "elapsed_time": "1:05:40", "remaining_time": "2:26:30"}
53
+ {"current_steps": 53, "total_steps": 168, "loss": 0.5918, "lr": 8.661888236280813e-06, "epoch": 0.9408284023668639, "percentage": 31.55, "elapsed_time": "1:06:51", "remaining_time": "2:25:04"}
54
+ {"current_steps": 54, "total_steps": 168, "loss": 0.6514, "lr": 8.590269503406986e-06, "epoch": 0.9585798816568047, "percentage": 32.14, "elapsed_time": "1:07:57", "remaining_time": "2:23:27"}
55
+ {"current_steps": 55, "total_steps": 168, "loss": 0.5686, "lr": 8.517096748273951e-06, "epoch": 0.9763313609467456, "percentage": 32.74, "elapsed_time": "1:09:04", "remaining_time": "2:21:55"}
56
+ {"current_steps": 56, "total_steps": 168, "loss": 0.5175, "lr": 8.442401643181e-06, "epoch": 0.9940828402366864, "percentage": 33.33, "elapsed_time": "1:10:10", "remaining_time": "2:20:20"}
57
+ {"current_steps": 57, "total_steps": 168, "loss": 0.9417, "lr": 8.366216519365623e-06, "epoch": 1.0118343195266273, "percentage": 33.93, "elapsed_time": "1:11:27", "remaining_time": "2:19:08"}
58
+ {"current_steps": 58, "total_steps": 168, "loss": 0.4821, "lr": 8.288574353009164e-06, "epoch": 1.029585798816568, "percentage": 34.52, "elapsed_time": "1:12:42", "remaining_time": "2:17:53"}
59
+ {"current_steps": 59, "total_steps": 168, "loss": 0.4782, "lr": 8.20950875096333e-06, "epoch": 1.047337278106509, "percentage": 35.12, "elapsed_time": "1:13:54", "remaining_time": "2:16:31"}
60
+ {"current_steps": 60, "total_steps": 168, "loss": 0.5882, "lr": 8.129053936203688e-06, "epoch": 1.0650887573964498, "percentage": 35.71, "elapsed_time": "1:15:05", "remaining_time": "2:15:10"}
61
+ {"current_steps": 61, "total_steps": 168, "loss": 0.5487, "lr": 8.04724473301652e-06, "epoch": 1.0828402366863905, "percentage": 36.31, "elapsed_time": "1:16:24", "remaining_time": "2:14:01"}
62
+ {"current_steps": 62, "total_steps": 168, "loss": 0.4711, "lr": 7.964116551925365e-06, "epoch": 1.1005917159763314, "percentage": 36.9, "elapsed_time": "1:17:31", "remaining_time": "2:12:33"}
63
+ {"current_steps": 63, "total_steps": 168, "loss": 0.4645, "lr": 7.879705374363831e-06, "epoch": 1.1183431952662721, "percentage": 37.5, "elapsed_time": "1:18:30", "remaining_time": "2:10:51"}
64
+ {"current_steps": 64, "total_steps": 168, "loss": 0.5206, "lr": 7.794047737101298e-06, "epoch": 1.136094674556213, "percentage": 38.1, "elapsed_time": "1:19:52", "remaining_time": "2:09:47"}
65
+ {"current_steps": 65, "total_steps": 168, "loss": 0.4313, "lr": 7.707180716428237e-06, "epoch": 1.1538461538461537, "percentage": 38.69, "elapsed_time": "1:21:13", "remaining_time": "2:08:42"}
66
+ {"current_steps": 66, "total_steps": 168, "loss": 0.564, "lr": 7.619141912108008e-06, "epoch": 1.1715976331360947, "percentage": 39.29, "elapsed_time": "1:22:28", "remaining_time": "2:07:28"}
67
+ {"current_steps": 67, "total_steps": 168, "loss": 0.5041, "lr": 7.529969431102063e-06, "epoch": 1.1893491124260356, "percentage": 39.88, "elapsed_time": "1:23:49", "remaining_time": "2:06:22"}
68
+ {"current_steps": 68, "total_steps": 168, "loss": 0.5046, "lr": 7.4397018710756415e-06, "epoch": 1.2071005917159763, "percentage": 40.48, "elapsed_time": "1:24:59", "remaining_time": "2:04:59"}
69
+ {"current_steps": 69, "total_steps": 168, "loss": 0.4534, "lr": 7.34837830369103e-06, "epoch": 1.2248520710059172, "percentage": 41.07, "elapsed_time": "1:26:07", "remaining_time": "2:03:34"}
70
+ {"current_steps": 70, "total_steps": 168, "loss": 0.4369, "lr": 7.2560382576956875e-06, "epoch": 1.242603550295858, "percentage": 41.67, "elapsed_time": "1:27:14", "remaining_time": "2:02:07"}
71
+ {"current_steps": 71, "total_steps": 168, "loss": 0.4949, "lr": 7.162721701812506e-06, "epoch": 1.2603550295857988, "percentage": 42.26, "elapsed_time": "1:28:27", "remaining_time": "2:00:50"}
72
+ {"current_steps": 72, "total_steps": 168, "loss": 0.4816, "lr": 7.068469027439642e-06, "epoch": 1.2781065088757395, "percentage": 42.86, "elapsed_time": "1:29:44", "remaining_time": "1:59:39"}
73
+ {"current_steps": 73, "total_steps": 168, "loss": 0.5976, "lr": 6.9733210311673826e-06, "epoch": 1.2958579881656804, "percentage": 43.45, "elapsed_time": "1:31:09", "remaining_time": "1:58:37"}
74
+ {"current_steps": 74, "total_steps": 168, "loss": 0.4124, "lr": 6.8773188971196515e-06, "epoch": 1.3136094674556213, "percentage": 44.05, "elapsed_time": "1:32:19", "remaining_time": "1:57:17"}
75
+ {"current_steps": 75, "total_steps": 168, "loss": 0.5081, "lr": 6.780504179127735e-06, "epoch": 1.331360946745562, "percentage": 44.64, "elapsed_time": "1:33:39", "remaining_time": "1:56:08"}
76
+ {"current_steps": 76, "total_steps": 168, "loss": 0.5123, "lr": 6.682918782744033e-06, "epoch": 1.349112426035503, "percentage": 45.24, "elapsed_time": "1:34:42", "remaining_time": "1:54:39"}
77
+ {"current_steps": 77, "total_steps": 168, "loss": 0.499, "lr": 6.584604947103515e-06, "epoch": 1.3668639053254439, "percentage": 45.83, "elapsed_time": "1:35:54", "remaining_time": "1:53:20"}
78
+ {"current_steps": 78, "total_steps": 168, "loss": 0.4522, "lr": 6.4856052266408375e-06, "epoch": 1.3846153846153846, "percentage": 46.43, "elapsed_time": "1:37:09", "remaining_time": "1:52:05"}
79
+ {"current_steps": 79, "total_steps": 168, "loss": 0.4685, "lr": 6.385962472670953e-06, "epoch": 1.4023668639053255, "percentage": 47.02, "elapsed_time": "1:38:27", "remaining_time": "1:50:54"}
80
+ {"current_steps": 80, "total_steps": 168, "loss": 0.4942, "lr": 6.28571981484123e-06, "epoch": 1.4201183431952662, "percentage": 47.62, "elapsed_time": "1:39:43", "remaining_time": "1:49:42"}
81
+ {"current_steps": 81, "total_steps": 168, "loss": 0.4625, "lr": 6.184920642463095e-06, "epoch": 1.4378698224852071, "percentage": 48.21, "elapsed_time": "1:40:56", "remaining_time": "1:48:24"}
82
+ {"current_steps": 82, "total_steps": 168, "loss": 0.5671, "lr": 6.083608585731283e-06, "epoch": 1.4556213017751478, "percentage": 48.81, "elapsed_time": "1:42:23", "remaining_time": "1:47:23"}
83
+ {"current_steps": 83, "total_steps": 168, "loss": 0.516, "lr": 5.9818274968388225e-06, "epoch": 1.4733727810650887, "percentage": 49.4, "elapsed_time": "1:43:35", "remaining_time": "1:46:05"}
84
+ {"current_steps": 84, "total_steps": 168, "loss": 0.4823, "lr": 5.879621430995927e-06, "epoch": 1.4911242603550297, "percentage": 50.0, "elapsed_time": "1:44:48", "remaining_time": "1:44:48"}
85
+ {"current_steps": 85, "total_steps": 168, "loss": 0.3751, "lr": 5.777034627361025e-06, "epoch": 1.5088757396449703, "percentage": 50.6, "elapsed_time": "1:45:54", "remaining_time": "1:43:24"}
86
+ {"current_steps": 86, "total_steps": 168, "loss": 0.5432, "lr": 5.674111489892144e-06, "epoch": 1.5266272189349113, "percentage": 51.19, "elapsed_time": "1:47:22", "remaining_time": "1:42:23"}
87
