upload testing qwen_code_7B_test_swe_reasoning
Browse files- .gitattributes +2 -0
- README.md +61 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- checkpoint-168/added_tokens.json +24 -0
- checkpoint-168/config.json +34 -0
- checkpoint-168/generation_config.json +14 -0
- checkpoint-168/global_step168/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-168/global_step168/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-168/global_step168/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-168/global_step168/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-168/latest +1 -0
- checkpoint-168/merges.txt +0 -0
- checkpoint-168/model-00001-of-00004.safetensors +3 -0
- checkpoint-168/model-00002-of-00004.safetensors +3 -0
- checkpoint-168/model-00003-of-00004.safetensors +3 -0
- checkpoint-168/model-00004-of-00004.safetensors +3 -0
- checkpoint-168/model.safetensors.index.json +346 -0
- checkpoint-168/rng_state_0.pth +3 -0
- checkpoint-168/rng_state_1.pth +3 -0
- checkpoint-168/scheduler.pt +3 -0
- checkpoint-168/special_tokens_map.json +31 -0
- checkpoint-168/tokenizer.json +3 -0
- checkpoint-168/tokenizer_config.json +208 -0
- checkpoint-168/trainer_state.json +1209 -0
- checkpoint-168/training_args.bin +3 -0
- checkpoint-168/vocab.json +0 -0
- checkpoint-168/zero_to_fp32.py +674 -0
- config.json +34 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- train_results.json +8 -0
- trainer_log.jsonl +169 -0
- trainer_state.json +1218 -0
- training_args.bin +3 -0
- training_loss.png +0 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-168/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- full
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: qwen_code_7B_test_swe_reasoning
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# qwen_code_7B_test_swe_reasoning
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the SWE-BENCH-400-reasoning dataset.
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 1e-05
|
39 |
+
- train_batch_size: 1
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 2
|
44 |
+
- gradient_accumulation_steps: 12
|
45 |
+
- total_train_batch_size: 24
|
46 |
+
- total_eval_batch_size: 16
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 3.0
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
### Framework versions
|
57 |
+
|
58 |
+
- Transformers 4.46.1
|
59 |
+
- Pytorch 2.5.1+cu124
|
60 |
+
- Datasets 2.20.0
|
61 |
+
- Tokenizers 0.20.3
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.9822485207100593,
|
3 |
+
"total_flos": 6.46489842951127e+16,
|
4 |
+
"train_loss": 0.5384191712808042,
|
5 |
+
"train_runtime": 12683.2217,
|
6 |
+
"train_samples_per_second": 0.32,
|
7 |
+
"train_steps_per_second": 0.013
|
8 |
+
}
|
checkpoint-168/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
checkpoint-168/config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": {
|
21 |
+
"factor": 4.0,
|
22 |
+
"original_max_position_embeddings": 32768,
|
23 |
+
"rope_type": "yarn",
|
24 |
+
"type": "yarn"
|
25 |
+
},
|
26 |
+
"rope_theta": 1000000.0,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.46.1",
|
31 |
+
"use_cache": false,
|
32 |
+
"use_sliding_window": false,
|
33 |
+
"vocab_size": 152064
|
34 |
+
}
|
checkpoint-168/generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.1"
|
14 |
+
}
|
checkpoint-168/global_step168/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f5c49ed6d30f0224e5dfba1040159eb6d37e9f192f066aafed76fc9ae921250
|
3 |
+
size 45693706641
|
checkpoint-168/global_step168/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:973e5dc636234664edf706bf92baa3a3a93c54fabcaeafc1a6fcdd4bea74892d
|
3 |
+
size 45693706641
|
checkpoint-168/global_step168/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ac0d545911813b6e2ac27d6de44c048a288d1ea6396efa2ff68444967a30761
|
3 |
+
size 167061
|
checkpoint-168/global_step168/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed3fbb08314ca07e886042dccaaef134bc87b0604d163c9a5ced6ca4affb3de2
|
3 |
+
size 167061
|
checkpoint-168/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step168
|
checkpoint-168/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-168/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4cfd49ea0839e3cdf3c036166ce8cc74c6e768f2b0f07647c37cddb7d666ca6
|
3 |
+
size 4877660776
|
checkpoint-168/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21ca47f177887947b4ec6bb5245680de14ab5231b6a168d01907cc8bb3dec29b
|
3 |
+
size 4932751008
|
checkpoint-168/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7606962298038a8743fba57f52a2badd8f04359e4bc5990dcd9697d0a726b56
|
3 |
+
size 4330865200
|
checkpoint-168/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a8068c2d7641289e6943409a862d931117fade24b219093d561f103986f8753
|
3 |
+
size 1089994880
|
checkpoint-168/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
checkpoint-168/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34bcae41c589c7e4cab7b2ef263b878c90c2741404a6af11994dc31537b2319b
|
3 |
+
size 14512
|
checkpoint-168/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05dc84075e8f7dd1191c36f3be9dda12073208e12f7d2cef433c38d6336774a
|
3 |
+
size 14512
|
checkpoint-168/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51a52eee3e882e21c7ac2df7614de1ba362df4493f48602000880895cdf6df39
|
3 |
+
size 1064
|
checkpoint-168/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-168/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
checkpoint-168/tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 32768,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
checkpoint-168/trainer_state.json
ADDED
@@ -0,0 +1,1209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9822485207100593,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 168,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01775147928994083,
|
13 |
+
"grad_norm": 2.533238649368286,
|
14 |
+
"learning_rate": 5.882352941176471e-07,
|
15 |
+
"loss": 0.924,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03550295857988166,
|
20 |
+
"grad_norm": 2.927447557449341,
|
21 |
+
"learning_rate": 1.1764705882352942e-06,
|
22 |
+
"loss": 1.0731,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.05325443786982249,
|
27 |
+
"grad_norm": 2.820338726043701,
|
28 |
+
"learning_rate": 1.7647058823529414e-06,
|
29 |
+
"loss": 0.9836,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.07100591715976332,
|
34 |
+
"grad_norm": 2.642514228820801,
|
35 |
+
"learning_rate": 2.3529411764705885e-06,
|
36 |
+
"loss": 0.9904,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.08875739644970414,
|
41 |
+
"grad_norm": 2.659113883972168,
|
42 |
+
"learning_rate": 2.9411764705882355e-06,
|
43 |
+
"loss": 0.9903,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.10650887573964497,
|
48 |
+
"grad_norm": 2.257899522781372,
|
49 |
+
"learning_rate": 3.529411764705883e-06,
|
50 |
+
"loss": 0.9045,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.1242603550295858,
|
55 |
+
"grad_norm": 1.839630365371704,
|
56 |
+
"learning_rate": 4.11764705882353e-06,
|
57 |
+
"loss": 0.9406,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.14201183431952663,
|
62 |
+
"grad_norm": 1.631960391998291,
|
63 |
+
"learning_rate": 4.705882352941177e-06,
|
64 |
+
"loss": 0.8611,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.15976331360946747,
|
69 |
+
"grad_norm": 1.4379936456680298,
|
70 |
+
"learning_rate": 5.294117647058824e-06,
|
71 |
+
"loss": 0.8991,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.17751479289940827,
|
76 |
+
"grad_norm": 1.5505577325820923,
|
77 |
+
"learning_rate": 5.882352941176471e-06,
|
78 |
+
"loss": 0.9153,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1952662721893491,
|
83 |
+
"grad_norm": 1.5041471719741821,
|
84 |
+
"learning_rate": 6.470588235294119e-06,
|
85 |
+
"loss": 0.9025,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.21301775147928995,
|
90 |
+
"grad_norm": 1.1657485961914062,
|
91 |
+
"learning_rate": 7.058823529411766e-06,
|
92 |
+
"loss": 0.8255,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.23076923076923078,
|
97 |
+
"grad_norm": 1.60923433303833,
|
98 |
+
"learning_rate": 7.647058823529411e-06,
|
99 |
+
"loss": 0.7197,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.2485207100591716,
|
104 |
+
"grad_norm": 1.6407514810562134,
|
105 |
+
"learning_rate": 8.23529411764706e-06,
|
106 |
+
"loss": 0.7522,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.26627218934911245,
|
111 |
+
"grad_norm": 1.4880717992782593,
|
112 |
+
"learning_rate": 8.823529411764707e-06,
|
113 |
+
"loss": 0.7343,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.28402366863905326,
|
118 |
+
"grad_norm": 1.2115110158920288,
|
119 |
+
"learning_rate": 9.411764705882354e-06,
|
120 |
+
"loss": 0.7614,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.30177514792899407,
|
125 |
+
"grad_norm": 0.9123843312263489,
|
126 |
+
"learning_rate": 1e-05,
|
127 |
+
"loss": 0.6835,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.31952662721893493,
|
132 |
+
"grad_norm": 1.1175857782363892,
|
133 |
+
"learning_rate": 9.998917893031615e-06,
|
134 |
+
"loss": 0.7777,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.33727810650887574,
|
139 |
+
"grad_norm": 1.0061542987823486,
|
140 |
+
"learning_rate": 9.995672040508656e-06,
|
141 |
+
"loss": 0.7068,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.35502958579881655,
|
146 |
+
"grad_norm": 0.8296826481819153,
|
147 |
+
"learning_rate": 9.990263847374976e-06,
|
148 |
+
"loss": 0.6594,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.3727810650887574,
|
153 |
+
"grad_norm": 0.7384388446807861,
|
154 |
+
"learning_rate": 9.982695654527966e-06,
|
155 |
+
"loss": 0.6521,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.3905325443786982,
|
160 |
+
"grad_norm": 0.9570622444152832,
|
161 |
+
"learning_rate": 9.972970737805312e-06,
|
162 |
+
"loss": 0.729,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.40828402366863903,
|
167 |
+
"grad_norm": 0.6549481153488159,
|
168 |
+
"learning_rate": 9.961093306567076e-06,
|
169 |
+
"loss": 0.6251,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.4260355029585799,
|
174 |
+
"grad_norm": 0.7221797108650208,
|
175 |
+
"learning_rate": 9.947068501873702e-06,
|
176 |
+
"loss": 0.6779,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.4437869822485207,
|
181 |
+
"grad_norm": 0.6575434803962708,
|
182 |
+
"learning_rate": 9.930902394260746e-06,
|
183 |
+
"loss": 0.6849,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.46153846153846156,
|
188 |
+
"grad_norm": 0.5789452791213989,
|
189 |
+
"learning_rate": 9.912601981111287e-06,
|
190 |
+
"loss": 0.5844,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.47928994082840237,
|
195 |
+
"grad_norm": 0.6969165205955505,
|
196 |
+
"learning_rate": 9.892175183627161e-06,
|
197 |
+
"loss": 0.6698,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.4970414201183432,
|
202 |
+
"grad_norm": 0.7126699686050415,
|
203 |
+
"learning_rate": 9.869630843400331e-06,
|
204 |
+
"loss": 0.6847,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.514792899408284,
|
209 |
+
"grad_norm": 0.6048182845115662,
|
210 |
+
"learning_rate": 9.844978718585855e-06,
|
211 |
+
"loss": 0.6191,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.5325443786982249,
|
216 |
+
"grad_norm": 0.6467904448509216,
|
217 |
+
"learning_rate": 9.81822947967816e-06,
|
218 |
+
"loss": 0.6409,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.5502958579881657,
|
223 |
+
"grad_norm": 0.6857551336288452,
|
224 |
+
"learning_rate": 9.789394704892364e-06,
|
225 |
+
"loss": 0.6316,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.5680473372781065,
|
230 |
+
"grad_norm": 0.7137037515640259,
|
231 |
+
"learning_rate": 9.758486875152766e-06,
|
232 |
+
"loss": 0.6325,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.5857988165680473,
|
237 |
+
"grad_norm": 0.6259506940841675,
|
238 |
+
"learning_rate": 9.725519368690539e-06,
|
239 |
+
"loss": 0.6478,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.6035502958579881,
|
244 |
+
"grad_norm": 0.5821611881256104,
|
245 |
+
"learning_rate": 9.690506455253073e-06,
|
246 |
+
"loss": 0.6117,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.621301775147929,
|
251 |
+
"grad_norm": 0.6482532024383545,
|
252 |
+
"learning_rate": 9.65346328992741e-06,
|
253 |
+
"loss": 0.6164,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.6390532544378699,
|
258 |
+
"grad_norm": 0.6187491416931152,
|
259 |
+
"learning_rate": 9.614405906580486e-06,
|
260 |
+
"loss": 0.567,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.6568047337278107,
|
265 |
+
"grad_norm": 0.6659966111183167,
|
266 |
+
"learning_rate": 9.573351210918976e-06,
|
267 |
+
"loss": 0.6044,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.6745562130177515,
|
272 |
+
"grad_norm": 0.6486673951148987,
|
273 |
+
"learning_rate": 9.53031697317178e-06,
|
274 |
+
"loss": 0.5811,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.6923076923076923,
|
279 |
+
"grad_norm": 0.6228745579719543,
|
280 |
+
"learning_rate": 9.485321820398321e-06,
|
281 |
+
"loss": 0.6137,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.7100591715976331,
|
286 |
+
"grad_norm": 0.5413960814476013,
|
287 |
+
"learning_rate": 9.43838522842594e-06,
|
288 |
+
"loss": 0.5736,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.727810650887574,
|
293 |
+
"grad_norm": 0.5927128195762634,
|
294 |
+
"learning_rate": 9.389527513419935e-06,