+ {"current_steps": 87, "total_steps": 168, "loss": 0.5527, "lr": 5.570896568126994e-06, "epoch": 1.5443786982248522, "percentage": 51.79, "elapsed_time": "1:48:29", "remaining_time": "1:41:00"}
88
+ {"current_steps": 88, "total_steps": 168, "loss": 0.4588, "lr": 5.4674345379e-06, "epoch": 1.5621301775147929, "percentage": 52.38, "elapsed_time": "1:49:36", "remaining_time": "1:39:38"}
89
+ {"current_steps": 89, "total_steps": 168, "loss": 0.4563, "lr": 5.36377018200472e-06, "epoch": 1.5798816568047336, "percentage": 52.98, "elapsed_time": "1:50:40", "remaining_time": "1:38:14"}
90
+ {"current_steps": 90, "total_steps": 168, "loss": 0.5123, "lr": 5.259948370809902e-06, "epoch": 1.5976331360946747, "percentage": 53.57, "elapsed_time": "1:51:54", "remaining_time": "1:36:59"}
91
+ {"current_steps": 91, "total_steps": 168, "loss": 0.4979, "lr": 5.156014042837696e-06, "epoch": 1.6153846153846154, "percentage": 54.17, "elapsed_time": "1:53:05", "remaining_time": "1:35:41"}
92
+ {"current_steps": 92, "total_steps": 168, "loss": 0.5863, "lr": 5.052012185312322e-06, "epoch": 1.6331360946745561, "percentage": 54.76, "elapsed_time": "1:54:24", "remaining_time": "1:34:30"}
93
+ {"current_steps": 93, "total_steps": 168, "loss": 0.398, "lr": 4.94798781468768e-06, "epoch": 1.650887573964497, "percentage": 55.36, "elapsed_time": "1:55:37", "remaining_time": "1:33:15"}
94
+ {"current_steps": 94, "total_steps": 168, "loss": 0.6246, "lr": 4.843985957162304e-06, "epoch": 1.668639053254438, "percentage": 55.95, "elapsed_time": "1:57:02", "remaining_time": "1:32:08"}
95
+ {"current_steps": 95, "total_steps": 168, "loss": 0.3286, "lr": 4.740051629190099e-06, "epoch": 1.6863905325443787, "percentage": 56.55, "elapsed_time": "1:58:09", "remaining_time": "1:30:47"}
96
+ {"current_steps": 96, "total_steps": 168, "loss": 0.4692, "lr": 4.636229817995281e-06, "epoch": 1.7041420118343196, "percentage": 57.14, "elapsed_time": "1:59:16", "remaining_time": "1:29:27"}
97
+ {"current_steps": 97, "total_steps": 168, "loss": 0.5258, "lr": 4.532565462099999e-06, "epoch": 1.7218934911242605, "percentage": 57.74, "elapsed_time": "2:00:29", "remaining_time": "1:28:12"}
98
+ {"current_steps": 98, "total_steps": 168, "loss": 0.4714, "lr": 4.429103431873009e-06, "epoch": 1.7396449704142012, "percentage": 58.33, "elapsed_time": "2:01:59", "remaining_time": "1:27:07"}
99
+ {"current_steps": 99, "total_steps": 168, "loss": 0.4571, "lr": 4.3258885101078565e-06, "epoch": 1.7573964497041419, "percentage": 58.93, "elapsed_time": "2:03:14", "remaining_time": "1:25:53"}
100
+ {"current_steps": 100, "total_steps": 168, "loss": 0.4783, "lr": 4.2229653726389765e-06, "epoch": 1.7751479289940828, "percentage": 59.52, "elapsed_time": "2:04:25", "remaining_time": "1:24:36"}
101
+ {"current_steps": 101, "total_steps": 168, "loss": 0.4467, "lr": 4.120378569004074e-06, "epoch": 1.7928994082840237, "percentage": 60.12, "elapsed_time": "2:05:44", "remaining_time": "1:23:24"}
102
+ {"current_steps": 102, "total_steps": 168, "loss": 0.5032, "lr": 4.018172503161179e-06, "epoch": 1.8106508875739644, "percentage": 60.71, "elapsed_time": "2:07:14", "remaining_time": "1:22:20"}
103
+ {"current_steps": 103, "total_steps": 168, "loss": 0.482, "lr": 3.9163914142687185e-06, "epoch": 1.8284023668639053, "percentage": 61.31, "elapsed_time": "2:08:36", "remaining_time": "1:21:09"}
104
+ {"current_steps": 104, "total_steps": 168, "loss": 0.4609, "lr": 3.815079357536907e-06, "epoch": 1.8461538461538463, "percentage": 61.9, "elapsed_time": "2:09:46", "remaining_time": "1:19:51"}
105
+ {"current_steps": 105, "total_steps": 168, "loss": 0.5237, "lr": 3.714280185158771e-06, "epoch": 1.863905325443787, "percentage": 62.5, "elapsed_time": "2:11:03", "remaining_time": "1:18:38"}
106
+ {"current_steps": 106, "total_steps": 168, "loss": 0.4206, "lr": 3.614037527329048e-06, "epoch": 1.8816568047337277, "percentage": 63.1, "elapsed_time": "2:12:13", "remaining_time": "1:17:20"}
107
+ {"current_steps": 107, "total_steps": 168, "loss": 0.4779, "lr": 3.5143947733591633e-06, "epoch": 1.8994082840236688, "percentage": 63.69, "elapsed_time": "2:13:27", "remaining_time": "1:16:05"}
108
+ {"current_steps": 108, "total_steps": 168, "loss": 0.5056, "lr": 3.4153950528964867e-06, "epoch": 1.9171597633136095, "percentage": 64.29, "elapsed_time": "2:14:46", "remaining_time": "1:14:52"}
109
+ {"current_steps": 109, "total_steps": 168, "loss": 0.4929, "lr": 3.3170812172559695e-06, "epoch": 1.9349112426035502, "percentage": 64.88, "elapsed_time": "2:16:04", "remaining_time": "1:13:39"}
110
+ {"current_steps": 110, "total_steps": 168, "loss": 0.4785, "lr": 3.2194958208722656e-06, "epoch": 1.952662721893491, "percentage": 65.48, "elapsed_time": "2:17:24", "remaining_time": "1:12:26"}
111
+ {"current_steps": 111, "total_steps": 168, "loss": 0.4389, "lr": 3.1226811028803514e-06, "epoch": 1.970414201183432, "percentage": 66.07, "elapsed_time": "2:18:31", "remaining_time": "1:11:08"}
112
+ {"current_steps": 112, "total_steps": 168, "loss": 0.4665, "lr": 3.0266789688326187e-06, "epoch": 1.9881656804733727, "percentage": 66.67, "elapsed_time": "2:19:47", "remaining_time": "1:09:53"}
113
+ {"current_steps": 113, "total_steps": 168, "loss": 0.7849, "lr": 2.9315309725603596e-06, "epoch": 2.0059171597633134, "percentage": 67.26, "elapsed_time": "2:21:02", "remaining_time": "1:08:38"}
114
+ {"current_steps": 114, "total_steps": 168, "loss": 0.3366, "lr": 2.8372782981874964e-06, "epoch": 2.0236686390532546, "percentage": 67.86, "elapsed_time": "2:22:08", "remaining_time": "1:07:20"}
115
+ {"current_steps": 115, "total_steps": 168, "loss": 0.4961, "lr": 2.7439617423043146e-06, "epoch": 2.0414201183431953, "percentage": 68.45, "elapsed_time": "2:23:30", "remaining_time": "1:06:08"}
116
+ {"current_steps": 116, "total_steps": 168, "loss": 0.4662, "lr": 2.6516216963089698e-06, "epoch": 2.059171597633136, "percentage": 69.05, "elapsed_time": "2:24:40", "remaining_time": "1:04:51"}
117
+ {"current_steps": 117, "total_steps": 168, "loss": 0.4298, "lr": 2.560298128924358e-06, "epoch": 2.076923076923077, "percentage": 69.64, "elapsed_time": "2:25:56", "remaining_time": "1:03:37"}
118
+ {"current_steps": 118, "total_steps": 168, "loss": 0.3721, "lr": 2.470030568897938e-06, "epoch": 2.094674556213018, "percentage": 70.24, "elapsed_time": "2:27:07", "remaining_time": "1:02:20"}
119
+ {"current_steps": 119, "total_steps": 168, "loss": 0.4947, "lr": 2.3808580878919948e-06, "epoch": 2.1124260355029585, "percentage": 70.83, "elapsed_time": "2:28:29", "remaining_time": "1:01:08"}
120
+ {"current_steps": 120, "total_steps": 168, "loss": 0.3607, "lr": 2.2928192835717642e-06, "epoch": 2.1301775147928996, "percentage": 71.43, "elapsed_time": "2:29:47", "remaining_time": "0:59:54"}
121