|
295 |
+
"loss": 0.6567,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.7455621301775148,
|
300 |
+
"grad_norm": 0.5900639295578003,
|
301 |
+
"learning_rate": 9.338769823089853e-06,
|
302 |
+
"loss": 0.6382,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.7633136094674556,
|
307 |
+
"grad_norm": 0.6012625098228455,
|
308 |
+
"learning_rate": 9.286134127535859e-06,
|
309 |
+
"loss": 0.6525,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.7810650887573964,
|
314 |
+
"grad_norm": 0.5634270906448364,
|
315 |
+
"learning_rate": 9.231643209739128e-06,
|
316 |
+
"loss": 0.5819,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.7988165680473372,
|
321 |
+
"grad_norm": 0.5087092518806458,
|
322 |
+
"learning_rate": 9.175320655700407e-06,
|
323 |
+
"loss": 0.5681,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.8165680473372781,
|
328 |
+
"grad_norm": 0.5246061682701111,
|
329 |
+
"learning_rate": 9.117190844230971e-06,
|
330 |
+
"loss": 0.5408,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.834319526627219,
|
335 |
+
"grad_norm": 0.5206530094146729,
|
336 |
+
"learning_rate": 9.057278936400453e-06,
|
337 |
+
"loss": 0.5804,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.8520710059171598,
|
342 |
+
"grad_norm": 0.5596741437911987,
|
343 |
+
"learning_rate": 8.99561086464603e-06,
|
344 |
+
"loss": 0.5521,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.8698224852071006,
|
349 |
+
"grad_norm": 0.5072557330131531,
|
350 |
+
"learning_rate": 8.932213321547769e-06,
|
351 |
+
"loss": 0.5277,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.8875739644970414,
|
356 |
+
"grad_norm": 0.5525227785110474,
|
357 |
+
"learning_rate": 8.86711374827494e-06,
|
358 |
+
"loss": 0.6031,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.9053254437869822,
|
363 |
+
"grad_norm": 0.6006079316139221,
|
364 |
+
"learning_rate": 8.800340322708291e-06,
|
365 |
+
"loss": 0.5698,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.9230769230769231,
|
370 |
+
"grad_norm": 0.5963747501373291,
|
371 |
+
"learning_rate": 8.73192194724347e-06,
|
372 |
+
"loss": 0.6289,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.9408284023668639,
|
377 |
+
"grad_norm": 0.5696894526481628,
|
378 |
+
"learning_rate": 8.661888236280813e-06,
|
379 |
+
"loss": 0.5918,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.9585798816568047,
|
384 |
+
"grad_norm": 0.6133765578269958,
|
385 |
+
"learning_rate": 8.590269503406986e-06,
|
386 |
+
"loss": 0.6514,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.9763313609467456,
|
391 |
+
"grad_norm": 0.6414260864257812,
|
392 |
+
"learning_rate": 8.517096748273951e-06,
|
393 |
+
"loss": 0.5686,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.9940828402366864,
|
398 |
+
"grad_norm": 0.6260319948196411,
|
399 |
+
"learning_rate": 8.442401643181e-06,
|
400 |
+
"loss": 0.5175,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.0118343195266273,
|
405 |
+
"grad_norm": 1.199350118637085,
|
406 |
+
"learning_rate": 8.366216519365623e-06,
|
407 |
+
"loss": 0.9417,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.029585798816568,
|
412 |
+
"grad_norm": 0.6130478978157043,
|
413 |
+
"learning_rate": 8.288574353009164e-06,
|
414 |
+
"loss": 0.4821,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.047337278106509,
|
419 |
+
"grad_norm": 0.6134289503097534,
|
420 |
+
"learning_rate": 8.20950875096333e-06,
|
421 |
+
"loss": 0.4782,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.0650887573964498,
|
426 |
+
"grad_norm": 0.7462955117225647,
|
427 |
+
"learning_rate": 8.129053936203688e-06,
|
428 |
+
"loss": 0.5882,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.0828402366863905,
|
433 |
+
"grad_norm": 0.6716148257255554,
|
434 |
+
"learning_rate": 8.04724473301652e-06,
|
435 |
+
"loss": 0.5487,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.1005917159763314,
|
440 |
+
"grad_norm": 0.5907769799232483,
|
441 |
+
"learning_rate": 7.964116551925365e-06,
|
442 |
+
"loss": 0.4711,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.1183431952662721,
|
447 |
+
"grad_norm": 0.6688742637634277,
|
448 |
+
"learning_rate": 7.879705374363831e-06,
|
449 |
+
"loss": 0.4645,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.136094674556213,
|
454 |
+
"grad_norm": 0.6526861786842346,
|
455 |
+
"learning_rate": 7.794047737101298e-06,
|
456 |
+
"loss": 0.5206,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.1538461538461537,
|
461 |
+
"grad_norm": 0.5595381855964661,
|
462 |
+
"learning_rate": 7.707180716428237e-06,
|
463 |
+
"loss": 0.4313,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.1715976331360947,
|
468 |
+
"grad_norm": 0.6181778311729431,
|
469 |
+
"learning_rate": 7.619141912108008e-06,
|
470 |
+
"loss": 0.564,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.1893491124260356,
|
475 |
+
"grad_norm": 0.614881157875061,
|
476 |
+
"learning_rate": 7.529969431102063e-06,
|
477 |
+
"loss": 0.5041,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.2071005917159763,
|
482 |
+
"grad_norm": 0.6447051763534546,
|
483 |
+
"learning_rate": 7.4397018710756415e-06,
|
484 |
+
"loss": 0.5046,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.2248520710059172,
|
489 |
+
"grad_norm": 0.5753356218338013,
|
490 |
+
"learning_rate": 7.34837830369103e-06,
|
491 |
+
"loss": 0.4534,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.242603550295858,
|
496 |
+
"grad_norm": 0.5938759446144104,
|
497 |
+
"learning_rate": 7.2560382576956875e-06,
|
498 |
+
"loss": 0.4369,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.2603550295857988,
|
503 |
+
"grad_norm": 0.6178358793258667,
|
504 |
+
"learning_rate": 7.162721701812506e-06,
|
505 |
+
"loss": 0.4949,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.2781065088757395,
|
510 |
+
"grad_norm": 0.6533629894256592,
|
511 |
+
"learning_rate": 7.068469027439642e-06,
|
512 |
+
"loss": 0.4816,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.2958579881656804,
|
517 |
+
"grad_norm": 0.6626835465431213,
|
518 |
+
"learning_rate": 6.9733210311673826e-06,
|
519 |
+
"loss": 0.5976,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.3136094674556213,
|
524 |
+
"grad_norm": 0.5293806195259094,
|
525 |
+
"learning_rate": 6.8773188971196515e-06,
|
526 |
+
"loss": 0.4124,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.331360946745562,
|
531 |
+
"grad_norm": 0.6411221623420715,
|
532 |
+
"learning_rate": 6.780504179127735e-06,
|
533 |
+
"loss": 0.5081,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.349112426035503,
|
538 |
+
"grad_norm": 0.6326239109039307,
|
539 |
+
"learning_rate": 6.682918782744033e-06,
|
540 |
+
"loss": 0.5123,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.3668639053254439,
|
545 |
+
"grad_norm": 0.6738696098327637,
|
546 |
+
"learning_rate": 6.584604947103515e-06,
|
547 |
+
"loss": 0.499,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.3846153846153846,
|
552 |
+
"grad_norm": 0.5083363652229309,
|
553 |
+
"learning_rate": 6.4856052266408375e-06,
|
554 |
+
"loss": 0.4522,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.4023668639053255,
|
559 |
+
"grad_norm": 0.6393911838531494,
|
560 |
+
"learning_rate": 6.385962472670953e-06,
|
561 |
+
"loss": 0.4685,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.4201183431952662,
|
566 |
+
"grad_norm": 0.6106072664260864,
|
567 |
+
"learning_rate": 6.28571981484123e-06,
|
568 |
+
"loss": 0.4942,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.4378698224852071,
|
573 |
+
"grad_norm": 0.5104251503944397,
|
574 |
+
"learning_rate": 6.184920642463095e-06,
|
575 |
+
"loss": 0.4625,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.4556213017751478,
|
580 |
+
"grad_norm": 0.587416410446167,
|
581 |
+
"learning_rate": 6.083608585731283e-06,
|
582 |
+
"loss": 0.5671,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.4733727810650887,
|
587 |
+
"grad_norm": 0.5419860482215881,
|
588 |
+
"learning_rate": 5.9818274968388225e-06,
|
589 |
+
"loss": 0.516,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.4911242603550297,
|
594 |
+
"grad_norm": 0.6191542744636536,
|
595 |
+
"learning_rate": 5.879621430995927e-06,
|
596 |
+
"loss": 0.4823,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.5088757396449703,
|
601 |
+
"grad_norm": 0.5240432620048523,
|
602 |
+
"learning_rate": 5.777034627361025e-06,
|
603 |
+
"loss": 0.3751,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.5266272189349113,
|
608 |
+
"grad_norm": 0.6388912200927734,
|
609 |
+
"learning_rate": 5.674111489892144e-06,
|
610 |
+
"loss": 0.5432,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.5443786982248522,
|
615 |
+
"grad_norm": 0.6531295776367188,
|
616 |
+
"learning_rate": 5.570896568126994e-06,
|
617 |
+
"loss": 0.5527,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.5621301775147929,
|
622 |
+
"grad_norm": 0.5705211758613586,
|
623 |
+
"learning_rate": 5.4674345379e-06,
|
624 |
+
"loss": 0.4588,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.5798816568047336,
|
629 |
+
"grad_norm": 0.5820942521095276,
|
630 |
+
"learning_rate": 5.36377018200472e-06,
|
631 |
+
"loss": 0.4563,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.5976331360946747,
|
636 |
+
"grad_norm": 0.6194245219230652,
|
637 |
+
"learning_rate": 5.259948370809902e-06,
|
638 |
+
"loss": 0.5123,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.6153846153846154,
|
643 |
+
"grad_norm": 0.5981638431549072,
|
644 |
+
"learning_rate": 5.156014042837696e-06,
|
645 |
+
"loss": 0.4979,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.6331360946745561,
|
650 |
+
"grad_norm": 0.7485818862915039,
|
651 |
+
"learning_rate": 5.052012185312322e-06,
|
652 |
+
"loss": 0.5863,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.650887573964497,
|
657 |
+
"grad_norm": 0.5108672380447388,
|
658 |
+
"learning_rate": 4.94798781468768e-06,
|
659 |
+
"loss": 0.398,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.668639053254438,
|
664 |
+
"grad_norm": 0.6520046591758728,
|
665 |
+
"learning_rate": 4.843985957162304e-06,
|
666 |
+
"loss": 0.6246,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.6863905325443787,
|
671 |
+
"grad_norm": 0.4945230484008789,
|
672 |
+
"learning_rate": 4.740051629190099e-06,
|
673 |
+
"loss": 0.3286,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.7041420118343196,
|
678 |
+
"grad_norm": 0.613183319568634,
|
679 |
+
"learning_rate": 4.636229817995281e-06,
|
680 |
+
"loss": 0.4692,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.7218934911242605,
|
685 |
+
"grad_norm": 0.6236385107040405,
|
686 |
+
"learning_rate": 4.532565462099999e-06,
|
687 |
+
"loss": 0.5258,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.7396449704142012,
|
692 |
+
"grad_norm": 0.5453357100486755,
|
693 |
+
"learning_rate": 4.429103431873009e-06,
|
694 |
+
"loss": 0.4714,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.7573964497041419,
|
699 |
+
"grad_norm": 0.5440649390220642,
|
700 |
+
"learning_rate": 4.3258885101078565e-06,
|
701 |
+
"loss": 0.4571,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.7751479289940828,
|
706 |
+
"grad_norm": 0.6320599913597107,
|
707 |
+
"learning_rate": 4.2229653726389765e-06,
|
708 |
+
"loss": 0.4783,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.7928994082840237,
|
713 |
+
"grad_norm": 0.5469642281532288,
|
714 |
+
"learning_rate": 4.120378569004074e-06,
|
715 |
+
"loss": 0.4467,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.8106508875739644,
|
720 |
+
"grad_norm": 0.5750222206115723,
|
721 |
+
"learning_rate": 4.018172503161179e-06,
|
722 |
+
"loss": 0.5032,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.8284023668639053,
|
727 |
+
"grad_norm": 0.5565685629844666,
|
728 |
+
"learning_rate": 3.9163914142687185e-06,
|
729 |
+
"loss": 0.482,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.8461538461538463,
|
734 |
+
"grad_norm": 0.6028342247009277,
|
735 |
+
"learning_rate": 3.815079357536907e-06,
|
736 |
+
"loss": 0.4609,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.863905325443787,
|
741 |
+
"grad_norm": 0.6078227758407593,
|
742 |
+
"learning_rate": 3.714280185158771e-06,
|
743 |
+
"loss": 0.5237,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.8816568047337277,
|
748 |
+
"grad_norm": 0.5719071626663208,
|
749 |
+
"learning_rate": 3.614037527329048e-06,
|
750 |
+
"loss": 0.4206,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.8994082840236688,
|
755 |
+
"grad_norm": 0.5875373482704163,
|
756 |
+
"learning_rate": 3.5143947733591633e-06,
|
757 |
+
"loss": 0.4779,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.9171597633136095,
|
762 |
+
"grad_norm": 0.5589243769645691,
|
763 |
+
"learning_rate": 3.4153950528964867e-06,
|
764 |
+
"loss": 0.5056,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.9349112426035502,
|
769 |
+
"grad_norm": 0.5471234917640686,
|
770 |
+
"learning_rate": 3.3170812172559695e-06,
|
771 |
+
"loss": 0.4929,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.952662721893491,
|
776 |
+
"grad_norm": 0.5713181495666504,
|
777 |
+
"learning_rate": 3.2194958208722656e-06,
|
778 |
+
"loss": 0.4785,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.970414201183432,
|
783 |
+
"grad_norm": 0.553081750869751,
|
784 |
+
"learning_rate": 3.1226811028803514e-06,
|
785 |
+
"loss": 0.4389,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.9881656804733727,
|
790 |
+
"grad_norm": 0.5729470252990723,
|
791 |
+
"learning_rate": 3.0266789688326187e-06,
|
792 |
+
"loss": 0.4665,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.0059171597633134,
|
797 |
+
"grad_norm": 1.2184429168701172,
|
798 |
+
"learning_rate": 2.9315309725603596e-06,
|
799 |
+
"loss": 0.7849,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.0236686390532546,
|
804 |
+
"grad_norm": 0.522588849067688,
|
805 |
+
"learning_rate": 2.8372782981874964e-06,
|
806 |
+
"loss": 0.3366,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.0414201183431953,
|
811 |
+
"grad_norm": 0.6389386057853699,
|
812 |
+
"learning_rate": 2.7439617423043146e-06,
|
813 |
+
"loss": 0.4961,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.059171597633136,
|
818 |
+
"grad_norm": 0.6419571042060852,
|
819 |
+
"learning_rate": 2.6516216963089698e-06,
|
820 |
+
"loss": 0.4662,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.076923076923077,
|
825 |
+
"grad_norm": 0.6015217900276184,
|
826 |
+
"learning_rate": 2.560298128924358e-06,
|
827 |
+
"loss": 0.4298,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.094674556213018,
|
832 |
+
"grad_norm": 0.5608621835708618,
|
833 |
+
"learning_rate": 2.470030568897938e-06,
|
834 |
+
"loss": 0.3721,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.1124260355029585,
|
839 |
+
"grad_norm": 0.6403945684432983,
|
840 |
+
"learning_rate": 2.3808580878919948e-06,
|
841 |
+
"loss": 0.4947,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.1301775147928996,
|
846 |
+
"grad_norm": 0.4906422793865204,
|
847 |
+
"learning_rate": 2.2928192835717642e-06,
|
848 |
+
"loss": 0.3607,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.1479289940828403,
|
853 |
+
"grad_norm": 0.5612274408340454,
|
854 |
+
"learning_rate": 2.205952262898704e-06,
|
855 |
+
"loss": 0.4134,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.165680473372781,
|
860 |
+
"grad_norm": 0.587371289730072,
|
861 |
+
"learning_rate": 2.120294625636171e-06,
|
862 |
+
"loss": 0.4862,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 2.1834319526627217,
|
867 |
+
"grad_norm": 0.5207931399345398,
|
868 |
+
"learning_rate": 2.0358834480746363e-06,
|
869 |
+
"loss": 0.3613,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 2.201183431952663,
|
874 |
+
"grad_norm": 0.6090331673622131,
|
875 |
+
"learning_rate": 1.9527552669834797e-06,
|
876 |
+
"loss": 0.4493,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 2.2189349112426036,
|
881 |
+
"grad_norm": 0.5700682401657104,
|
882 |
+
"learning_rate": 1.8709460637963123e-06,
|
883 |
+
"loss": 0.4133,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.2366863905325443,
|
888 |
+
"grad_norm": 0.4857932925224304,
|
889 |
+
"learning_rate": 1.7904912490366723e-06,
|
890 |
+
"loss": 0.3573,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 2.2544378698224854,
|
895 |
+
"grad_norm": 0.6004585027694702,
|
896 |
+
"learning_rate": 1.711425646990838e-06,
|
897 |
+
"loss": 0.4517,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 2.272189349112426,
|
902 |
+
"grad_norm": 0.5605913996696472,
|
903 |
+
"learning_rate": 1.6337834806343783e-06,
|
904 |
+
"loss": 0.4134,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 2.289940828402367,
|
909 |
+
"grad_norm": 0.6110245585441589,
|
910 |
+
"learning_rate": 1.557598356819e-06,
|
911 |
+
"loss": 0.4579,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 2.3076923076923075,
|
916 |
+
"grad_norm": 0.5302851796150208,
|
917 |
+
"learning_rate": 1.482903251726049e-06,
|
918 |
+
"loss": 0.3641,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 2.3254437869822486,
|
923 |
+
"grad_norm": 0.6419249176979065,
|
924 |
+
"learning_rate": 1.409730496593016e-06,
|
925 |
+
"loss": 0.5007,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.3431952662721893,
|
930 |
+
"grad_norm": 0.5336579084396362,
|
931 |
+
"learning_rate": 1.3381117637191887e-06,
|
932 |
+
"loss": 0.3433,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.36094674556213,
|
937 |
+
"grad_norm": 0.5869147777557373,
|
938 |
+
"learning_rate": 1.2680780527565313e-06,
|
939 |
+
"loss": 0.4898,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 2.378698224852071,
|
944 |
+
"grad_norm": 0.4657803475856781,
|
945 |
+
"learning_rate": 1.1996596772917091e-06,
|
946 |
+
"loss": 0.3326,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 2.396449704142012,
|
951 |
+
"grad_norm": 0.6105607748031616,
|
952 |
+
"learning_rate": 1.132886251725061e-06,
|
953 |
+
"loss": 0.4423,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.4142011834319526,
|
958 |
+
"grad_norm": 0.5837461948394775,
|
959 |
+
"learning_rate": 1.0677866784522317e-06,
|
960 |
+
"loss": 0.4593,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.4319526627218933,
|
965 |
+
"grad_norm": 0.6025368571281433,
|
966 |
+
"learning_rate": 1.004389135353972e-06,
|
967 |
+
"loss": 0.4215,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 2.4497041420118344,
|
972 |
+
"grad_norm": 0.5407091379165649,
|
973 |
+
"learning_rate": 9.427210635995482e-07,
|
974 |
+
"loss": 0.3988,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.467455621301775,
|
979 |
+
"grad_norm": 0.5298522114753723,
|
980 |
+
"learning_rate": 8.828091557690288e-07,
|
981 |
+
"loss": 0.4313,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 2.485207100591716,
|
986 |
+
"grad_norm": 0.5403129458427429,
|
987 |
+
"learning_rate": 8.246793442995954e-07,
|
988 |
+
"loss": 0.4222,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 2.502958579881657,
|
993 |
+
"grad_norm": 0.5571721792221069,
|
994 |
+
"learning_rate": 7.68356790260873e-07,
|
995 |
+
"loss": 0.4143,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 2.5207100591715976,
|
1000 |
+
"grad_norm": 0.5758110284805298,
|
1001 |
+
"learning_rate": 7.138658724641417e-07,
|
1002 |
+
"loss": 0.4597,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 2.5384615384615383,
|
1007 |
+
"grad_norm": 0.5439177751541138,
|
1008 |
+
"learning_rate": 6.612301769101464e-07,
|
1009 |
+
"loss": 0.4078,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.556213017751479,
|
1014 |
+
"grad_norm": 0.6059474349021912,
|
1015 |
+
"learning_rate": 6.104724865800665e-07,
|
1016 |
+
"loss": 0.4234,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 2.57396449704142,
|
1021 |
+
"grad_norm": 0.5578750371932983,
|
1022 |
+
"learning_rate": 5.616147715740611e-07,
|
1023 |
+
"loss": 0.3722,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 2.591715976331361,
|
1028 |
+
"grad_norm": 0.5182917714118958,
|
1029 |
+
"learning_rate": 5.146781796016798e-07,
|
1030 |
+
"loss": 0.3592,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 2.609467455621302,
|
1035 |
+
"grad_norm": 0.5251271724700928,
|
1036 |
+
"learning_rate": 4.696830268282204e-07,
|
1037 |
+
"loss": 0.4132,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 2.6272189349112427,
|
1042 |
+
"grad_norm": 0.5910128951072693,
|
1043 |
+
"learning_rate": 4.2664878908102556e-07,
|
1044 |
+
"loss": 0.4721,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 2.6449704142011834,
|
1049 |
+
"grad_norm": 0.5311455130577087,
|
1050 |
+
"learning_rate": 3.855940934195146e-07,
|
1051 |
+
"loss": 0.4011,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 2.662721893491124,
|
1056 |
+
"grad_norm": 0.5455037951469421,
|
1057 |
+
"learning_rate": 3.4653671007259084e-07,
|
1058 |
+
"loss": 0.4317,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.6804733727810652,
|
1063 |
+
"grad_norm": 0.521126389503479,
|
1064 |
+
"learning_rate": 3.0949354474692937e-07,
|
1065 |
+
"loss": 0.4071,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.698224852071006,
|
1070 |
+
"grad_norm": 0.5334401726722717,
|
1071 |
+
"learning_rate": 2.7448063130946224e-07,
|
1072 |
+
"loss": 0.3797,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 2.7159763313609466,
|
1077 |
+
"grad_norm": 0.6030508875846863,
|
1078 |
+
"learning_rate": 2.4151312484723465e-07,
|
1079 |
+
"loss": 0.4331,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 2.7337278106508878,
|
1084 |
+
"grad_norm": 0.47127389907836914,
|
1085 |
+
"learning_rate": 2.106052951076365e-07,
|
1086 |
+
"loss": 0.3481,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 2.7514792899408285,
|
1091 |
+
"grad_norm": 0.5236401557922363,
|
1092 |
+
"learning_rate": 1.8177052032184285e-07,
|
1093 |
+
"loss": 0.3702,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.769230769230769,
|
1098 |
+
"grad_norm": 0.5896205902099609,
|
1099 |
+
"learning_rate": 1.5502128141414496e-07,
|
1100 |
+
"loss": 0.4371,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.78698224852071,
|
1105 |
+
"grad_norm": 0.5283501148223877,
|
1106 |
+
"learning_rate": 1.303691565996712e-07,
|
1107 |
+
"loss": 0.3741,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.804733727810651,
|
1112 |
+
"grad_norm": 0.5836403369903564,
|
1113 |
+
"learning_rate": 1.0782481637284014e-07,
|
1114 |
+
"loss": 0.4289,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.8224852071005917,
|
1119 |
+
"grad_norm": 0.64845210313797,
|
1120 |
+
"learning_rate": 8.739801888871468e-08,
|
1121 |
+
"loss": 0.4927,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.8402366863905324,
|
1126 |
+
"grad_norm": 0.5165106654167175,
|
1127 |
+
"learning_rate": 6.909760573925561e-08,
|
1128 |
+
"loss": 0.3382,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.8579881656804735,
|
1133 |
+
"grad_norm": 0.5744462609291077,
|
1134 |
+
"learning_rate": 5.2931498126298495e-08,
|
1135 |
+
"loss": 0.4541,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.8757396449704142,
|
1140 |
+
"grad_norm": 0.5389672517776489,
|
1141 |
+
"learning_rate": 3.890669343292464e-08,
|
1142 |
+
"loss": 0.4203,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.893491124260355,
|
1147 |
+
"grad_norm": 0.43833690881729126,
|
1148 |
+
"learning_rate": 2.702926219468882e-08,
|
1149 |
+
"loss": 0.3555,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.9112426035502956,
|
1154 |
+
"grad_norm": 0.48717668652534485,
|
1155 |
+
"learning_rate": 1.7304345472035634e-08,
|
1156 |
+
"loss": 0.4286,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.9289940828402368,
|
1161 |
+
"grad_norm": 0.5516893267631531,
|
1162 |
+
"learning_rate": 9.73615262502503e-09,
|
1163 |
+
"loss": 0.4472,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.9467455621301775,
|
1168 |
+
"grad_norm": 0.44991251826286316,
|
1169 |
+
"learning_rate": 4.327959491344791e-09,
|
1170 |
+
"loss": 0.3565,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.9644970414201186,
|
1175 |
+
"grad_norm": 0.5328838229179382,
|
1176 |
+
"learning_rate": 1.082106968385288e-09,
|
1177 |
+
"loss": 0.45,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.9822485207100593,
|
1182 |
+
"grad_norm": 0.5235728621482849,
|
1183 |
+
"learning_rate": 0.0,
|
1184 |
+
"loss": 0.3742,
|
1185 |
+
"step": 168
|
1186 |
+
}
|
1187 |
+
],
|
1188 |
+
"logging_steps": 1,
|
1189 |
+
"max_steps": 168,
|
1190 |
+
"num_input_tokens_seen": 0,
|
1191 |
+
"num_train_epochs": 3,
|
1192 |
+
"save_steps": 600,
|
1193 |
+
"stateful_callbacks": {
|
1194 |
+
"TrainerControl": {
|
1195 |
+
"args": {
|
1196 |
+
"should_epoch_stop": false,
|
1197 |
+
"should_evaluate": false,
|
1198 |
+
"should_log": false,
|
1199 |
+
"should_save": true,
|
1200 |
+
"should_training_stop": true
|
1201 |
+
},
|
1202 |
+
"attributes": {}
|
1203 |
+
}
|
1204 |
+
},
|
1205 |
+
"total_flos": 6.46489842951127e+16,
|
1206 |
+
"train_batch_size": 1,
|
1207 |
+
"trial_name": null,
|
1208 |
+
"trial_params": null
|
1209 |
+
}
|
checkpoint-168/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6325e72c3868304d85e73b0bbb2e56d92a2ad6a528d89735ec37de3f4c440b
|
3 |
+
size 7544
|
checkpoint-168/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-168/zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": {
|
21 |
+
"factor": 4.0,
|
22 |
+
"original_max_position_embeddings": 32768,
|
23 |
+
"rope_type": "yarn",
|
24 |
+
"type": "yarn"
|
25 |
+
},
|
26 |
+
"rope_theta": 1000000.0,
|
27 |
+
"sliding_window": null,
|
28 |
+
"tie_word_embeddings": false,
|
29 |
+
"torch_dtype": "bfloat16",
|
30 |
+
"transformers_version": "4.46.1",
|
31 |
+
"use_cache": false,
|
32 |
+
"use_sliding_window": false,
|
33 |
+
"vocab_size": 152064
|
34 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.46.1"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4cfd49ea0839e3cdf3c036166ce8cc74c6e768f2b0f07647c37cddb7d666ca6
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21ca47f177887947b4ec6bb5245680de14ab5231b6a168d01907cc8bb3dec29b
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7606962298038a8743fba57f52a2badd8f04359e4bc5990dcd9697d0a726b56
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a8068c2d7641289e6943409a862d931117fade24b219093d561f103986f8753
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 32768,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.9822485207100593,
|
3 |
+
"total_flos": 6.46489842951127e+16,
|
4 |
+
"train_loss": 0.5384191712808042,
|
5 |
+
"train_runtime": 12683.2217,
|
6 |
+
"train_samples_per_second": 0.32,
|
7 |
+
"train_steps_per_second": 0.013
|
8 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 1, "total_steps": 168, "loss": 0.924, "lr": 5.882352941176471e-07, "epoch": 0.01775147928994083, "percentage": 0.6, "elapsed_time": "0:01:35", "remaining_time": "4:24:50"}
|
2 |
+