+ {"current_steps": 121, "total_steps": 168, "loss": 0.4134, "lr": 2.205952262898704e-06, "epoch": 2.1479289940828403, "percentage": 72.02, "elapsed_time": "2:30:58", "remaining_time": "0:58:38"}
122
+ {"current_steps": 122, "total_steps": 168, "loss": 0.4862, "lr": 2.120294625636171e-06, "epoch": 2.165680473372781, "percentage": 72.62, "elapsed_time": "2:32:26", "remaining_time": "0:57:28"}
123
+ {"current_steps": 123, "total_steps": 168, "loss": 0.3613, "lr": 2.0358834480746363e-06, "epoch": 2.1834319526627217, "percentage": 73.21, "elapsed_time": "2:33:40", "remaining_time": "0:56:13"}
124
+ {"current_steps": 124, "total_steps": 168, "loss": 0.4493, "lr": 1.9527552669834797e-06, "epoch": 2.201183431952663, "percentage": 73.81, "elapsed_time": "2:35:05", "remaining_time": "0:55:01"}
125
+ {"current_steps": 125, "total_steps": 168, "loss": 0.4133, "lr": 1.8709460637963123e-06, "epoch": 2.2189349112426036, "percentage": 74.4, "elapsed_time": "2:36:20", "remaining_time": "0:53:47"}
126
+ {"current_steps": 126, "total_steps": 168, "loss": 0.3573, "lr": 1.7904912490366723e-06, "epoch": 2.2366863905325443, "percentage": 75.0, "elapsed_time": "2:37:49", "remaining_time": "0:52:36"}
127
+ {"current_steps": 127, "total_steps": 168, "loss": 0.4517, "lr": 1.711425646990838e-06, "epoch": 2.2544378698224854, "percentage": 75.6, "elapsed_time": "2:39:07", "remaining_time": "0:51:22"}
128
+ {"current_steps": 128, "total_steps": 168, "loss": 0.4134, "lr": 1.6337834806343783e-06, "epoch": 2.272189349112426, "percentage": 76.19, "elapsed_time": "2:40:26", "remaining_time": "0:50:08"}
129
+ {"current_steps": 129, "total_steps": 168, "loss": 0.4579, "lr": 1.557598356819e-06, "epoch": 2.289940828402367, "percentage": 76.79, "elapsed_time": "2:41:38", "remaining_time": "0:48:52"}
130
+ {"current_steps": 130, "total_steps": 168, "loss": 0.3641, "lr": 1.482903251726049e-06, "epoch": 2.3076923076923075, "percentage": 77.38, "elapsed_time": "2:42:43", "remaining_time": "0:47:34"}
131
+ {"current_steps": 131, "total_steps": 168, "loss": 0.5007, "lr": 1.409730496593016e-06, "epoch": 2.3254437869822486, "percentage": 77.98, "elapsed_time": "2:44:01", "remaining_time": "0:46:19"}
132
+ {"current_steps": 132, "total_steps": 168, "loss": 0.3433, "lr": 1.3381117637191887e-06, "epoch": 2.3431952662721893, "percentage": 78.57, "elapsed_time": "2:45:12", "remaining_time": "0:45:03"}
133
+ {"current_steps": 133, "total_steps": 168, "loss": 0.4898, "lr": 1.2680780527565313e-06, "epoch": 2.36094674556213, "percentage": 79.17, "elapsed_time": "2:46:28", "remaining_time": "0:43:48"}
134
+ {"current_steps": 134, "total_steps": 168, "loss": 0.3326, "lr": 1.1996596772917091e-06, "epoch": 2.378698224852071, "percentage": 79.76, "elapsed_time": "2:47:38", "remaining_time": "0:42:32"}
135
+ {"current_steps": 135, "total_steps": 168, "loss": 0.4423, "lr": 1.132886251725061e-06, "epoch": 2.396449704142012, "percentage": 80.36, "elapsed_time": "2:48:42", "remaining_time": "0:41:14"}
136
+ {"current_steps": 136, "total_steps": 168, "loss": 0.4593, "lr": 1.0677866784522317e-06, "epoch": 2.4142011834319526, "percentage": 80.95, "elapsed_time": "2:49:56", "remaining_time": "0:39:59"}
137
+ {"current_steps": 137, "total_steps": 168, "loss": 0.4215, "lr": 1.004389135353972e-06, "epoch": 2.4319526627218933, "percentage": 81.55, "elapsed_time": "2:51:01", "remaining_time": "0:38:41"}
138
+ {"current_steps": 138, "total_steps": 168, "loss": 0.3988, "lr": 9.427210635995482e-07, "epoch": 2.4497041420118344, "percentage": 82.14, "elapsed_time": "2:52:15", "remaining_time": "0:37:26"}
139
+ {"current_steps": 139, "total_steps": 168, "loss": 0.4313, "lr": 8.828091557690288e-07, "epoch": 2.467455621301775, "percentage": 82.74, "elapsed_time": "2:53:37", "remaining_time": "0:36:13"}
140
+ {"current_steps": 140, "total_steps": 168, "loss": 0.4222, "lr": 8.246793442995954e-07, "epoch": 2.485207100591716, "percentage": 83.33, "elapsed_time": "2:54:51", "remaining_time": "0:34:58"}
141
+ {"current_steps": 141, "total_steps": 168, "loss": 0.4143, "lr": 7.68356790260873e-07, "epoch": 2.502958579881657, "percentage": 83.93, "elapsed_time": "2:56:09", "remaining_time": "0:33:44"}
142
+ {"current_steps": 142, "total_steps": 168, "loss": 0.4597, "lr": 7.138658724641417e-07, "epoch": 2.5207100591715976, "percentage": 84.52, "elapsed_time": "2:57:32", "remaining_time": "0:32:30"}
143
+ {"current_steps": 143, "total_steps": 168, "loss": 0.4078, "lr": 6.612301769101464e-07, "epoch": 2.5384615384615383, "percentage": 85.12, "elapsed_time": "2:58:44", "remaining_time": "0:31:14"}
144
+ {"current_steps": 144, "total_steps": 168, "loss": 0.4234, "lr": 6.104724865800665e-07, "epoch": 2.556213017751479, "percentage": 85.71, "elapsed_time": "2:59:53", "remaining_time": "0:29:58"}
145
+ {"current_steps": 145, "total_steps": 168, "loss": 0.3722, "lr": 5.616147715740611e-07, "epoch": 2.57396449704142, "percentage": 86.31, "elapsed_time": "3:00:53", "remaining_time": "0:28:41"}
146
+ {"current_steps": 146, "total_steps": 168, "loss": 0.3592, "lr": 5.146781796016798e-07, "epoch": 2.591715976331361, "percentage": 86.9, "elapsed_time": "3:01:57", "remaining_time": "0:27:25"}
147
+ {"current_steps": 147, "total_steps": 168, "loss": 0.4132, "lr": 4.696830268282204e-07, "epoch": 2.609467455621302, "percentage": 87.5, "elapsed_time": "3:03:09", "remaining_time": "0:26:09"}
148
+ {"current_steps": 148, "total_steps": 168, "loss": 0.4721, "lr": 4.2664878908102556e-07, "epoch": 2.6272189349112427, "percentage": 88.1, "elapsed_time": "3:04:26", "remaining_time": "0:24:55"}
149
+ {"current_steps": 149, "total_steps": 168, "loss": 0.4011, "lr": 3.855940934195146e-07, "epoch": 2.6449704142011834, "percentage": 88.69, "elapsed_time": "3:05:31", "remaining_time": "0:23:39"}
150
+ {"current_steps": 150, "total_steps": 168, "loss": 0.4317, "lr": 3.4653671007259084e-07, "epoch": 2.662721893491124, "percentage": 89.29, "elapsed_time": "3:06:52", "remaining_time": "0:22:25"}
151
+ {"current_steps": 151, "total_steps": 168, "loss": 0.4071, "lr": 3.0949354474692937e-07, "epoch": 2.6804733727810652, "percentage": 89.88, "elapsed_time": "3:08:15", "remaining_time": "0:21:11"}
152
+ {"current_steps": 152, "total_steps": 168, "loss": 0.3797, "lr": 2.7448063130946224e-07, "epoch": 2.698224852071006, "percentage": 90.48, "elapsed_time": "3:09:22", "remaining_time": "0:19:56"}
153
+ {"current_steps": 153, "total_steps": 168, "loss": 0.4331, "lr": 2.4151312484723465e-07, "epoch": 2.7159763313609466, "percentage": 91.07, "elapsed_time": "3:10:37", "remaining_time": "0:18:41"}
154
+ {"current_steps": 154, "total_steps": 168, "loss": 0.3481, "lr": 2.106052951076365e-07, "epoch": 2.7337278106508878, "percentage": 91.67, "elapsed_time": "3:11:50", "remaining_time": "0:17:26"}
155