{"current_steps": 2, "total_steps": 168, "loss": 1.0731, "lr": 1.1764705882352942e-06, "epoch": 0.03550295857988166, "percentage": 1.19, "elapsed_time": "0:02:46", "remaining_time": "3:49:52"}
|
3 |
+
{"current_steps": 3, "total_steps": 168, "loss": 0.9836, "lr": 1.7647058823529414e-06, "epoch": 0.05325443786982249, "percentage": 1.79, "elapsed_time": "0:03:54", "remaining_time": "3:34:49"}
|
4 |
+
{"current_steps": 4, "total_steps": 168, "loss": 0.9904, "lr": 2.3529411764705885e-06, "epoch": 0.07100591715976332, "percentage": 2.38, "elapsed_time": "0:05:05", "remaining_time": "3:28:35"}
|
5 |
+
{"current_steps": 5, "total_steps": 168, "loss": 0.9903, "lr": 2.9411764705882355e-06, "epoch": 0.08875739644970414, "percentage": 2.98, "elapsed_time": "0:06:15", "remaining_time": "3:24:10"}
|
6 |
+
{"current_steps": 6, "total_steps": 168, "loss": 0.9045, "lr": 3.529411764705883e-06, "epoch": 0.10650887573964497, "percentage": 3.57, "elapsed_time": "0:07:25", "remaining_time": "3:20:32"}
|
7 |
+
{"current_steps": 7, "total_steps": 168, "loss": 0.9406, "lr": 4.11764705882353e-06, "epoch": 0.1242603550295858, "percentage": 4.17, "elapsed_time": "0:08:43", "remaining_time": "3:20:31"}
|
8 |
+
{"current_steps": 8, "total_steps": 168, "loss": 0.8611, "lr": 4.705882352941177e-06, "epoch": 0.14201183431952663, "percentage": 4.76, "elapsed_time": "0:10:03", "remaining_time": "3:21:14"}
|
9 |
+
{"current_steps": 9, "total_steps": 168, "loss": 0.8991, "lr": 5.294117647058824e-06, "epoch": 0.15976331360946747, "percentage": 5.36, "elapsed_time": "0:11:11", "remaining_time": "3:17:44"}
|
10 |
+
{"current_steps": 10, "total_steps": 168, "loss": 0.9153, "lr": 5.882352941176471e-06, "epoch": 0.17751479289940827, "percentage": 5.95, "elapsed_time": "0:12:26", "remaining_time": "3:16:34"}
|
11 |
+
{"current_steps": 11, "total_steps": 168, "loss": 0.9025, "lr": 6.470588235294119e-06, "epoch": 0.1952662721893491, "percentage": 6.55, "elapsed_time": "0:13:47", "remaining_time": "3:16:49"}
|
12 |
+
{"current_steps": 12, "total_steps": 168, "loss": 0.8255, "lr": 7.058823529411766e-06, "epoch": 0.21301775147928995, "percentage": 7.14, "elapsed_time": "0:15:03", "remaining_time": "3:15:45"}
|
13 |
+
{"current_steps": 13, "total_steps": 168, "loss": 0.7197, "lr": 7.647058823529411e-06, "epoch": 0.23076923076923078, "percentage": 7.74, "elapsed_time": "0:16:21", "remaining_time": "3:14:57"}
|
14 |
+
{"current_steps": 14, "total_steps": 168, "loss": 0.7522, "lr": 8.23529411764706e-06, "epoch": 0.2485207100591716, "percentage": 8.33, "elapsed_time": "0:17:29", "remaining_time": "3:12:27"}
|
15 |
+
{"current_steps": 15, "total_steps": 168, "loss": 0.7343, "lr": 8.823529411764707e-06, "epoch": 0.26627218934911245, "percentage": 8.93, "elapsed_time": "0:18:40", "remaining_time": "3:10:32"}
|
16 |
+
{"current_steps": 16, "total_steps": 168, "loss": 0.7614, "lr": 9.411764705882354e-06, "epoch": 0.28402366863905326, "percentage": 9.52, "elapsed_time": "0:19:57", "remaining_time": "3:09:36"}
|
17 |
+
{"current_steps": 17, "total_steps": 168, "loss": 0.6835, "lr": 1e-05, "epoch": 0.30177514792899407, "percentage": 10.12, "elapsed_time": "0:21:09", "remaining_time": "3:07:52"}
|
18 |
+
{"current_steps": 18, "total_steps": 168, "loss": 0.7777, "lr": 9.998917893031615e-06, "epoch": 0.31952662721893493, "percentage": 10.71, "elapsed_time": "0:22:24", "remaining_time": "3:06:47"}
|
19 |
+
{"current_steps": 19, "total_steps": 168, "loss": 0.7068, "lr": 9.995672040508656e-06, "epoch": 0.33727810650887574, "percentage": 11.31, "elapsed_time": "0:23:45", "remaining_time": "3:06:21"}
|
20 |
+
{"current_steps": 20, "total_steps": 168, "loss": 0.6594, "lr": 9.990263847374976e-06, "epoch": 0.35502958579881655, "percentage": 11.9, "elapsed_time": "0:25:01", "remaining_time": "3:05:09"}
|
21 |
+
{"current_steps": 21, "total_steps": 168, "loss": 0.6521, "lr": 9.982695654527966e-06, "epoch": 0.3727810650887574, "percentage": 12.5, "elapsed_time": "0:26:13", "remaining_time": "3:03:36"}
|
22 |
+
{"current_steps": 22, "total_steps": 168, "loss": 0.729, "lr": 9.972970737805312e-06, "epoch": 0.3905325443786982, "percentage": 13.1, "elapsed_time": "0:27:30", "remaining_time": "3:02:31"}
|
23 |
+
{"current_steps": 23, "total_steps": 168, "loss": 0.6251, "lr": 9.961093306567076e-06, "epoch": 0.40828402366863903, "percentage": 13.69, "elapsed_time": "0:28:48", "remaining_time": "3:01:36"}
|
24 |
+
{"current_steps": 24, "total_steps": 168, "loss": 0.6779, "lr": 9.947068501873702e-06, "epoch": 0.4260355029585799, "percentage": 14.29, "elapsed_time": "0:30:02", "remaining_time": "3:00:17"}
|
25 |
+
{"current_steps": 25, "total_steps": 168, "loss": 0.6849, "lr": 9.930902394260746e-06, "epoch": 0.4437869822485207, "percentage": 14.88, "elapsed_time": "0:31:24", "remaining_time": "2:59:38"}
|
26 |
+
{"current_steps": 26, "total_steps": 168, "loss": 0.5844, "lr": 9.912601981111287e-06, "epoch": 0.46153846153846156, "percentage": 15.48, "elapsed_time": "0:32:51", "remaining_time": "2:59:25"}
|
27 |
+
{"current_steps": 27, "total_steps": 168, "loss": 0.6698, "lr": 9.892175183627161e-06, "epoch": 0.47928994082840237, "percentage": 16.07, "elapsed_time": "0:34:09", "remaining_time": "2:58:23"}
|
28 |
+
{"current_steps": 28, "total_steps": 168, "loss": 0.6847, "lr": 9.869630843400331e-06, "epoch": 0.4970414201183432, "percentage": 16.67, "elapsed_time": "0:35:25", "remaining_time": "2:57:08"}
|
29 |
+
{"current_steps": 29, "total_steps": 168, "loss": 0.6191, "lr": 9.844978718585855e-06, "epoch": 0.514792899408284, "percentage": 17.26, "elapsed_time": "0:36:52", "remaining_time": "2:56:44"}
|
30 |
+
{"current_steps": 30, "total_steps": 168, "loss": 0.6409, "lr": 9.81822947967816e-06, "epoch": 0.5325443786982249, "percentage": 17.86, "elapsed_time": "0:38:04", "remaining_time": "2:55:09"}
|
31 |
+
{"current_steps": 31, "total_steps": 168, "loss": 0.6316, "lr": 9.789394704892364e-06, "epoch": 0.5502958579881657, "percentage": 18.45, "elapsed_time": "0:39:18", "remaining_time": "2:53:41"}
|
32 |
+
{"current_steps": 32, "total_steps": 168, "loss": 0.6325, "lr": 9.758486875152766e-06, "epoch": 0.5680473372781065, "percentage": 19.05, "elapsed_time": "0:40:28", "remaining_time": "2:51:59"}
|
33 |
+
{"current_steps": 33, "total_steps": 168, "loss": 0.6478, "lr": 9.725519368690539e-06, "epoch": 0.5857988165680473, "percentage": 19.64, "elapsed_time": "0:41:40", "remaining_time": "2:50:28"}
|
34 |
+
{"current_steps": 34, "total_steps": 168, "loss": 0.6117, "lr": 9.690506455253073e-06, "epoch": 0.6035502958579881, "percentage": 20.24, "elapsed_time": "0:42:52", "remaining_time": "2:48:59"}
|
35 |
+
{"current_steps": 35, "total_steps": 168, "loss": 0.6164, "lr": 9.65346328992741e-06, "epoch": 0.621301775147929, "percentage": 20.83, "elapsed_time": "0:44:10", "remaining_time": "2:47:51"}
|
36 |
+
{"current_steps": 36, "total_steps": 168, "loss": 0.567, "lr": 9.614405906580486e-06, "epoch": 0.6390532544378699, "percentage": 21.43, "elapsed_time": "0:45:19", "remaining_time": "2:46:10"}
|
37 |
+
{"current_steps": 37, "total_steps": 168, "loss": 0.6044, "lr": 9.573351210918976e-06, "epoch": 0.6568047337278107, "percentage": 22.02, "elapsed_time": "0:46:35", "remaining_time": "2:44:56"}
|
38 |
+
{"current_steps": 38, "total_steps": 168, "loss": 0.5811, "lr": 9.53031697317178e-06, "epoch": 0.6745562130177515, "percentage": 22.62, "elapsed_time": "0:47:49", "remaining_time": "2:43:35"}
|
39 |
+
{"current_steps": 39, "total_steps": 168, "loss": 0.6137, "lr": 9.485321820398321e-06, "epoch": 0.6923076923076923, "percentage": 23.21, "elapsed_time": "0:49:05", "remaining_time": "2:42:22"}
|
40 |
+
{"current_steps": 40, "total_steps": 168, "loss": 0.5736, "lr": 9.43838522842594e-06, "epoch": 0.7100591715976331, "percentage": 23.81, "elapsed_time": "0:50:39", "remaining_time": "2:42:07"}
|
41 |
+
{"current_steps": 41, "total_steps": 168, "loss": 0.6567, "lr": 9.389527513419935e-06, "epoch": 0.727810650887574, "percentage": 24.4, "elapsed_time": "0:51:51", "remaining_time": "2:40:37"}
|
42 |
+
{"current_steps": 42, "total_steps": 168, "loss": 0.6382, "lr": 9.338769823089853e-06, "epoch": 0.7455621301775148, "percentage": 25.0, "elapsed_time": "0:53:02", "remaining_time": "2:39:07"}
|
43 |
+
{"current_steps": 43, "total_steps": 168, "loss": 0.6525, "lr": 9.286134127535859e-06, "epoch": 0.7633136094674556, "percentage": 25.6, "elapsed_time": "0:54:10", "remaining_time": "2:37:30"}
|
44 |
+
{"current_steps": 44, "total_steps": 168, "loss": 0.5819, "lr": 9.231643209739128e-06, "epoch": 0.7810650887573964, "percentage": 26.19, "elapsed_time": "0:55:18", "remaining_time": "2:35:52"}
|
45 |
+
{"current_steps": 45, "total_steps": 168, "loss": 0.5681, "lr": 9.175320655700407e-06, "epoch": 0.7988165680473372, "percentage": 26.79, "elapsed_time": "0:56:37", "remaining_time": "2:34:46"}
|
46 |
+
{"current_steps": 46, "total_steps": 168, "loss": 0.5408, "lr": 9.117190844230971e-06, "epoch": 0.8165680473372781, "percentage": 27.38, "elapsed_time": "0:58:00", "remaining_time": "2:33:50"}
|
47 |
+
{"current_steps": 47, "total_steps": 168, "loss": 0.5804, "lr": 9.057278936400453e-06, "epoch": 0.834319526627219, "percentage": 27.98, "elapsed_time": "0:59:11", "remaining_time": "2:32:22"}
|
48 |
+
{"current_steps": 48, "total_steps": 168, "loss": 0.5521, "lr": 8.99561086464603e-06, "epoch": 0.8520710059171598, "percentage": 28.57, "elapsed_time": "1:00:29", "remaining_time": "2:31:13"}
|
49 |
+
{"current_steps": 49, "total_steps": 168, "loss": 0.5277, "lr": 8.932213321547769e-06, "epoch": 0.8698224852071006, "percentage": 29.17, "elapsed_time": "1:01:57", "remaining_time": "2:30:28"}
|
50 |
+
{"current_steps": 50, "total_steps": 168, "loss": 0.6031, "lr": 8.86711374827494e-06, "epoch": 0.8875739644970414, "percentage": 29.76, "elapsed_time": "1:03:11", "remaining_time": "2:29:09"}
|
51 |
+
{"current_steps": 51, "total_steps": 168, "loss": 0.5698, "lr": 8.800340322708291e-06, "epoch": 0.9053254437869822, "percentage": 30.36, "elapsed_time": "1:04:12", "remaining_time": "2:27:17"}
|
52 |
+
{"current_steps": 52, "total_steps": 168, "loss": 0.6289, "lr": 8.73192194724347e-06, "epoch": 0.9230769230769231, "percentage": 30.95, "elapsed_time": "1:05:40", "remaining_time": "2:26:30"}
|
53 |
+
{"current_steps": 53, "total_steps": 168, "loss": 0.5918, "lr": 8.661888236280813e-06, "epoch": 0.9408284023668639, "percentage": 31.55, "elapsed_time": "1:06:51", "remaining_time": "2:25:04"}
|
54 |
+
{"current_steps": 54, "total_steps": 168, "loss": 0.6514, "lr": 8.590269503406986e-06, "epoch": 0.9585798816568047, "percentage": 32.14, "elapsed_time": "1:07:57", "remaining_time": "2:23:27"}
|
55 |
+
{"current_steps": 55, "total_steps": 168, "loss": 0.5686, "lr": 8.517096748273951e-06, "epoch": 0.9763313609467456, "percentage": 32.74, "elapsed_time": "1:09:04", "remaining_time": "2:21:55"}
|
56 |
+
{"current_steps": 56, "total_steps": 168, "loss": 0.5175, "lr": 8.442401643181e-06, "epoch": 0.9940828402366864, "percentage": 33.33, "elapsed_time": "1:10:10", "remaining_time": "2:20:20"}
|
57 |
+
{"current_steps": 57, "total_steps": 168, "loss": 0.9417, "lr": 8.366216519365623e-06, "epoch": 1.0118343195266273, "percentage": 33.93, "elapsed_time": "1:11:27", "remaining_time": "2:19:08"}
|
58 |
+
{"current_steps": 58, "total_steps": 168, "loss": 0.4821, "lr": 8.288574353009164e-06, "epoch": 1.029585798816568, "percentage": 34.52, "elapsed_time": "1:12:42", "remaining_time": "2:17:53"}
|
59 |
+
{"current_steps": 59, "total_steps": 168, "loss": 0.4782, "lr": 8.20950875096333e-06, "epoch": 1.047337278106509, "percentage": 35.12, "elapsed_time": "1:13:54", "remaining_time": "2:16:31"}
|
60 |
+
{"current_steps": 60, "total_steps": 168, "loss": 0.5882, "lr": 8.129053936203688e-06, "epoch": 1.0650887573964498, "percentage": 35.71, "elapsed_time": "1:15:05", "remaining_time": "2:15:10"}
|
61 |
+
{"current_steps": 61, "total_steps": 168, "loss": 0.5487, "lr": 8.04724473301652e-06, "epoch": 1.0828402366863905, "percentage": 36.31, "elapsed_time": "1:16:24", "remaining_time": "2:14:01"}
|
62 |
+
{"current_steps": 62, "total_steps": 168, "loss": 0.4711, "lr": 7.964116551925365e-06, "epoch": 1.1005917159763314, "percentage": 36.9, "elapsed_time": "1:17:31", "remaining_time": "2:12:33"}
|
63 |
+
{"current_steps": 63, "total_steps": 168, "loss": 0.4645, "lr": 7.879705374363831e-06, "epoch": 1.1183431952662721, "percentage": 37.5, "elapsed_time": "1:18:30", "remaining_time": "2:10:51"}
|
64 |
+
{"current_steps": 64, "total_steps": 168, "loss": 0.5206, "lr": 7.794047737101298e-06, "epoch": 1.136094674556213, "percentage": 38.1, "elapsed_time": "1:19:52", "remaining_time": "2:09:47"}
|
65 |
+
{"current_steps": 65, "total_steps": 168, "loss": 0.4313, "lr": 7.707180716428237e-06, "epoch": 1.1538461538461537, "percentage": 38.69, "elapsed_time": "1:21:13", "remaining_time": "2:08:42"}
|
66 |
+
{"current_steps": 66, "total_steps": 168, "loss": 0.564, "lr": 7.619141912108008e-06, "epoch": 1.1715976331360947, "percentage": 39.29, "elapsed_time": "1:22:28", "remaining_time": "2:07:28"}
|
67 |
+
{"current_steps": 67, "total_steps": 168, "loss": 0.5041, "lr": 7.529969431102063e-06, "epoch": 1.1893491124260356, "percentage": 39.88, "elapsed_time": "1:23:49", "remaining_time": "2:06:22"}
|
68 |
+
{"current_steps": 68, "total_steps": 168, "loss": 0.5046, "lr": 7.4397018710756415e-06, "epoch": 1.2071005917159763, "percentage": 40.48, "elapsed_time": "1:24:59", "remaining_time": "2:04:59"}
|
69 |
+
{"current_steps": 69, "total_steps": 168, "loss": 0.4534, "lr": 7.34837830369103e-06, "epoch": 1.2248520710059172, "percentage": 41.07, "elapsed_time": "1:26:07", "remaining_time": "2:03:34"}
|
70 |
+
{"current_steps": 70, "total_steps": 168, "loss": 0.4369, "lr": 7.2560382576956875e-06, "epoch": 1.242603550295858, "percentage": 41.67, "elapsed_time": "1:27:14", "remaining_time": "2:02:07"}
|
71 |
+
{"current_steps": 71, "total_steps": 168, "loss": 0.4949, "lr": 7.162721701812506e-06, "epoch": 1.2603550295857988, "percentage": 42.26, "elapsed_time": "1:28:27", "remaining_time": "2:00:50"}
|
72 |
+
{"current_steps": 72, "total_steps": 168, "loss": 0.4816, "lr": 7.068469027439642e-06, "epoch": 1.2781065088757395, "percentage": 42.86, "elapsed_time": "1:29:44", "remaining_time": "1:59:39"}
|
73 |
+
{"current_steps": 73, "total_steps": 168, "loss": 0.5976, "lr": 6.9733210311673826e-06, "epoch": 1.2958579881656804, "percentage": 43.45, "elapsed_time": "1:31:09", "remaining_time": "1:58:37"}
|
74 |
+
{"current_steps": 74, "total_steps": 168, "loss": 0.4124, "lr": 6.8773188971196515e-06, "epoch": 1.3136094674556213, "percentage": 44.05, "elapsed_time": "1:32:19", "remaining_time": "1:57:17"}
|
75 |
+
{"current_steps": 75, "total_steps": 168, "loss": 0.5081, "lr": 6.780504179127735e-06, "epoch": 1.331360946745562, "percentage": 44.64, "elapsed_time": "1:33:39", "remaining_time": "1:56:08"}
|
76 |
+
{"current_steps": 76, "total_steps": 168, "loss": 0.5123, "lr": 6.682918782744033e-06, "epoch": 1.349112426035503, "percentage": 45.24, "elapsed_time": "1:34:42", "remaining_time": "1:54:39"}
|
77 |
+
{"current_steps": 77, "total_steps": 168, "loss": 0.499, "lr": 6.584604947103515e-06, "epoch": 1.3668639053254439, "percentage": 45.83, "elapsed_time": "1:35:54", "remaining_time": "1:53:20"}
|
78 |
+
{"current_steps": 78, "total_steps": 168, "loss": 0.4522, "lr": 6.4856052266408375e-06, "epoch": 1.3846153846153846, "percentage": 46.43, "elapsed_time": "1:37:09", "remaining_time": "1:52:05"}
|
79 |
+
{"current_steps": 79, "total_steps": 168, "loss": 0.4685, "lr": 6.385962472670953e-06, "epoch": 1.4023668639053255, "percentage": 47.02, "elapsed_time": "1:38:27", "remaining_time": "1:50:54"}
|
80 |
+
{"current_steps": 80, "total_steps": 168, "loss": 0.4942, "lr": 6.28571981484123e-06, "epoch": 1.4201183431952662, "percentage": 47.62, "elapsed_time": "1:39:43", "remaining_time": "1:49:42"}
|
81 |
+
{"current_steps": 81, "total_steps": 168, "loss": 0.4625, "lr": 6.184920642463095e-06, "epoch": 1.4378698224852071, "percentage": 48.21, "elapsed_time": "1:40:56", "remaining_time": "1:48:24"}
|
82 |
+
{"current_steps": 82, "total_steps": 168, "loss": 0.5671, "lr": 6.083608585731283e-06, "epoch": 1.4556213017751478, "percentage": 48.81, "elapsed_time": "1:42:23", "remaining_time": "1:47:23"}
|
83 |
+
{"current_steps": 83, "total_steps": 168, "loss": 0.516, "lr": 5.9818274968388225e-06, "epoch": 1.4733727810650887, "percentage": 49.4, "elapsed_time": "1:43:35", "remaining_time": "1:46:05"}
|
84 |
+
{"current_steps": 84, "total_steps": 168, "loss": 0.4823, "lr": 5.879621430995927e-06, "epoch": 1.4911242603550297, "percentage": 50.0, "elapsed_time": "1:44:48", "remaining_time": "1:44:48"}
|
85 |
+
{"current_steps": 85, "total_steps": 168, "loss": 0.3751, "lr": 5.777034627361025e-06, "epoch": 1.5088757396449703, "percentage": 50.6, "elapsed_time": "1:45:54", "remaining_time": "1:43:24"}
|
86 |
+
{"current_steps": 86, "total_steps": 168, "loss": 0.5432, "lr": 5.674111489892144e-06, "epoch": 1.5266272189349113, "percentage": 51.19, "elapsed_time": "1:47:22", "remaining_time": "1:42:23"}
|
87 |
+
{"current_steps": 87, "total_steps": 168, "loss": 0.5527, "lr": 5.570896568126994e-06, "epoch": 1.5443786982248522, "percentage": 51.79, "elapsed_time": "1:48:29", "remaining_time": "1:41:00"}
|
88 |
+
{"current_steps": 88, "total_steps": 168, "loss": 0.4588, "lr": 5.4674345379e-06, "epoch": 1.5621301775147929, "percentage": 52.38, "elapsed_time": "1:49:36", "remaining_time": "1:39:38"}
|
89 |
+
{"current_steps": 89, "total_steps": 168, "loss": 0.4563, "lr": 5.36377018200472e-06, "epoch": 1.5798816568047336, "percentage": 52.98, "elapsed_time": "1:50:40", "remaining_time": "1:38:14"}
|
90 |
+
{"current_steps": 90, "total_steps": 168, "loss": 0.5123, "lr": 5.259948370809902e-06, "epoch": 1.5976331360946747, "percentage": 53.57, "elapsed_time": "1:51:54", "remaining_time": "1:36:59"}
|
91 |
+
{"current_steps": 91, "total_steps": 168, "loss": 0.4979, "lr": 5.156014042837696e-06, "epoch": 1.6153846153846154, "percentage": 54.17, "elapsed_time": "1:53:05", "remaining_time": "1:35:41"}
|
92 |
+
{"current_steps": 92, "total_steps": 168, "loss": 0.5863, "lr": 5.052012185312322e-06, "epoch": 1.6331360946745561, "percentage": 54.76, "elapsed_time": "1:54:24", "remaining_time": "1:34:30"}
|
93 |
+
{"current_steps": 93, "total_steps": 168, "loss": 0.398, "lr": 4.94798781468768e-06, "epoch": 1.650887573964497, "percentage": 55.36, "elapsed_time": "1:55:37", "remaining_time": "1:33:15"}
|
94 |
+
{"current_steps": 94, "total_steps": 168, "loss": 0.6246, "lr": 4.843985957162304e-06, "epoch": 1.668639053254438, "percentage": 55.95, "elapsed_time": "1:57:02", "remaining_time": "1:32:08"}
|
95 |
+
{"current_steps": 95, "total_steps": 168, "loss": 0.3286, "lr": 4.740051629190099e-06, "epoch": 1.6863905325443787, "percentage": 56.55, "elapsed_time": "1:58:09", "remaining_time": "1:30:47"}
|
96 |
+
{"current_steps": 96, "total_steps": 168, "loss": 0.4692, "lr": 4.636229817995281e-06, "epoch": 1.7041420118343196, "percentage": 57.14, "elapsed_time": "1:59:16", "remaining_time": "1:29:27"}
|
97 |
+
{"current_steps": 97, "total_steps": 168, "loss": 0.5258, "lr": 4.532565462099999e-06, "epoch": 1.7218934911242605, "percentage": 57.74, "elapsed_time": "2:00:29", "remaining_time": "1:28:12"}
|
98 |
+
{"current_steps": 98, "total_steps": 168, "loss": 0.4714, "lr": 4.429103431873009e-06, "epoch": 1.7396449704142012, "percentage": 58.33, "elapsed_time": "2:01:59", "remaining_time": "1:27:07"}
|
99 |
+
{"current_steps": 99, "total_steps": 168, "loss": 0.4571, "lr": 4.3258885101078565e-06, "epoch": 1.7573964497041419, "percentage": 58.93, "elapsed_time": "2:03:14", "remaining_time": "1:25:53"}
|
100 |
+
{"current_steps": 100, "total_steps": 168, "loss": 0.4783, "lr": 4.2229653726389765e-06, "epoch": 1.7751479289940828, "percentage": 59.52, "elapsed_time": "2:04:25", "remaining_time": "1:24:36"}
|
101 |
+
{"current_steps": 101, "total_steps": 168, "loss": 0.4467, "lr": 4.120378569004074e-06, "epoch": 1.7928994082840237, "percentage": 60.12, "elapsed_time": "2:05:44", "remaining_time": "1:23:24"}
|
102 |
+
{"current_steps": 102, "total_steps": 168, "loss": 0.5032, "lr": 4.018172503161179e-06, "epoch": 1.8106508875739644, "percentage": 60.71, "elapsed_time": "2:07:14", "remaining_time": "1:22:20"}
|
103 |
+
{"current_steps": 103, "total_steps": 168, "loss": 0.482, "lr": 3.9163914142687185e-06, "epoch": 1.8284023668639053, "percentage": 61.31, "elapsed_time": "2:08:36", "remaining_time": "1:21:09"}
|
104 |
+
{"current_steps": 104, "total_steps": 168, "loss": 0.4609, "lr": 3.815079357536907e-06, "epoch": 1.8461538461538463, "percentage": 61.9, "elapsed_time": "2:09:46", "remaining_time": "1:19:51"}
|
105 |
+
{"current_steps": 105, "total_steps": 168, "loss": 0.5237, "lr": 3.714280185158771e-06, "epoch": 1.863905325443787, "percentage": 62.5, "elapsed_time": "2:11:03", "remaining_time": "1:18:38"}
|
106 |
+
{"current_steps": 106, "total_steps": 168, "loss": 0.4206, "lr": 3.614037527329048e-06, "epoch": 1.8816568047337277, "percentage": 63.1, "elapsed_time": "2:12:13", "remaining_time": "1:17:20"}
|
107 |
+
{"current_steps": 107, "total_steps": 168, "loss": 0.4779, "lr": 3.5143947733591633e-06, "epoch": 1.8994082840236688, "percentage": 63.69, "elapsed_time": "2:13:27", "remaining_time": "1:16:05"}
|
108 |
+
{"current_steps": 108, "total_steps": 168, "loss": 0.5056, "lr": 3.4153950528964867e-06, "epoch": 1.9171597633136095, "percentage": 64.29, "elapsed_time": "2:14:46", "remaining_time": "1:14:52"}
|
109 |
+
{"current_steps": 109, "total_steps": 168, "loss": 0.4929, "lr": 3.3170812172559695e-06, "epoch": 1.9349112426035502, "percentage": 64.88, "elapsed_time": "2:16:04", "remaining_time": "1:13:39"}
|
110 |
+
{"current_steps": 110, "total_steps": 168, "loss": 0.4785, "lr": 3.2194958208722656e-06, "epoch": 1.952662721893491, "percentage": 65.48, "elapsed_time": "2:17:24", "remaining_time": "1:12:26"}
|
111 |
+
{"current_steps": 111, "total_steps": 168, "loss": 0.4389, "lr": 3.1226811028803514e-06, "epoch": 1.970414201183432, "percentage": 66.07, "elapsed_time": "2:18:31", "remaining_time": "1:11:08"}
|
112 |
+
{"current_steps": 112, "total_steps": 168, "loss": 0.4665, "lr": 3.0266789688326187e-06, "epoch": 1.9881656804733727, "percentage": 66.67, "elapsed_time": "2:19:47", "remaining_time": "1:09:53"}
|
113 |
+
{"current_steps": 113, "total_steps": 168, "loss": 0.7849, "lr": 2.9315309725603596e-06, "epoch": 2.0059171597633134, "percentage": 67.26, "elapsed_time": "2:21:02", "remaining_time": "1:08:38"}
|
114 |
+
{"current_steps": 114, "total_steps": 168, "loss": 0.3366, "lr": 2.8372782981874964e-06, "epoch": 2.0236686390532546, "percentage": 67.86, "elapsed_time": "2:22:08", "remaining_time": "1:07:20"}
|
115 |
+
{"current_steps": 115, "total_steps": 168, "loss": 0.4961, "lr": 2.7439617423043146e-06, "epoch": 2.0414201183431953, "percentage": 68.45, "elapsed_time": "2:23:30", "remaining_time": "1:06:08"}
|
116 |
+
{"current_steps": 116, "total_steps": 168, "loss": 0.4662, "lr": 2.6516216963089698e-06, "epoch": 2.059171597633136, "percentage": 69.05, "elapsed_time": "2:24:40", "remaining_time": "1:04:51"}
|
117 |
+
{"current_steps": 117, "total_steps": 168, "loss": 0.4298, "lr": 2.560298128924358e-06, "epoch": 2.076923076923077, "percentage": 69.64, "elapsed_time": "2:25:56", "remaining_time": "1:03:37"}
|
118 |
+
{"current_steps": 118, "total_steps": 168, "loss": 0.3721, "lr": 2.470030568897938e-06, "epoch": 2.094674556213018, "percentage": 70.24, "elapsed_time": "2:27:07", "remaining_time": "1:02:20"}
|
119 |
+
{"current_steps": 119, "total_steps": 168, "loss": 0.4947, "lr": 2.3808580878919948e-06, "epoch": 2.1124260355029585, "percentage": 70.83, "elapsed_time": "2:28:29", "remaining_time": "1:01:08"}
|
120 |
+
{"current_steps": 120, "total_steps": 168, "loss": 0.3607, "lr": 2.2928192835717642e-06, "epoch": 2.1301775147928996, "percentage": 71.43, "elapsed_time": "2:29:47", "remaining_time": "0:59:54"}
|
121 |
+
{"current_steps": 121, "total_steps": 168, "loss": 0.4134, "lr": 2.205952262898704e-06, "epoch": 2.1479289940828403, "percentage": 72.02, "elapsed_time": "2:30:58", "remaining_time": "0:58:38"}
|
122 |
+
{"current_steps": 122, "total_steps": 168, "loss": 0.4862, "lr": 2.120294625636171e-06, "epoch": 2.165680473372781, "percentage": 72.62, "elapsed_time": "2:32:26", "remaining_time": "0:57:28"}
|
123 |
+
{"current_steps": 123, "total_steps": 168, "loss": 0.3613, "lr": 2.0358834480746363e-06, "epoch": 2.1834319526627217, "percentage": 73.21, "elapsed_time": "2:33:40", "remaining_time": "0:56:13"}
|
124 |
+
{"current_steps": 124, "total_steps": 168, "loss": 0.4493, "lr": 1.9527552669834797e-06, "epoch": 2.201183431952663, "percentage": 73.81, "elapsed_time": "2:35:05", "remaining_time": "0:55:01"}
|
125 |
+
{"current_steps": 125, "total_steps": 168, "loss": 0.4133, "lr": 1.8709460637963123e-06, "epoch": 2.2189349112426036, "percentage": 74.4, "elapsed_time": "2:36:20", "remaining_time": "0:53:47"}
|
126 |
+
{"current_steps": 126, "total_steps": 168, "loss": 0.3573, "lr": 1.7904912490366723e-06, "epoch": 2.2366863905325443, "percentage": 75.0, "elapsed_time": "2:37:49", "remaining_time": "0:52:36"}
|
127 |
+
{"current_steps": 127, "total_steps": 168, "loss": 0.4517, "lr": 1.711425646990838e-06, "epoch": 2.2544378698224854, "percentage": 75.6, "elapsed_time": "2:39:07", "remaining_time": "0:51:22"}
|
128 |
+
{"current_steps": 128, "total_steps": 168, "loss": 0.4134, "lr": 1.6337834806343783e-06, "epoch": 2.272189349112426, "percentage": 76.19, "elapsed_time": "2:40:26", "remaining_time": "0:50:08"}
|
129 |
+
{"current_steps": 129, "total_steps": 168, "loss": 0.4579, "lr": 1.557598356819e-06, "epoch": 2.289940828402367, "percentage": 76.79, "elapsed_time": "2:41:38", "remaining_time": "0:48:52"}
|
130 |
+
{"current_steps": 130, "total_steps": 168, "loss": 0.3641, "lr": 1.482903251726049e-06, "epoch": 2.3076923076923075, "percentage": 77.38, "elapsed_time": "2:42:43", "remaining_time": "0:47:34"}
|
131 |
+
{"current_steps": 131, "total_steps": 168, "loss": 0.5007, "lr": 1.409730496593016e-06, "epoch": 2.3254437869822486, "percentage": 77.98, "elapsed_time": "2:44:01", "remaining_time": "0:46:19"}
|
132 |
+
{"current_steps": 132, "total_steps": 168, "loss": 0.3433, "lr": 1.3381117637191887e-06, "epoch": 2.3431952662721893, "percentage": 78.57, "elapsed_time": "2:45:12", "remaining_time": "0:45:03"}
|
133 |
+
{"current_steps": 133, "total_steps": 168, "loss": 0.4898, "lr": 1.2680780527565313e-06, "epoch": 2.36094674556213, "percentage": 79.17, "elapsed_time": "2:46:28", "remaining_time": "0:43:48"}
|
134 |
+
{"current_steps": 134, "total_steps": 168, "loss": 0.3326, "lr": 1.1996596772917091e-06, "epoch": 2.378698224852071, "percentage": 79.76, "elapsed_time": "2:47:38", "remaining_time": "0:42:32"}
|
135 |
+