+ {"current_steps": 155, "total_steps": 168, "loss": 0.3702, "lr": 1.8177052032184285e-07, "epoch": 2.7514792899408285, "percentage": 92.26, "elapsed_time": "3:13:09", "remaining_time": "0:16:12"}
156
+ {"current_steps": 156, "total_steps": 168, "loss": 0.4371, "lr": 1.5502128141414496e-07, "epoch": 2.769230769230769, "percentage": 92.86, "elapsed_time": "3:14:19", "remaining_time": "0:14:56"}
157
+ {"current_steps": 157, "total_steps": 168, "loss": 0.3741, "lr": 1.303691565996712e-07, "epoch": 2.78698224852071, "percentage": 93.45, "elapsed_time": "3:15:27", "remaining_time": "0:13:41"}
158
+ {"current_steps": 158, "total_steps": 168, "loss": 0.4289, "lr": 1.0782481637284014e-07, "epoch": 2.804733727810651, "percentage": 94.05, "elapsed_time": "3:16:42", "remaining_time": "0:12:26"}
159
+ {"current_steps": 159, "total_steps": 168, "loss": 0.4927, "lr": 8.739801888871468e-08, "epoch": 2.8224852071005917, "percentage": 94.64, "elapsed_time": "3:17:59", "remaining_time": "0:11:12"}
160
+ {"current_steps": 160, "total_steps": 168, "loss": 0.3382, "lr": 6.909760573925561e-08, "epoch": 2.8402366863905324, "percentage": 95.24, "elapsed_time": "3:19:17", "remaining_time": "0:09:57"}
161
+ {"current_steps": 161, "total_steps": 168, "loss": 0.4541, "lr": 5.2931498126298495e-08, "epoch": 2.8579881656804735, "percentage": 95.83, "elapsed_time": "3:20:39", "remaining_time": "0:08:43"}
162
+ {"current_steps": 162, "total_steps": 168, "loss": 0.4203, "lr": 3.890669343292464e-08, "epoch": 2.8757396449704142, "percentage": 96.43, "elapsed_time": "3:21:52", "remaining_time": "0:07:28"}
163
+ {"current_steps": 163, "total_steps": 168, "loss": 0.3555, "lr": 2.702926219468882e-08, "epoch": 2.893491124260355, "percentage": 97.02, "elapsed_time": "3:23:15", "remaining_time": "0:06:14"}
164
+ {"current_steps": 164, "total_steps": 168, "loss": 0.4286, "lr": 1.7304345472035634e-08, "epoch": 2.9112426035502956, "percentage": 97.62, "elapsed_time": "3:24:35", "remaining_time": "0:04:59"}
165
+ {"current_steps": 165, "total_steps": 168, "loss": 0.4472, "lr": 9.73615262502503e-09, "epoch": 2.9289940828402368, "percentage": 98.21, "elapsed_time": "3:25:52", "remaining_time": "0:03:44"}
166
+ {"current_steps": 166, "total_steps": 168, "loss": 0.3565, "lr": 4.327959491344791e-09, "epoch": 2.9467455621301775, "percentage": 98.81, "elapsed_time": "3:27:08", "remaining_time": "0:02:29"}
167
+ {"current_steps": 167, "total_steps": 168, "loss": 0.45, "lr": 1.082106968385288e-09, "epoch": 2.9644970414201186, "percentage": 99.4, "elapsed_time": "3:28:28", "remaining_time": "0:01:14"}
168
+ {"current_steps": 168, "total_steps": 168, "loss": 0.3742, "lr": 0.0, "epoch": 2.9822485207100593, "percentage": 100.0, "elapsed_time": "3:29:35", "remaining_time": "0:00:00"}
169
+ {"current_steps": 168, "total_steps": 168, "epoch": 2.9822485207100593, "percentage": 100.0, "elapsed_time": "3:31:22", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,1218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9822485207100593,
5
+ "eval_steps": 500,
6
+ "global_step": 168,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01775147928994083,
13
+ "grad_norm": 2.533238649368286,
14
+ "learning_rate": 5.882352941176471e-07,
15
+ "loss": 0.924,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03550295857988166,
20
+ "grad_norm": 2.927447557449341,
21
+ "learning_rate": 1.1764705882352942e-06,
22
+ "loss": 1.0731,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.05325443786982249,
27
+ "grad_norm": 2.820338726043701,
28
+ "learning_rate": 1.7647058823529414e-06,
29
+ "loss": 0.9836,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.07100591715976332,
34
+ "grad_norm": 2.642514228820801,
35
+ "learning_rate": 2.3529411764705885e-06,
36
+ "loss": 0.9904,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.08875739644970414,
41
+ "grad_norm": 2.659113883972168,
42
+ "learning_rate": 2.9411764705882355e-06,
43
+ "loss": 0.9903,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.10650887573964497,
48
+ "grad_norm": 2.257899522781372,
49
+ "learning_rate": 3.529411764705883e-06,
50
+ "loss": 0.9045,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.1242603550295858,
55
+ "grad_norm": 1.839630365371704,
56
+ "learning_rate": 4.11764705882353e-06,
57
+ "loss": 0.9406,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.14201183431952663,
62
+ "grad_norm": 1.631960391998291,
63
+ "learning_rate": 4.705882352941177e-06,
64
+ "loss": 0.8611,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.15976331360946747,
69
+ "grad_norm": 1.4379936456680298,
70
+ "learning_rate": 5.294117647058824e-06,
71
+ "loss": 0.8991,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.17751479289940827,
76
+ "grad_norm": 1.5505577325820923,
77
+ "learning_rate": 5.882352941176471e-06,
78
+ "loss": 0.9153,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.1952662721893491,
83
+ "grad_norm": 1.5041471719741821,
84
+ "learning_rate": 6.470588235294119e-06,
85
+ "loss": 0.9025,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.21301775147928995,
90
+ "grad_norm": 1.1657485961914062,
91
+ "learning_rate": 7.058823529411766e-06,
92
+ "loss": 0.8255,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.23076923076923078,
97
+ "grad_norm": 1.60923433303833,
98
+ "learning_rate": 7.647058823529411e-06,
99
+ "loss": 0.7197,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.2485207100591716,
104
+ "grad_norm": 1.6407514810562134,
105
+ "learning_rate": 8.23529411764706e-06,
106
+ "loss": 0.7522,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.26627218934911245,
111
+ "grad_norm": 1.4880717992782593,
112
+ "learning_rate": 8.823529411764707e-06,
113
+ "loss": 0.7343,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.28402366863905326,
118
+ "grad_norm": 1.2115110158920288,
119
+ "learning_rate": 9.411764705882354e-06,
120
+ "loss": 0.7614,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.30177514792899407,
125
+ "grad_norm": 0.9123843312263489,
126
+ "learning_rate": 1e-05,
127
+ "loss": 0.6835,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.31952662721893493,
132
+ "grad_norm": 1.1175857782363892,
133
+ "learning_rate": 9.998917893031615e-06,
134
+ "loss": 0.7777,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.33727810650887574,
139
+ "grad_norm": 1.0061542987823486,
140
+ "learning_rate": 9.995672040508656e-06,
141
+ "loss": 0.7068,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.35502958579881655,
146
+ "grad_norm": 0.8296826481819153,
147
+ "learning_rate": 9.990263847374976e-06,
148
+ "loss": 0.6594,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.3727810650887574,
153
+ "grad_norm": 0.7384388446807861,
154
+ "learning_rate": 9.982695654527966e-06,
155
+ "loss": 0.6521,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.3905325443786982,
160
+ "grad_norm": 0.9570622444152832,
161
+ "learning_rate": 9.972970737805312e-06,
162
+ "loss": 0.729,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.40828402366863903,
167
+ "grad_norm": 0.6549481153488159,
168
+ "learning_rate": 9.961093306567076e-06,
169
+ "loss": 0.6251,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.4260355029585799,
174
+ "grad_norm": 0.7221797108650208,
175
+ "learning_rate": 9.947068501873702e-06,
176
+ "loss": 0.6779,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.4437869822485207,
181
+ "grad_norm": 0.6575434803962708,
182
+ "learning_rate": 9.930902394260746e-06,
183
+ "loss": 0.6849,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.46153846153846156,
188
+ "grad_norm": 0.5789452791213989,
189
+ "learning_rate": 9.912601981111287e-06,
190
+ "loss": 0.5844,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.47928994082840237,
195
+ "grad_norm": 0.6969165205955505,
196
+ "learning_rate": 9.892175183627161e-06,
197
+ "loss": 0.6698,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.4970414201183432,
202
+ "grad_norm": 0.7126699686050415,
203
+ "learning_rate": 9.869630843400331e-06,
204
+ "loss": 0.6847,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.514792899408284,
209
+ "grad_norm": 0.6048182845115662,
210
+ "learning_rate": 9.844978718585855e-06,
211
+ "loss": 0.6191,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.5325443786982249,
216
+ "grad_norm": 0.6467904448509216,
217
+ "learning_rate": 9.81822947967816e-06,
218
+ "loss": 0.6409,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.5502958579881657,
223
+ "grad_norm": 0.6857551336288452,
224
+ "learning_rate": 9.789394704892364e-06,
225
+ "loss": 0.6316,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.5680473372781065,
230
+ "grad_norm": 0.7137037515640259,
231
+ "learning_rate": 9.758486875152766e-06,
232
+ "loss": 0.6325,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.5857988165680473,
237
+ "grad_norm": 0.6259506940841675,
238
+ "learning_rate": 9.725519368690539e-06,
239
+ "loss": 0.6478,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.6035502958579881,
244
+ "grad_norm": 0.5821611881256104,
245
+ "learning_rate": 9.690506455253073e-06,
246
+ "loss": 0.6117,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.621301775147929,
251
+ "grad_norm": 0.6482532024383545,
252
+ "learning_rate": 9.65346328992741e-06,
253
+ "loss": 0.6164,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.6390532544378699,
258
+ "grad_norm": 0.6187491416931152,
259
+ "learning_rate": 9.614405906580486e-06,
260
+ "loss": 0.567,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.6568047337278107,
265
+ "grad_norm": 0.6659966111183167,
266
+ "learning_rate": 9.573351210918976e-06,
267
+ "loss": 0.6044,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.6745562130177515,
272
+ "grad_norm": 0.6486673951148987,
273
+ "learning_rate": 9.53031697317178e-06,
274
+ "loss": 0.5811,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.6923076923076923,
279
+ "grad_norm": 0.6228745579719543,
280
+ "learning_rate": 9.485321820398321e-06,
281
+ "loss": 0.6137,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.7100591715976331,
286
+ "grad_norm": 0.5413960814476013,
287
+ "learning_rate": 9.43838522842594e-06,
288
+ "loss": 0.5736,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.727810650887574,
293
+ "grad_norm": 0.5927128195762634,
294
+ "learning_rate": 9.389527513419935e-06,
295
+ "loss": 0.6567,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.7455621301775148,
300
+ "grad_norm": 0.5900639295578003,
301
+ "learning_rate": 9.338769823089853e-06,
302
+ "loss": 0.6382,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.7633136094674556,
307
+ "grad_norm": 0.6012625098228455,
308
+ "learning_rate": 9.286134127535859e-06,
309
+ "loss": 0.6525,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.7810650887573964,
314
+ "grad_norm": 0.5634270906448364,
315
+ "learning_rate": 9.231643209739128e-06,
316
+ "loss": 0.5819,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.7988165680473372,
321
+ "grad_norm": 0.5087092518806458,
322
+ "learning_rate": 9.175320655700407e-06,
323
+ "loss": 0.5681,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.8165680473372781,
328
+ "grad_norm": 0.5246061682701111,
329
+ "learning_rate": 9.117190844230971e-06,
330
+ "loss": 0.5408,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.834319526627219,
335
+ "grad_norm": 0.5206530094146729,
336
+ "learning_rate": 9.057278936400453e-06,
337
+ "loss": 0.5804,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.8520710059171598,
342
+ "grad_norm": 0.5596741437911987,
343
+ "learning_rate": 8.99561086464603e-06,
344
+ "loss": 0.5521,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.8698224852071006,
349
+ "grad_norm": 0.5072557330131531,
350
+ "learning_rate": 8.932213321547769e-06,
351
+ "loss": 0.5277,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.8875739644970414,
356
+ "grad_norm": 0.5525227785110474,
357
+ "learning_rate": 8.86711374827494e-06,
358
+ "loss": 0.6031,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.9053254437869822,
363
+ "grad_norm": 0.6006079316139221,
364
+ "learning_rate": 8.800340322708291e-06,
365
+ "loss": 0.5698,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.9230769230769231,
370
+ "grad_norm": 0.5963747501373291,
371
+ "learning_rate": 8.73192194724347e-06,
372
+ "loss": 0.6289,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.9408284023668639,
377
+ "grad_norm": 0.5696894526481628,
378
+ "learning_rate": 8.661888236280813e-06,
379
+ "loss": 0.5918,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.9585798816568047,
384
+ "grad_norm": 0.6133765578269958,
385
+ "learning_rate": 8.590269503406986e-06,
386
+ "loss": 0.6514,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.9763313609467456,
391
+ "grad_norm": 0.6414260864257812,
392
+ "learning_rate": 8.517096748273951e-06,
393
+ "loss": 0.5686,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.9940828402366864,
398
+ "grad_norm": 0.6260319948196411,
399
+ "learning_rate": 8.442401643181e-06,
400
+ "loss": 0.5175,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.0118343195266273,
405
+ "grad_norm": 1.199350118637085,
406
+ "learning_rate": 8.366216519365623e-06,
407
+ "loss": 0.9417,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.029585798816568,
412
+ "grad_norm": 0.6130478978157043,
413
+ "learning_rate": 8.288574353009164e-06,
414
+ "loss": 0.4821,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.047337278106509,
419
+ "grad_norm": 0.6134289503097534,
420
+ "learning_rate": 8.20950875096333e-06,
421
+ "loss": 0.4782,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.0650887573964498,
426
+ "grad_norm": 0.7462955117225647,
427
+ "learning_rate": 8.129053936203688e-06,
428
+ "loss": 0.5882,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.0828402366863905,