{"current_steps": 135, "total_steps": 168, "loss": 0.4423, "lr": 1.132886251725061e-06, "epoch": 2.396449704142012, "percentage": 80.36, "elapsed_time": "2:48:42", "remaining_time": "0:41:14"}
|
136 |
+
{"current_steps": 136, "total_steps": 168, "loss": 0.4593, "lr": 1.0677866784522317e-06, "epoch": 2.4142011834319526, "percentage": 80.95, "elapsed_time": "2:49:56", "remaining_time": "0:39:59"}
|
137 |
+
{"current_steps": 137, "total_steps": 168, "loss": 0.4215, "lr": 1.004389135353972e-06, "epoch": 2.4319526627218933, "percentage": 81.55, "elapsed_time": "2:51:01", "remaining_time": "0:38:41"}
|
138 |
+
{"current_steps": 138, "total_steps": 168, "loss": 0.3988, "lr": 9.427210635995482e-07, "epoch": 2.4497041420118344, "percentage": 82.14, "elapsed_time": "2:52:15", "remaining_time": "0:37:26"}
|
139 |
+
{"current_steps": 139, "total_steps": 168, "loss": 0.4313, "lr": 8.828091557690288e-07, "epoch": 2.467455621301775, "percentage": 82.74, "elapsed_time": "2:53:37", "remaining_time": "0:36:13"}
|
140 |
+
{"current_steps": 140, "total_steps": 168, "loss": 0.4222, "lr": 8.246793442995954e-07, "epoch": 2.485207100591716, "percentage": 83.33, "elapsed_time": "2:54:51", "remaining_time": "0:34:58"}
|
141 |
+
{"current_steps": 141, "total_steps": 168, "loss": 0.4143, "lr": 7.68356790260873e-07, "epoch": 2.502958579881657, "percentage": 83.93, "elapsed_time": "2:56:09", "remaining_time": "0:33:44"}
|
142 |
+
{"current_steps": 142, "total_steps": 168, "loss": 0.4597, "lr": 7.138658724641417e-07, "epoch": 2.5207100591715976, "percentage": 84.52, "elapsed_time": "2:57:32", "remaining_time": "0:32:30"}
|
143 |
+
{"current_steps": 143, "total_steps": 168, "loss": 0.4078, "lr": 6.612301769101464e-07, "epoch": 2.5384615384615383, "percentage": 85.12, "elapsed_time": "2:58:44", "remaining_time": "0:31:14"}
|
144 |
+
{"current_steps": 144, "total_steps": 168, "loss": 0.4234, "lr": 6.104724865800665e-07, "epoch": 2.556213017751479, "percentage": 85.71, "elapsed_time": "2:59:53", "remaining_time": "0:29:58"}
|
145 |
+
{"current_steps": 145, "total_steps": 168, "loss": 0.3722, "lr": 5.616147715740611e-07, "epoch": 2.57396449704142, "percentage": 86.31, "elapsed_time": "3:00:53", "remaining_time": "0:28:41"}
|
146 |
+
{"current_steps": 146, "total_steps": 168, "loss": 0.3592, "lr": 5.146781796016798e-07, "epoch": 2.591715976331361, "percentage": 86.9, "elapsed_time": "3:01:57", "remaining_time": "0:27:25"}
|
147 |
+
{"current_steps": 147, "total_steps": 168, "loss": 0.4132, "lr": 4.696830268282204e-07, "epoch": 2.609467455621302, "percentage": 87.5, "elapsed_time": "3:03:09", "remaining_time": "0:26:09"}
|
148 |
+
{"current_steps": 148, "total_steps": 168, "loss": 0.4721, "lr": 4.2664878908102556e-07, "epoch": 2.6272189349112427, "percentage": 88.1, "elapsed_time": "3:04:26", "remaining_time": "0:24:55"}
|
149 |
+
{"current_steps": 149, "total_steps": 168, "loss": 0.4011, "lr": 3.855940934195146e-07, "epoch": 2.6449704142011834, "percentage": 88.69, "elapsed_time": "3:05:31", "remaining_time": "0:23:39"}
|
150 |
+
{"current_steps": 150, "total_steps": 168, "loss": 0.4317, "lr": 3.4653671007259084e-07, "epoch": 2.662721893491124, "percentage": 89.29, "elapsed_time": "3:06:52", "remaining_time": "0:22:25"}
|
151 |
+
{"current_steps": 151, "total_steps": 168, "loss": 0.4071, "lr": 3.0949354474692937e-07, "epoch": 2.6804733727810652, "percentage": 89.88, "elapsed_time": "3:08:15", "remaining_time": "0:21:11"}
|
152 |
+
{"current_steps": 152, "total_steps": 168, "loss": 0.3797, "lr": 2.7448063130946224e-07, "epoch": 2.698224852071006, "percentage": 90.48, "elapsed_time": "3:09:22", "remaining_time": "0:19:56"}
|
153 |
+
{"current_steps": 153, "total_steps": 168, "loss": 0.4331, "lr": 2.4151312484723465e-07, "epoch": 2.7159763313609466, "percentage": 91.07, "elapsed_time": "3:10:37", "remaining_time": "0:18:41"}
|
154 |
+
{"current_steps": 154, "total_steps": 168, "loss": 0.3481, "lr": 2.106052951076365e-07, "epoch": 2.7337278106508878, "percentage": 91.67, "elapsed_time": "3:11:50", "remaining_time": "0:17:26"}
|
155 |
+
{"current_steps": 155, "total_steps": 168, "loss": 0.3702, "lr": 1.8177052032184285e-07, "epoch": 2.7514792899408285, "percentage": 92.26, "elapsed_time": "3:13:09", "remaining_time": "0:16:12"}
|
156 |
+
{"current_steps": 156, "total_steps": 168, "loss": 0.4371, "lr": 1.5502128141414496e-07, "epoch": 2.769230769230769, "percentage": 92.86, "elapsed_time": "3:14:19", "remaining_time": "0:14:56"}
|
157 |
+
{"current_steps": 157, "total_steps": 168, "loss": 0.3741, "lr": 1.303691565996712e-07, "epoch": 2.78698224852071, "percentage": 93.45, "elapsed_time": "3:15:27", "remaining_time": "0:13:41"}
|
158 |
+
{"current_steps": 158, "total_steps": 168, "loss": 0.4289, "lr": 1.0782481637284014e-07, "epoch": 2.804733727810651, "percentage": 94.05, "elapsed_time": "3:16:42", "remaining_time": "0:12:26"}
|
159 |
+
{"current_steps": 159, "total_steps": 168, "loss": 0.4927, "lr": 8.739801888871468e-08, "epoch": 2.8224852071005917, "percentage": 94.64, "elapsed_time": "3:17:59", "remaining_time": "0:11:12"}
|
160 |
+
{"current_steps": 160, "total_steps": 168, "loss": 0.3382, "lr": 6.909760573925561e-08, "epoch": 2.8402366863905324, "percentage": 95.24, "elapsed_time": "3:19:17", "remaining_time": "0:09:57"}
|
161 |
+
{"current_steps": 161, "total_steps": 168, "loss": 0.4541, "lr": 5.2931498126298495e-08, "epoch": 2.8579881656804735, "percentage": 95.83, "elapsed_time": "3:20:39", "remaining_time": "0:08:43"}
|
162 |
+
{"current_steps": 162, "total_steps": 168, "loss": 0.4203, "lr": 3.890669343292464e-08, "epoch": 2.8757396449704142, "percentage": 96.43, "elapsed_time": "3:21:52", "remaining_time": "0:07:28"}
|
163 |
+
{"current_steps": 163, "total_steps": 168, "loss": 0.3555, "lr": 2.702926219468882e-08, "epoch": 2.893491124260355, "percentage": 97.02, "elapsed_time": "3:23:15", "remaining_time": "0:06:14"}
|
164 |
+
{"current_steps": 164, "total_steps": 168, "loss": 0.4286, "lr": 1.7304345472035634e-08, "epoch": 2.9112426035502956, "percentage": 97.62, "elapsed_time": "3:24:35", "remaining_time": "0:04:59"}
|
165 |
+
{"current_steps": 165, "total_steps": 168, "loss": 0.4472, "lr": 9.73615262502503e-09, "epoch": 2.9289940828402368, "percentage": 98.21, "elapsed_time": "3:25:52", "remaining_time": "0:03:44"}
|
166 |
+
{"current_steps": 166, "total_steps": 168, "loss": 0.3565, "lr": 4.327959491344791e-09, "epoch": 2.9467455621301775, "percentage": 98.81, "elapsed_time": "3:27:08", "remaining_time": "0:02:29"}
|
167 |
+
{"current_steps": 167, "total_steps": 168, "loss": 0.45, "lr": 1.082106968385288e-09, "epoch": 2.9644970414201186, "percentage": 99.4, "elapsed_time": "3:28:28", "remaining_time": "0:01:14"}
|
168 |
+
{"current_steps": 168, "total_steps": 168, "loss": 0.3742, "lr": 0.0, "epoch": 2.9822485207100593, "percentage": 100.0, "elapsed_time": "3:29:35", "remaining_time": "0:00:00"}
|
169 |
+
{"current_steps": 168, "total_steps": 168, "epoch": 2.9822485207100593, "percentage": 100.0, "elapsed_time": "3:31:22", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,1218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9822485207100593,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 168,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01775147928994083,
|
13 |
+
"grad_norm": 2.533238649368286,
|
14 |
+
"learning_rate": 5.882352941176471e-07,
|
15 |
+
"loss": 0.924,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03550295857988166,
|
20 |
+
"grad_norm": 2.927447557449341,
|
21 |
+
"learning_rate": 1.1764705882352942e-06,
|
22 |
+
"loss": 1.0731,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.05325443786982249,
|
27 |
+
"grad_norm": 2.820338726043701,
|
28 |
+
"learning_rate": 1.7647058823529414e-06,
|
29 |
+
"loss": 0.9836,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.07100591715976332,
|
34 |
+
"grad_norm": 2.642514228820801,
|
35 |
+
"learning_rate": 2.3529411764705885e-06,
|
36 |
+
"loss": 0.9904,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.08875739644970414,
|
41 |
+
"grad_norm": 2.659113883972168,
|
42 |
+
"learning_rate": 2.9411764705882355e-06,
|
43 |
+
"loss": 0.9903,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.10650887573964497,
|
48 |
+
"grad_norm": 2.257899522781372,
|
49 |
+
"learning_rate": 3.529411764705883e-06,
|
50 |
+
"loss": 0.9045,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.1242603550295858,
|
55 |
+
"grad_norm": 1.839630365371704,
|
56 |
+
"learning_rate": 4.11764705882353e-06,
|
57 |
+
"loss": 0.9406,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.14201183431952663,
|
62 |
+
"grad_norm": 1.631960391998291,
|
63 |
+
"learning_rate": 4.705882352941177e-06,
|
64 |
+
"loss": 0.8611,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.15976331360946747,
|
69 |
+
"grad_norm": 1.4379936456680298,
|
70 |
+
"learning_rate": 5.294117647058824e-06,
|
71 |
+
"loss": 0.8991,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.17751479289940827,
|
76 |
+
"grad_norm": 1.5505577325820923,
|
77 |
+
"learning_rate": 5.882352941176471e-06,
|
78 |
+
"loss": 0.9153,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1952662721893491,
|
83 |
+
"grad_norm": 1.5041471719741821,
|
84 |
+
"learning_rate": 6.470588235294119e-06,
|
85 |
+
"loss": 0.9025,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.21301775147928995,
|
90 |
+
"grad_norm": 1.1657485961914062,
|
91 |
+
"learning_rate": 7.058823529411766e-06,
|
92 |
+
"loss": 0.8255,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.23076923076923078,
|
97 |
+
"grad_norm": 1.60923433303833,
|
98 |
+
"learning_rate": 7.647058823529411e-06,
|
99 |
+
"loss": 0.7197,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.2485207100591716,
|
104 |
+
"grad_norm": 1.6407514810562134,
|
105 |
+
"learning_rate": 8.23529411764706e-06,
|
106 |
+
"loss": 0.7522,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.26627218934911245,
|
111 |
+
"grad_norm": 1.4880717992782593,
|
112 |
+
"learning_rate": 8.823529411764707e-06,
|
113 |
+
"loss": 0.7343,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.28402366863905326,
|
118 |
+
"grad_norm": 1.2115110158920288,
|
119 |
+
"learning_rate": 9.411764705882354e-06,
|
120 |
+
"loss": 0.7614,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.30177514792899407,
|
125 |
+
"grad_norm": 0.9123843312263489,
|
126 |
+
"learning_rate": 1e-05,
|
127 |
+
"loss": 0.6835,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.31952662721893493,
|
132 |
+
"grad_norm": 1.1175857782363892,
|
133 |
+
"learning_rate": 9.998917893031615e-06,
|
134 |
+
"loss": 0.7777,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.33727810650887574,
|
139 |
+
"grad_norm": 1.0061542987823486,
|
140 |
+
"learning_rate": 9.995672040508656e-06,
|
141 |
+
"loss": 0.7068,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.35502958579881655,
|
146 |
+
"grad_norm": 0.8296826481819153,
|
147 |
+
"learning_rate": 9.990263847374976e-06,
|
148 |
+
"loss": 0.6594,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.3727810650887574,
|
153 |
+
"grad_norm": 0.7384388446807861,
|
154 |
+
"learning_rate": 9.982695654527966e-06,
|
155 |
+
"loss": 0.6521,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.3905325443786982,
|
160 |
+
"grad_norm": 0.9570622444152832,
|
161 |
+
"learning_rate": 9.972970737805312e-06,
|
162 |
+
"loss": 0.729,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.40828402366863903,
|
167 |
+
"grad_norm": 0.6549481153488159,
|
168 |
+
"learning_rate": 9.961093306567076e-06,
|
169 |
+
"loss": 0.6251,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.4260355029585799,
|
174 |
+
"grad_norm": 0.7221797108650208,
|
175 |
+
"learning_rate": 9.947068501873702e-06,
|
176 |
+
"loss": 0.6779,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.4437869822485207,
|
181 |
+
"grad_norm": 0.6575434803962708,
|
182 |
+
"learning_rate": 9.930902394260746e-06,
|
183 |
+
"loss": 0.6849,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.46153846153846156,
|
188 |
+
"grad_norm": 0.5789452791213989,
|
189 |
+
"learning_rate": 9.912601981111287e-06,
|
190 |
+
"loss": 0.5844,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.47928994082840237,
|
195 |
+
"grad_norm": 0.6969165205955505,
|
196 |
+
"learning_rate": 9.892175183627161e-06,
|
197 |
+
"loss": 0.6698,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.4970414201183432,
|
202 |
+
"grad_norm": 0.7126699686050415,
|
203 |
+
"learning_rate": 9.869630843400331e-06,
|
204 |
+
"loss": 0.6847,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.514792899408284,
|
209 |
+
"grad_norm": 0.6048182845115662,
|
210 |
+
"learning_rate": 9.844978718585855e-06,
|
211 |
+
"loss": 0.6191,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.5325443786982249,
|
216 |
+
"grad_norm": 0.6467904448509216,
|
217 |
+
"learning_rate": 9.81822947967816e-06,
|
218 |
+
"loss": 0.6409,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.5502958579881657,
|
223 |
+
"grad_norm": 0.6857551336288452,
|
224 |
+
"learning_rate": 9.789394704892364e-06,
|
225 |
+
"loss": 0.6316,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.5680473372781065,
|
230 |
+
"grad_norm": 0.7137037515640259,
|
231 |
+
"learning_rate": 9.758486875152766e-06,
|
232 |
+
"loss": 0.6325,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.5857988165680473,
|
237 |
+
"grad_norm": 0.6259506940841675,
|
238 |
+
"learning_rate": 9.725519368690539e-06,
|
239 |
+
"loss": 0.6478,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.6035502958579881,
|
244 |
+
"grad_norm": 0.5821611881256104,
|
245 |
+
"learning_rate": 9.690506455253073e-06,
|
246 |
+
"loss": 0.6117,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.621301775147929,
|
251 |
+
"grad_norm": 0.6482532024383545,
|
252 |
+
"learning_rate": 9.65346328992741e-06,
|
253 |
+
"loss": 0.6164,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.6390532544378699,
|
258 |
+
"grad_norm": 0.6187491416931152,
|
259 |
+
"learning_rate": 9.614405906580486e-06,
|
260 |
+
"loss": 0.567,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.6568047337278107,
|
265 |
+
"grad_norm": 0.6659966111183167,
|
266 |
+
"learning_rate": 9.573351210918976e-06,
|
267 |
+
"loss": 0.6044,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.6745562130177515,
|
272 |
+
"grad_norm": 0.6486673951148987,
|
273 |
+
"learning_rate": 9.53031697317178e-06,
|
274 |
+
"loss": 0.5811,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.6923076923076923,
|
279 |
+
"grad_norm": 0.6228745579719543,
|
280 |
+
"learning_rate": 9.485321820398321e-06,
|
281 |
+
"loss": 0.6137,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.7100591715976331,
|
286 |
+
"grad_norm": 0.5413960814476013,
|
287 |
+
"learning_rate": 9.43838522842594e-06,
|
288 |
+
"loss": 0.5736,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.727810650887574,
|
293 |
+
"grad_norm": 0.5927128195762634,
|
294 |
+
"learning_rate": 9.389527513419935e-06,
|
295 |
+
"loss": 0.6567,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.7455621301775148,
|
300 |
+
"grad_norm": 0.5900639295578003,
|
301 |
+
"learning_rate": 9.338769823089853e-06,
|
302 |
+
"loss": 0.6382,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.7633136094674556,
|
307 |
+
"grad_norm": 0.6012625098228455,
|
308 |
+
"learning_rate": 9.286134127535859e-06,
|
309 |
+
"loss": 0.6525,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.7810650887573964,
|
314 |
+
"grad_norm": 0.5634270906448364,
|
315 |
+
"learning_rate": 9.231643209739128e-06,
|
316 |
+
"loss": 0.5819,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.7988165680473372,
|
321 |
+
"grad_norm": 0.5087092518806458,
|
322 |
+
"learning_rate": 9.175320655700407e-06,
|
323 |
+
"loss": 0.5681,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.8165680473372781,
|
328 |
+
"grad_norm": 0.5246061682701111,
|
329 |
+
"learning_rate": 9.117190844230971e-06,
|
330 |
+
"loss": 0.5408,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.834319526627219,
|
335 |
+
"grad_norm": 0.5206530094146729,
|
336 |
+
"learning_rate": 9.057278936400453e-06,
|
337 |
+
"loss": 0.5804,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.8520710059171598,
|
342 |
+
"grad_norm": 0.5596741437911987,
|
343 |
+
"learning_rate": 8.99561086464603e-06,
|
344 |
+
"loss": 0.5521,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.8698224852071006,
|
349 |
+
"grad_norm": 0.5072557330131531,
|
350 |
+
"learning_rate": 8.932213321547769e-06,
|
351 |
+
"loss": 0.5277,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.8875739644970414,
|
356 |
+
"grad_norm": 0.5525227785110474,
|
357 |
+
"learning_rate": 8.86711374827494e-06,
|
358 |
+
"loss": 0.6031,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.9053254437869822,
|
363 |
+
"grad_norm": 0.6006079316139221,
|
364 |
+
"learning_rate": 8.800340322708291e-06,
|
365 |
+
"loss": 0.5698,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.9230769230769231,
|
370 |
+
"grad_norm": 0.5963747501373291,
|
371 |
+
"learning_rate": 8.73192194724347e-06,
|
372 |
+
"loss": 0.6289,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.9408284023668639,
|
377 |
+
"grad_norm": 0.5696894526481628,
|
378 |
+
"learning_rate": 8.661888236280813e-06,
|
379 |
+
"loss": 0.5918,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.9585798816568047,
|
384 |
+
"grad_norm": 0.6133765578269958,
|
385 |
+
"learning_rate": 8.590269503406986e-06,
|
386 |
+
"loss": 0.6514,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.9763313609467456,
|
391 |
+
"grad_norm": 0.6414260864257812,
|
392 |
+
"learning_rate": 8.517096748273951e-06,
|
393 |
+
"loss": 0.5686,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.9940828402366864,
|
398 |
+
"grad_norm": 0.6260319948196411,
|
399 |
+
"learning_rate": 8.442401643181e-06,
|
400 |
+
"loss": 0.5175,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.0118343195266273,
|
405 |
+
"grad_norm": 1.199350118637085,
|
406 |
+
"learning_rate": 8.366216519365623e-06,
|
407 |
+
"loss": 0.9417,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.029585798816568,
|
412 |
+
"grad_norm": 0.6130478978157043,
|
413 |
+
"learning_rate": 8.288574353009164e-06,
|
414 |
+
"loss": 0.4821,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.047337278106509,
|
419 |
+
"grad_norm": 0.6134289503097534,
|
420 |
+
"learning_rate": 8.20950875096333e-06,
|
421 |
+
"loss": 0.4782,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.0650887573964498,
|
426 |
+
"grad_norm": 0.7462955117225647,
|
427 |
+
"learning_rate": 8.129053936203688e-06,
|
428 |
+
"loss": 0.5882,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.0828402366863905,
|
433 |
+
"grad_norm": 0.6716148257255554,
|
434 |
+
"learning_rate": 8.04724473301652e-06,
|
435 |
+
"loss": 0.5487,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.1005917159763314,
|
440 |
+
"grad_norm": 0.5907769799232483,
|
441 |
+
"learning_rate": 7.964116551925365e-06,
|
442 |
+
"loss": 0.4711,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.1183431952662721,
|
447 |
+
"grad_norm": 0.6688742637634277,
|
448 |
+
"learning_rate": 7.879705374363831e-06,
|
449 |
+
"loss": 0.4645,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.136094674556213,
|
454 |
+
"grad_norm": 0.6526861786842346,
|
455 |
+
"learning_rate": 7.794047737101298e-06,
|
456 |
+
"loss": 0.5206,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.1538461538461537,
|
461 |
+
"grad_norm": 0.5595381855964661,
|
462 |
+
"learning_rate": 7.707180716428237e-06,
|
463 |
+
"loss": 0.4313,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.1715976331360947,
|
468 |
+
"grad_norm": 0.6181778311729431,
|
469 |
+
"learning_rate": 7.619141912108008e-06,
|
470 |
+
"loss": 0.564,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.1893491124260356,
|
475 |
+
"grad_norm": 0.614881157875061,
|
476 |
+
"learning_rate": 7.529969431102063e-06,
|
477 |
+
"loss": 0.5041,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.2071005917159763,
|
482 |
+
"grad_norm": 0.6447051763534546,
|
483 |
+
"learning_rate": 7.4397018710756415e-06,
|
484 |
+
"loss": 0.5046,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.2248520710059172,
|
489 |
+
"grad_norm": 0.5753356218338013,
|
490 |
+
"learning_rate": 7.34837830369103e-06,
|
491 |
+
"loss": 0.4534,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.242603550295858,
|
496 |
+
"grad_norm": 0.5938759446144104,
|
497 |
+
"learning_rate": 7.2560382576956875e-06,
|
498 |
+
"loss": 0.4369,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.2603550295857988,
|
503 |
+
"grad_norm": 0.6178358793258667,
|
504 |
+
"learning_rate": 7.162721701812506e-06,
|
505 |
+
"loss": 0.4949,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.2781065088757395,
|
510 |
+
"grad_norm": 0.6533629894256592,
|
511 |
+
"learning_rate": 7.068469027439642e-06,
|
512 |
+
"loss": 0.4816,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.2958579881656804,
|
517 |
+
"grad_norm": 0.6626835465431213,
|
518 |
+
"learning_rate": 6.9733210311673826e-06,
|
519 |
+
"loss": 0.5976,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.3136094674556213,
|
524 |
+
"grad_norm": 0.5293806195259094,
|
525 |
+
"learning_rate": 6.8773188971196515e-06,
|
526 |
+
"loss": 0.4124,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.331360946745562,
|
531 |
+
"grad_norm": 0.6411221623420715,
|
532 |
+
"learning_rate": 6.780504179127735e-06,
|
533 |
+
"loss": 0.5081,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.349112426035503,
|
538 |
+
"grad_norm": 0.6326239109039307,
|
539 |
+
"learning_rate": 6.682918782744033e-06,
|
540 |
+
"loss": 0.5123,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.3668639053254439,
|
545 |
+
"grad_norm": 0.6738696098327637,
|
546 |
+
"learning_rate": 6.584604947103515e-06,
|
547 |
+
"loss": 0.499,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.3846153846153846,
|
552 |
+
"grad_norm": 0.5083363652229309,
|
553 |
+
"learning_rate": 6.4856052266408375e-06,
|
554 |
+
"loss": 0.4522,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.4023668639053255,
|
559 |
+
"grad_norm": 0.6393911838531494,
|
560 |
+
"learning_rate": 6.385962472670953e-06,
|
561 |
+
"loss": 0.4685,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.4201183431952662,
|
566 |
+
"grad_norm": 0.6106072664260864,
|
567 |
+
"learning_rate": 6.28571981484123e-06,
|
568 |
+
"loss": 0.4942,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.4378698224852071,
|
573 |
+
"grad_norm": 0.5104251503944397,
|
574 |
+
"learning_rate": 6.184920642463095e-06,
|
575 |
+
"loss": 0.4625,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.4556213017751478,
|
580 |
+
"grad_norm": 0.587416410446167,
|
581 |
+
"learning_rate": 6.083608585731283e-06,
|
582 |
+
"loss": 0.5671,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.4733727810650887,
|
587 |
+
"grad_norm": 0.5419860482215881,
|
588 |
+
"learning_rate": 5.9818274968388225e-06,
|
589 |
+
"loss": 0.516,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.4911242603550297,
|
594 |
+
"grad_norm": 0.6191542744636536,
|
595 |
+
"learning_rate": 5.879621430995927e-06,
|
596 |
+
"loss": 0.4823,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.5088757396449703,
|
601 |
+
"grad_norm": 0.5240432620048523,
|
602 |
+
"learning_rate": 5.777034627361025e-06,
|
603 |
+
"loss": 0.3751,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.5266272189349113,
|
608 |
+
"grad_norm": 0.6388912200927734,
|
609 |
+
"learning_rate": 5.674111489892144e-06,
|
610 |
+
"loss": 0.5432,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.5443786982248522,
|
615 |
+
"grad_norm": 0.6531295776367188,
|
616 |
+
"learning_rate": 5.570896568126994e-06,
|
617 |
+
"loss": 0.5527,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.5621301775147929,
|
622 |
+
"grad_norm": 0.5705211758613586,
|
623 |
+
"learning_rate": 5.4674345379e-06,
|
624 |
+
"loss": 0.4588,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.5798816568047336,
|
629 |
+
"grad_norm": 0.5820942521095276,
|
630 |
+
"learning_rate": 5.36377018200472e-06,
|
631 |
+
"loss": 0.4563,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.5976331360946747,
|
636 |
+
"grad_norm": 0.6194245219230652,
|
637 |
+
"learning_rate": 5.259948370809902e-06,
|
638 |
+
"loss": 0.5123,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.6153846153846154,
|
643 |
+
"grad_norm": 0.5981638431549072,
|
644 |
+
"learning_rate": 5.156014042837696e-06,
|
645 |
+
"loss": 0.4979,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.6331360946745561,
|
650 |
+
"grad_norm": 0.7485818862915039,
|
651 |
+
"learning_rate": 5.052012185312322e-06,
|
652 |
+
"loss": 0.5863,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.650887573964497,
|
657 |
+
"grad_norm": 0.5108672380447388,
|
658 |
+
"learning_rate": 4.94798781468768e-06,
|
659 |
+
"loss": 0.398,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.668639053254438,
|
664 |
+
"grad_norm": 0.6520046591758728,
|
665 |
+
"learning_rate": 4.843985957162304e-06,
|
666 |
+
"loss": 0.6246,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.6863905325443787,
|
671 |
+
"grad_norm": 0.4945230484008789,
|
672 |
+
"learning_rate": 4.740051629190099e-06,
|
673 |
+
"loss": 0.3286,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.7041420118343196,
|
678 |
+
"grad_norm": 0.613183319568634,
|
679 |
+
"learning_rate": 4.636229817995281e-06,
|
680 |
+
"loss": 0.4692,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.7218934911242605,
|
685 |
+
"grad_norm": 0.6236385107040405,
|
686 |
+
"learning_rate": 4.532565462099999e-06,
|
687 |
+
"loss": 0.5258,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.7396449704142012,
|
692 |
+
"grad_norm": 0.5453357100486755,
|
693 |
+
"learning_rate": 4.429103431873009e-06,
|
694 |
+
"loss": 0.4714,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.7573964497041419,
|
699 |
+
"grad_norm": 0.5440649390220642,
|
700 |
+
"learning_rate": 4.3258885101078565e-06,
|
701 |
+
"loss": 0.4571,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.7751479289940828,
|
706 |
+
"grad_norm": 0.6320599913597107,
|
707 |
+
"learning_rate": 4.2229653726389765e-06,
|
708 |
+
"loss": 0.4783,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.7928994082840237,
|
713 |
+
"grad_norm": 0.5469642281532288,
|
714 |
+
"learning_rate": 4.120378569004074e-06,
|
715 |
+
"loss": 0.4467,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.8106508875739644,
|
720 |
+
"grad_norm": 0.5750222206115723,
|
721 |
+
"learning_rate": 4.018172503161179e-06,
|
722 |
+
"loss": 0.5032,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.8284023668639053,
|
727 |
+
"grad_norm": 0.5565685629844666,
|
728 |
+
"learning_rate": 3.9163914142687185e-06,
|
729 |
+
"loss": 0.482,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.8461538461538463,
|
734 |
+
"grad_norm": 0.6028342247009277,
|
735 |
+
"learning_rate": 3.815079357536907e-06,
|
736 |
+
"loss": 0.4609,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.863905325443787,