433
+ "grad_norm": 0.6716148257255554,
434
+ "learning_rate": 8.04724473301652e-06,
435
+ "loss": 0.5487,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.1005917159763314,
440
+ "grad_norm": 0.5907769799232483,
441
+ "learning_rate": 7.964116551925365e-06,
442
+ "loss": 0.4711,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.1183431952662721,
447
+ "grad_norm": 0.6688742637634277,
448
+ "learning_rate": 7.879705374363831e-06,
449
+ "loss": 0.4645,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.136094674556213,
454
+ "grad_norm": 0.6526861786842346,
455
+ "learning_rate": 7.794047737101298e-06,
456
+ "loss": 0.5206,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.1538461538461537,
461
+ "grad_norm": 0.5595381855964661,
462
+ "learning_rate": 7.707180716428237e-06,
463
+ "loss": 0.4313,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.1715976331360947,
468
+ "grad_norm": 0.6181778311729431,
469
+ "learning_rate": 7.619141912108008e-06,
470
+ "loss": 0.564,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.1893491124260356,
475
+ "grad_norm": 0.614881157875061,
476
+ "learning_rate": 7.529969431102063e-06,
477
+ "loss": 0.5041,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.2071005917159763,
482
+ "grad_norm": 0.6447051763534546,
483
+ "learning_rate": 7.4397018710756415e-06,
484
+ "loss": 0.5046,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.2248520710059172,
489
+ "grad_norm": 0.5753356218338013,
490
+ "learning_rate": 7.34837830369103e-06,
491
+ "loss": 0.4534,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.242603550295858,
496
+ "grad_norm": 0.5938759446144104,
497
+ "learning_rate": 7.2560382576956875e-06,
498
+ "loss": 0.4369,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.2603550295857988,
503
+ "grad_norm": 0.6178358793258667,
504
+ "learning_rate": 7.162721701812506e-06,
505
+ "loss": 0.4949,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.2781065088757395,
510
+ "grad_norm": 0.6533629894256592,
511
+ "learning_rate": 7.068469027439642e-06,
512
+ "loss": 0.4816,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 1.2958579881656804,
517
+ "grad_norm": 0.6626835465431213,
518
+ "learning_rate": 6.9733210311673826e-06,
519
+ "loss": 0.5976,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 1.3136094674556213,
524
+ "grad_norm": 0.5293806195259094,
525
+ "learning_rate": 6.8773188971196515e-06,
526
+ "loss": 0.4124,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 1.331360946745562,
531
+ "grad_norm": 0.6411221623420715,
532
+ "learning_rate": 6.780504179127735e-06,
533
+ "loss": 0.5081,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 1.349112426035503,
538
+ "grad_norm": 0.6326239109039307,
539
+ "learning_rate": 6.682918782744033e-06,
540
+ "loss": 0.5123,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.3668639053254439,
545
+ "grad_norm": 0.6738696098327637,
546
+ "learning_rate": 6.584604947103515e-06,
547
+ "loss": 0.499,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.3846153846153846,
552
+ "grad_norm": 0.5083363652229309,
553
+ "learning_rate": 6.4856052266408375e-06,
554
+ "loss": 0.4522,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.4023668639053255,
559
+ "grad_norm": 0.6393911838531494,
560
+ "learning_rate": 6.385962472670953e-06,
561
+ "loss": 0.4685,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.4201183431952662,
566
+ "grad_norm": 0.6106072664260864,
567
+ "learning_rate": 6.28571981484123e-06,
568
+ "loss": 0.4942,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.4378698224852071,
573
+ "grad_norm": 0.5104251503944397,
574
+ "learning_rate": 6.184920642463095e-06,
575
+ "loss": 0.4625,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.4556213017751478,
580
+ "grad_norm": 0.587416410446167,
581
+ "learning_rate": 6.083608585731283e-06,
582
+ "loss": 0.5671,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.4733727810650887,
587
+ "grad_norm": 0.5419860482215881,
588
+ "learning_rate": 5.9818274968388225e-06,
589
+ "loss": 0.516,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.4911242603550297,
594
+ "grad_norm": 0.6191542744636536,
595
+ "learning_rate": 5.879621430995927e-06,
596
+ "loss": 0.4823,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.5088757396449703,
601
+ "grad_norm": 0.5240432620048523,
602
+ "learning_rate": 5.777034627361025e-06,
603
+ "loss": 0.3751,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.5266272189349113,
608
+ "grad_norm": 0.6388912200927734,
609
+ "learning_rate": 5.674111489892144e-06,
610
+ "loss": 0.5432,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.5443786982248522,
615
+ "grad_norm": 0.6531295776367188,
616
+ "learning_rate": 5.570896568126994e-06,
617
+ "loss": 0.5527,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.5621301775147929,
622
+ "grad_norm": 0.5705211758613586,
623
+ "learning_rate": 5.4674345379e-06,
624
+ "loss": 0.4588,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.5798816568047336,
629
+ "grad_norm": 0.5820942521095276,
630
+ "learning_rate": 5.36377018200472e-06,
631
+ "loss": 0.4563,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.5976331360946747,
636
+ "grad_norm": 0.6194245219230652,
637
+ "learning_rate": 5.259948370809902e-06,
638
+ "loss": 0.5123,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.6153846153846154,
643
+ "grad_norm": 0.5981638431549072,
644
+ "learning_rate": 5.156014042837696e-06,
645
+ "loss": 0.4979,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.6331360946745561,
650
+ "grad_norm": 0.7485818862915039,
651
+ "learning_rate": 5.052012185312322e-06,
652
+ "loss": 0.5863,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.650887573964497,
657
+ "grad_norm": 0.5108672380447388,
658
+ "learning_rate": 4.94798781468768e-06,
659
+ "loss": 0.398,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.668639053254438,
664
+ "grad_norm": 0.6520046591758728,
665
+ "learning_rate": 4.843985957162304e-06,
666
+ "loss": 0.6246,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.6863905325443787,
671
+ "grad_norm": 0.4945230484008789,
672
+ "learning_rate": 4.740051629190099e-06,
673
+ "loss": 0.3286,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.7041420118343196,
678
+ "grad_norm": 0.613183319568634,
679
+ "learning_rate": 4.636229817995281e-06,
680
+ "loss": 0.4692,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.7218934911242605,
685
+ "grad_norm": 0.6236385107040405,
686
+ "learning_rate": 4.532565462099999e-06,
687
+ "loss": 0.5258,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.7396449704142012,
692
+ "grad_norm": 0.5453357100486755,
693
+ "learning_rate": 4.429103431873009e-06,
694
+ "loss": 0.4714,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.7573964497041419,
699
+ "grad_norm": 0.5440649390220642,
700
+ "learning_rate": 4.3258885101078565e-06,
701
+ "loss": 0.4571,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.7751479289940828,
706
+ "grad_norm": 0.6320599913597107,
707
+ "learning_rate": 4.2229653726389765e-06,
708
+ "loss": 0.4783,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.7928994082840237,
713
+ "grad_norm": 0.5469642281532288,
714
+ "learning_rate": 4.120378569004074e-06,
715
+ "loss": 0.4467,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.8106508875739644,
720
+ "grad_norm": 0.5750222206115723,
721
+ "learning_rate": 4.018172503161179e-06,
722
+ "loss": 0.5032,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.8284023668639053,
727
+ "grad_norm": 0.5565685629844666,
728
+ "learning_rate": 3.9163914142687185e-06,
729
+ "loss": 0.482,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.8461538461538463,
734
+ "grad_norm": 0.6028342247009277,
735
+ "learning_rate": 3.815079357536907e-06,
736
+ "loss": 0.4609,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.863905325443787,
741
+ "grad_norm": 0.6078227758407593,
742
+ "learning_rate": 3.714280185158771e-06,
743
+ "loss": 0.5237,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.8816568047337277,
748
+ "grad_norm": 0.5719071626663208,
749
+ "learning_rate": 3.614037527329048e-06,
750
+ "loss": 0.4206,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.8994082840236688,
755
+ "grad_norm": 0.5875373482704163,
756
+ "learning_rate": 3.5143947733591633e-06,
757
+ "loss": 0.4779,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.9171597633136095,
762
+ "grad_norm": 0.5589243769645691,
763
+ "learning_rate": 3.4153950528964867e-06,
764
+ "loss": 0.5056,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 1.9349112426035502,
769
+ "grad_norm": 0.5471234917640686,
770
+ "learning_rate": 3.3170812172559695e-06,
771
+ "loss": 0.4929,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 1.952662721893491,
776
+ "grad_norm": 0.5713181495666504,
777
+ "learning_rate": 3.2194958208722656e-06,
778
+ "loss": 0.4785,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 1.970414201183432,
783
+ "grad_norm": 0.553081750869751,
784
+ "learning_rate": 3.1226811028803514e-06,
785
+ "loss": 0.4389,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 1.9881656804733727,
790
+ "grad_norm": 0.5729470252990723,
791
+ "learning_rate": 3.0266789688326187e-06,
792
+ "loss": 0.4665,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 2.0059171597633134,
797
+ "grad_norm": 1.2184429168701172,
798
+ "learning_rate": 2.9315309725603596e-06,
799
+ "loss": 0.7849,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 2.0236686390532546,
804
+ "grad_norm": 0.522588849067688,
805
+ "learning_rate": 2.8372782981874964e-06,
806
+ "loss": 0.3366,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 2.0414201183431953,
811
+ "grad_norm": 0.6389386057853699,
812
+ "learning_rate": 2.7439617423043146e-06,
813
+ "loss": 0.4961,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 2.059171597633136,
818
+ "grad_norm": 0.6419571042060852,
819
+ "learning_rate": 2.6516216963089698e-06,
820
+ "loss": 0.4662,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 2.076923076923077,
825
+ "grad_norm": 0.6015217900276184,
826
+ "learning_rate": 2.560298128924358e-06,
827
+ "loss": 0.4298,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 2.094674556213018,
832
+ "grad_norm": 0.5608621835708618,
833
+ "learning_rate": 2.470030568897938e-06,
834
+ "loss": 0.3721,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 2.1124260355029585,
839
+ "grad_norm": 0.6403945684432983,
840
+ "learning_rate": 2.3808580878919948e-06,
841
+ "loss": 0.4947,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 2.1301775147928996,
846
+ "grad_norm": 0.4906422793865204,
847
+ "learning_rate": 2.2928192835717642e-06,
848
+ "loss": 0.3607,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 2.1479289940828403,
853
+ "grad_norm": 0.5612274408340454,
854
+ "learning_rate": 2.205952262898704e-06,
855
+ "loss": 0.4134,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 2.165680473372781,
860
+ "grad_norm": 0.587371289730072,
861
+ "learning_rate": 2.120294625636171e-06,
862
+ "loss": 0.4862,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 2.1834319526627217,
867
+ "grad_norm": 0.5207931399345398,
868
+ "learning_rate": 2.0358834480746363e-06,
869
+ "loss": 0.3613,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 2.201183431952663,
874
+ "grad_norm": 0.6090331673622131,
875
+ "learning_rate": 1.9527552669834797e-06,
876
+ "loss": 0.4493,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 2.2189349112426036,
881
+ "grad_norm": 0.5700682401657104,
882
+ "learning_rate": 1.8709460637963123e-06,
883
+ "loss": 0.4133,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 2.2366863905325443,
888
+ "grad_norm": 0.4857932925224304,
889
+ "learning_rate": 1.7904912490366723e-06,
890
+ "loss": 0.3573,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 2.2544378698224854,
895
+ "grad_norm": 0.6004585027694702,
896
+ "learning_rate": 1.711425646990838e-06,
897
+ "loss": 0.4517,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 2.272189349112426,
902
+ "grad_norm": 0.5605913996696472,
903
+ "learning_rate": 1.6337834806343783e-06,
904
+ "loss": 0.4134,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 2.289940828402367,
909
+ "grad_norm": 0.6110245585441589,
910
+ "learning_rate": 1.557598356819e-06,
911
+ "loss": 0.4579,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 2.3076923076923075,
916
+ "grad_norm": 0.5302851796150208,
917
+ "learning_rate": 1.482903251726049e-06,
918
+ "loss": 0.3641,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 2.3254437869822486,
923
+ "grad_norm": 0.6419249176979065,
924
+ "learning_rate": 1.409730496593016e-06,
925
+ "loss": 0.5007,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 2.3431952662721893,
930
+ "grad_norm": 0.5336579084396362,
931
+ "learning_rate": 1.3381117637191887e-06,
932
+ "loss": 0.3433,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 2.36094674556213,
937
+ "grad_norm": 0.5869147777557373,
938
+ "learning_rate": 1.2680780527565313e-06,
939
+ "loss": 0.4898,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 2.378698224852071,
944
+ "grad_norm": 0.4657803475856781,
945
+ "learning_rate": 1.1996596772917091e-06,
946
+ "loss": 0.3326,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 2.396449704142012,
951
+ "grad_norm": 0.6105607748031616,
952
+ "learning_rate": 1.132886251725061e-06,
953
+ "loss": 0.4423,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 2.4142011834319526,
958
+ "grad_norm": 0.5837461948394775,
959
+ "learning_rate": 1.0677866784522317e-06,
960
+ "loss": 0.4593,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 2.4319526627218933,