|
741 |
+
"grad_norm": 0.6078227758407593,
|
742 |
+
"learning_rate": 3.714280185158771e-06,
|
743 |
+
"loss": 0.5237,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.8816568047337277,
|
748 |
+
"grad_norm": 0.5719071626663208,
|
749 |
+
"learning_rate": 3.614037527329048e-06,
|
750 |
+
"loss": 0.4206,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.8994082840236688,
|
755 |
+
"grad_norm": 0.5875373482704163,
|
756 |
+
"learning_rate": 3.5143947733591633e-06,
|
757 |
+
"loss": 0.4779,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.9171597633136095,
|
762 |
+
"grad_norm": 0.5589243769645691,
|
763 |
+
"learning_rate": 3.4153950528964867e-06,
|
764 |
+
"loss": 0.5056,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.9349112426035502,
|
769 |
+
"grad_norm": 0.5471234917640686,
|
770 |
+
"learning_rate": 3.3170812172559695e-06,
|
771 |
+
"loss": 0.4929,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.952662721893491,
|
776 |
+
"grad_norm": 0.5713181495666504,
|
777 |
+
"learning_rate": 3.2194958208722656e-06,
|
778 |
+
"loss": 0.4785,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.970414201183432,
|
783 |
+
"grad_norm": 0.553081750869751,
|
784 |
+
"learning_rate": 3.1226811028803514e-06,
|
785 |
+
"loss": 0.4389,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.9881656804733727,
|
790 |
+
"grad_norm": 0.5729470252990723,
|
791 |
+
"learning_rate": 3.0266789688326187e-06,
|
792 |
+
"loss": 0.4665,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.0059171597633134,
|
797 |
+
"grad_norm": 1.2184429168701172,
|
798 |
+
"learning_rate": 2.9315309725603596e-06,
|
799 |
+
"loss": 0.7849,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.0236686390532546,
|
804 |
+
"grad_norm": 0.522588849067688,
|
805 |
+
"learning_rate": 2.8372782981874964e-06,
|
806 |
+
"loss": 0.3366,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.0414201183431953,
|
811 |
+
"grad_norm": 0.6389386057853699,
|
812 |
+
"learning_rate": 2.7439617423043146e-06,
|
813 |
+
"loss": 0.4961,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.059171597633136,
|
818 |
+
"grad_norm": 0.6419571042060852,
|
819 |
+
"learning_rate": 2.6516216963089698e-06,
|
820 |
+
"loss": 0.4662,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.076923076923077,
|
825 |
+
"grad_norm": 0.6015217900276184,
|
826 |
+
"learning_rate": 2.560298128924358e-06,
|
827 |
+
"loss": 0.4298,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.094674556213018,
|
832 |
+
"grad_norm": 0.5608621835708618,
|
833 |
+
"learning_rate": 2.470030568897938e-06,
|
834 |
+
"loss": 0.3721,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.1124260355029585,
|
839 |
+
"grad_norm": 0.6403945684432983,
|
840 |
+
"learning_rate": 2.3808580878919948e-06,
|
841 |
+
"loss": 0.4947,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.1301775147928996,
|
846 |
+
"grad_norm": 0.4906422793865204,
|
847 |
+
"learning_rate": 2.2928192835717642e-06,
|
848 |
+
"loss": 0.3607,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.1479289940828403,
|
853 |
+
"grad_norm": 0.5612274408340454,
|
854 |
+
"learning_rate": 2.205952262898704e-06,
|
855 |
+
"loss": 0.4134,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.165680473372781,
|
860 |
+
"grad_norm": 0.587371289730072,
|
861 |
+
"learning_rate": 2.120294625636171e-06,
|
862 |
+
"loss": 0.4862,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 2.1834319526627217,
|
867 |
+
"grad_norm": 0.5207931399345398,
|
868 |
+
"learning_rate": 2.0358834480746363e-06,
|
869 |
+
"loss": 0.3613,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 2.201183431952663,
|
874 |
+
"grad_norm": 0.6090331673622131,
|
875 |
+
"learning_rate": 1.9527552669834797e-06,
|
876 |
+
"loss": 0.4493,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 2.2189349112426036,
|
881 |
+
"grad_norm": 0.5700682401657104,
|
882 |
+
"learning_rate": 1.8709460637963123e-06,
|
883 |
+
"loss": 0.4133,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.2366863905325443,
|
888 |
+
"grad_norm": 0.4857932925224304,
|
889 |
+
"learning_rate": 1.7904912490366723e-06,
|
890 |
+
"loss": 0.3573,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 2.2544378698224854,
|
895 |
+
"grad_norm": 0.6004585027694702,
|
896 |
+
"learning_rate": 1.711425646990838e-06,
|
897 |
+
"loss": 0.4517,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 2.272189349112426,
|
902 |
+
"grad_norm": 0.5605913996696472,
|
903 |
+
"learning_rate": 1.6337834806343783e-06,
|
904 |
+
"loss": 0.4134,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 2.289940828402367,
|
909 |
+
"grad_norm": 0.6110245585441589,
|
910 |
+
"learning_rate": 1.557598356819e-06,
|
911 |
+
"loss": 0.4579,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 2.3076923076923075,
|
916 |
+
"grad_norm": 0.5302851796150208,
|
917 |
+
"learning_rate": 1.482903251726049e-06,
|
918 |
+
"loss": 0.3641,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 2.3254437869822486,
|
923 |
+
"grad_norm": 0.6419249176979065,
|
924 |
+
"learning_rate": 1.409730496593016e-06,
|
925 |
+
"loss": 0.5007,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.3431952662721893,
|
930 |
+
"grad_norm": 0.5336579084396362,
|
931 |
+
"learning_rate": 1.3381117637191887e-06,
|
932 |
+
"loss": 0.3433,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.36094674556213,
|
937 |
+
"grad_norm": 0.5869147777557373,
|
938 |
+
"learning_rate": 1.2680780527565313e-06,
|
939 |
+
"loss": 0.4898,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 2.378698224852071,
|
944 |
+
"grad_norm": 0.4657803475856781,
|
945 |
+
"learning_rate": 1.1996596772917091e-06,
|
946 |
+
"loss": 0.3326,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 2.396449704142012,
|
951 |
+
"grad_norm": 0.6105607748031616,
|
952 |
+
"learning_rate": 1.132886251725061e-06,
|
953 |
+
"loss": 0.4423,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.4142011834319526,
|
958 |
+
"grad_norm": 0.5837461948394775,
|
959 |
+
"learning_rate": 1.0677866784522317e-06,
|
960 |
+
"loss": 0.4593,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.4319526627218933,
|
965 |
+
"grad_norm": 0.6025368571281433,
|
966 |
+
"learning_rate": 1.004389135353972e-06,
|
967 |
+
"loss": 0.4215,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 2.4497041420118344,
|
972 |
+
"grad_norm": 0.5407091379165649,
|
973 |
+
"learning_rate": 9.427210635995482e-07,
|
974 |
+
"loss": 0.3988,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.467455621301775,
|
979 |
+
"grad_norm": 0.5298522114753723,
|
980 |
+
"learning_rate": 8.828091557690288e-07,
|
981 |
+
"loss": 0.4313,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 2.485207100591716,
|
986 |
+
"grad_norm": 0.5403129458427429,
|
987 |
+
"learning_rate": 8.246793442995954e-07,
|
988 |
+
"loss": 0.4222,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 2.502958579881657,
|
993 |
+
"grad_norm": 0.5571721792221069,
|
994 |
+
"learning_rate": 7.68356790260873e-07,
|
995 |
+
"loss": 0.4143,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 2.5207100591715976,
|
1000 |
+
"grad_norm": 0.5758110284805298,
|
1001 |
+
"learning_rate": 7.138658724641417e-07,
|
1002 |
+
"loss": 0.4597,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 2.5384615384615383,
|
1007 |
+
"grad_norm": 0.5439177751541138,
|
1008 |
+
"learning_rate": 6.612301769101464e-07,
|
1009 |
+
"loss": 0.4078,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.556213017751479,
|
1014 |
+
"grad_norm": 0.6059474349021912,
|
1015 |
+
"learning_rate": 6.104724865800665e-07,
|
1016 |
+
"loss": 0.4234,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 2.57396449704142,
|
1021 |
+
"grad_norm": 0.5578750371932983,
|
1022 |
+
"learning_rate": 5.616147715740611e-07,
|
1023 |
+
"loss": 0.3722,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 2.591715976331361,
|
1028 |
+
"grad_norm": 0.5182917714118958,
|
1029 |
+
"learning_rate": 5.146781796016798e-07,
|
1030 |
+
"loss": 0.3592,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 2.609467455621302,
|
1035 |
+
"grad_norm": 0.5251271724700928,
|
1036 |
+
"learning_rate": 4.696830268282204e-07,
|
1037 |
+
"loss": 0.4132,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 2.6272189349112427,
|
1042 |
+
"grad_norm": 0.5910128951072693,
|
1043 |
+
"learning_rate": 4.2664878908102556e-07,
|
1044 |
+
"loss": 0.4721,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 2.6449704142011834,
|
1049 |
+
"grad_norm": 0.5311455130577087,
|
1050 |
+
"learning_rate": 3.855940934195146e-07,
|
1051 |
+
"loss": 0.4011,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 2.662721893491124,
|
1056 |
+
"grad_norm": 0.5455037951469421,
|
1057 |
+
"learning_rate": 3.4653671007259084e-07,
|
1058 |
+
"loss": 0.4317,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.6804733727810652,
|
1063 |
+
"grad_norm": 0.521126389503479,
|
1064 |
+
"learning_rate": 3.0949354474692937e-07,
|
1065 |
+
"loss": 0.4071,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.698224852071006,
|
1070 |
+
"grad_norm": 0.5334401726722717,
|
1071 |
+
"learning_rate": 2.7448063130946224e-07,
|
1072 |
+
"loss": 0.3797,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 2.7159763313609466,
|
1077 |
+
"grad_norm": 0.6030508875846863,
|
1078 |
+
"learning_rate": 2.4151312484723465e-07,
|
1079 |
+
"loss": 0.4331,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 2.7337278106508878,
|
1084 |
+
"grad_norm": 0.47127389907836914,
|
1085 |
+
"learning_rate": 2.106052951076365e-07,
|
1086 |
+
"loss": 0.3481,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 2.7514792899408285,
|
1091 |
+
"grad_norm": 0.5236401557922363,
|
1092 |
+
"learning_rate": 1.8177052032184285e-07,
|
1093 |
+
"loss": 0.3702,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.769230769230769,
|
1098 |
+
"grad_norm": 0.5896205902099609,
|
1099 |
+
"learning_rate": 1.5502128141414496e-07,
|
1100 |
+
"loss": 0.4371,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.78698224852071,
|
1105 |
+
"grad_norm": 0.5283501148223877,
|
1106 |
+
"learning_rate": 1.303691565996712e-07,
|
1107 |
+
"loss": 0.3741,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.804733727810651,
|
1112 |
+
"grad_norm": 0.5836403369903564,
|
1113 |
+
"learning_rate": 1.0782481637284014e-07,
|
1114 |
+
"loss": 0.4289,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.8224852071005917,
|
1119 |
+
"grad_norm": 0.64845210313797,
|
1120 |
+
"learning_rate": 8.739801888871468e-08,
|
1121 |
+
"loss": 0.4927,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.8402366863905324,
|
1126 |
+
"grad_norm": 0.5165106654167175,
|
1127 |
+
"learning_rate": 6.909760573925561e-08,
|
1128 |
+
"loss": 0.3382,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.8579881656804735,
|
1133 |
+
"grad_norm": 0.5744462609291077,
|
1134 |
+
"learning_rate": 5.2931498126298495e-08,
|
1135 |
+
"loss": 0.4541,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.8757396449704142,
|
1140 |
+
"grad_norm": 0.5389672517776489,
|
1141 |
+
"learning_rate": 3.890669343292464e-08,
|
1142 |
+
"loss": 0.4203,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.893491124260355,
|
1147 |
+
"grad_norm": 0.43833690881729126,
|
1148 |
+
"learning_rate": 2.702926219468882e-08,
|
1149 |
+
"loss": 0.3555,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.9112426035502956,
|
1154 |
+
"grad_norm": 0.48717668652534485,
|
1155 |
+
"learning_rate": 1.7304345472035634e-08,
|
1156 |
+
"loss": 0.4286,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.9289940828402368,
|
1161 |
+
"grad_norm": 0.5516893267631531,
|
1162 |
+
"learning_rate": 9.73615262502503e-09,
|
1163 |
+
"loss": 0.4472,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.9467455621301775,
|
1168 |
+
"grad_norm": 0.44991251826286316,
|
1169 |
+
"learning_rate": 4.327959491344791e-09,
|
1170 |
+
"loss": 0.3565,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.9644970414201186,
|
1175 |
+
"grad_norm": 0.5328838229179382,
|
1176 |
+
"learning_rate": 1.082106968385288e-09,
|
1177 |
+
"loss": 0.45,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.9822485207100593,
|
1182 |
+
"grad_norm": 0.5235728621482849,
|
1183 |
+
"learning_rate": 0.0,
|
1184 |
+
"loss": 0.3742,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.9822485207100593,
|
1189 |
+
"step": 168,
|
1190 |
+
"total_flos": 6.46489842951127e+16,
|
1191 |
+
"train_loss": 0.5384191712808042,
|
1192 |
+
"train_runtime": 12683.2217,
|
1193 |
+
"train_samples_per_second": 0.32,
|
1194 |
+
"train_steps_per_second": 0.013
|
1195 |
+
}
|
1196 |
+
],
|
1197 |
+
"logging_steps": 1,
|
1198 |
+
"max_steps": 168,
|
1199 |
+
"num_input_tokens_seen": 0,
|
1200 |
+
"num_train_epochs": 3,
|
1201 |
+
"save_steps": 600,
|
1202 |
+
"stateful_callbacks": {
|
1203 |
+
"TrainerControl": {
|
1204 |
+
"args": {
|
1205 |
+
"should_epoch_stop": false,
|
1206 |
+
"should_evaluate": false,
|
1207 |
+
"should_log": false,
|
1208 |
+
"should_save": true,
|
1209 |
+
"should_training_stop": true
|
1210 |
+
},
|
1211 |
+
"attributes": {}
|
1212 |
+
}
|
1213 |
+
},
|
1214 |
+
"total_flos": 6.46489842951127e+16,
|
1215 |
+
"train_batch_size": 1,
|
1216 |
+
"trial_name": null,
|
1217 |
+
"trial_params": null
|
1218 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de6325e72c3868304d85e73b0bbb2e56d92a2ad6a528d89735ec37de3f4c440b
|
3 |
+
size 7544
|
training_loss.png
ADDED
![]() |
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|