965
+ "grad_norm": 0.6025368571281433,
966
+ "learning_rate": 1.004389135353972e-06,
967
+ "loss": 0.4215,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 2.4497041420118344,
972
+ "grad_norm": 0.5407091379165649,
973
+ "learning_rate": 9.427210635995482e-07,
974
+ "loss": 0.3988,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 2.467455621301775,
979
+ "grad_norm": 0.5298522114753723,
980
+ "learning_rate": 8.828091557690288e-07,
981
+ "loss": 0.4313,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 2.485207100591716,
986
+ "grad_norm": 0.5403129458427429,
987
+ "learning_rate": 8.246793442995954e-07,
988
+ "loss": 0.4222,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 2.502958579881657,
993
+ "grad_norm": 0.5571721792221069,
994
+ "learning_rate": 7.68356790260873e-07,
995
+ "loss": 0.4143,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 2.5207100591715976,
1000
+ "grad_norm": 0.5758110284805298,
1001
+ "learning_rate": 7.138658724641417e-07,
1002
+ "loss": 0.4597,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 2.5384615384615383,
1007
+ "grad_norm": 0.5439177751541138,
1008
+ "learning_rate": 6.612301769101464e-07,
1009
+ "loss": 0.4078,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 2.556213017751479,
1014
+ "grad_norm": 0.6059474349021912,
1015
+ "learning_rate": 6.104724865800665e-07,
1016
+ "loss": 0.4234,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 2.57396449704142,
1021
+ "grad_norm": 0.5578750371932983,
1022
+ "learning_rate": 5.616147715740611e-07,
1023
+ "loss": 0.3722,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 2.591715976331361,
1028
+ "grad_norm": 0.5182917714118958,
1029
+ "learning_rate": 5.146781796016798e-07,
1030
+ "loss": 0.3592,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 2.609467455621302,
1035
+ "grad_norm": 0.5251271724700928,
1036
+ "learning_rate": 4.696830268282204e-07,
1037
+ "loss": 0.4132,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 2.6272189349112427,
1042
+ "grad_norm": 0.5910128951072693,
1043
+ "learning_rate": 4.2664878908102556e-07,
1044
+ "loss": 0.4721,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 2.6449704142011834,
1049
+ "grad_norm": 0.5311455130577087,
1050
+ "learning_rate": 3.855940934195146e-07,
1051
+ "loss": 0.4011,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 2.662721893491124,
1056
+ "grad_norm": 0.5455037951469421,
1057
+ "learning_rate": 3.4653671007259084e-07,
1058
+ "loss": 0.4317,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 2.6804733727810652,
1063
+ "grad_norm": 0.521126389503479,
1064
+ "learning_rate": 3.0949354474692937e-07,
1065
+ "loss": 0.4071,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 2.698224852071006,
1070
+ "grad_norm": 0.5334401726722717,
1071
+ "learning_rate": 2.7448063130946224e-07,
1072
+ "loss": 0.3797,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 2.7159763313609466,
1077
+ "grad_norm": 0.6030508875846863,
1078
+ "learning_rate": 2.4151312484723465e-07,
1079
+ "loss": 0.4331,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 2.7337278106508878,
1084
+ "grad_norm": 0.47127389907836914,
1085
+ "learning_rate": 2.106052951076365e-07,
1086
+ "loss": 0.3481,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 2.7514792899408285,
1091
+ "grad_norm": 0.5236401557922363,
1092
+ "learning_rate": 1.8177052032184285e-07,
1093
+ "loss": 0.3702,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 2.769230769230769,
1098
+ "grad_norm": 0.5896205902099609,
1099
+ "learning_rate": 1.5502128141414496e-07,
1100
+ "loss": 0.4371,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 2.78698224852071,
1105
+ "grad_norm": 0.5283501148223877,
1106
+ "learning_rate": 1.303691565996712e-07,
1107
+ "loss": 0.3741,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 2.804733727810651,
1112
+ "grad_norm": 0.5836403369903564,
1113
+ "learning_rate": 1.0782481637284014e-07,
1114
+ "loss": 0.4289,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 2.8224852071005917,
1119
+ "grad_norm": 0.64845210313797,
1120
+ "learning_rate": 8.739801888871468e-08,
1121
+ "loss": 0.4927,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 2.8402366863905324,
1126
+ "grad_norm": 0.5165106654167175,
1127
+ "learning_rate": 6.909760573925561e-08,
1128
+ "loss": 0.3382,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 2.8579881656804735,
1133
+ "grad_norm": 0.5744462609291077,
1134
+ "learning_rate": 5.2931498126298495e-08,
1135
+ "loss": 0.4541,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 2.8757396449704142,
1140
+ "grad_norm": 0.5389672517776489,
1141
+ "learning_rate": 3.890669343292464e-08,
1142
+ "loss": 0.4203,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 2.893491124260355,
1147
+ "grad_norm": 0.43833690881729126,
1148
+ "learning_rate": 2.702926219468882e-08,
1149
+ "loss": 0.3555,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 2.9112426035502956,
1154
+ "grad_norm": 0.48717668652534485,
1155
+ "learning_rate": 1.7304345472035634e-08,
1156
+ "loss": 0.4286,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 2.9289940828402368,
1161
+ "grad_norm": 0.5516893267631531,
1162
+ "learning_rate": 9.73615262502503e-09,
1163
+ "loss": 0.4472,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 2.9467455621301775,
1168
+ "grad_norm": 0.44991251826286316,
1169
+ "learning_rate": 4.327959491344791e-09,
1170
+ "loss": 0.3565,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 2.9644970414201186,
1175
+ "grad_norm": 0.5328838229179382,
1176
+ "learning_rate": 1.082106968385288e-09,
1177
+ "loss": 0.45,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 2.9822485207100593,
1182
+ "grad_norm": 0.5235728621482849,
1183
+ "learning_rate": 0.0,
1184
+ "loss": 0.3742,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 2.9822485207100593,
1189
+ "step": 168,
1190
+ "total_flos": 6.46489842951127e+16,
1191
+ "train_loss": 0.5384191712808042,
1192
+ "train_runtime": 12683.2217,
1193
+ "train_samples_per_second": 0.32,
1194
+ "train_steps_per_second": 0.013
1195
+ }
1196
+ ],
1197
+ "logging_steps": 1,
1198
+ "max_steps": 168,
1199
+ "num_input_tokens_seen": 0,
1200
+ "num_train_epochs": 3,
1201
+ "save_steps": 600,
1202
+ "stateful_callbacks": {
1203
+ "TrainerControl": {
1204
+ "args": {
1205
+ "should_epoch_stop": false,
1206
+ "should_evaluate": false,
1207
+ "should_log": false,
1208
+ "should_save": true,
1209
+ "should_training_stop": true
1210
+ },
1211
+ "attributes": {}
1212
+ }
1213
+ },
1214
+ "total_flos": 6.46489842951127e+16,
1215
+ "train_batch_size": 1,
1216
+ "trial_name": null,
1217
+ "trial_params": null
1218
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de6325e72c3868304d85e73b0bbb2e56d92a2ad6a528d89735ec37de3f4c440b
3
+ size 7544
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff