tangken333 commited on
Commit
59f1850
·
verified ·
1 Parent(s): 64ca14f

upload testing qwen_code_7B_test_swe_reasoning

Browse files
Files changed (48) hide show
  1. .gitattributes +2 -0
  2. README.md +61 -0
  3. added_tokens.json +24 -0
  4. all_results.json +8 -0
  5. checkpoint-108/added_tokens.json +24 -0
  6. checkpoint-108/config.json +29 -0
  7. checkpoint-108/generation_config.json +14 -0
  8. checkpoint-108/global_step109/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-108/global_step109/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-108/global_step109/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-108/global_step109/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-108/global_step109/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-108/global_step109/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-108/latest +1 -0
  15. checkpoint-108/merges.txt +0 -0
  16. checkpoint-108/model-00001-of-00004.safetensors +3 -0
  17. checkpoint-108/model-00002-of-00004.safetensors +3 -0
  18. checkpoint-108/model-00003-of-00004.safetensors +3 -0
  19. checkpoint-108/model-00004-of-00004.safetensors +3 -0
  20. checkpoint-108/model.safetensors.index.json +346 -0
  21. checkpoint-108/rng_state_0.pth +3 -0
  22. checkpoint-108/rng_state_1.pth +3 -0
  23. checkpoint-108/rng_state_2.pth +3 -0
  24. checkpoint-108/scheduler.pt +3 -0
  25. checkpoint-108/special_tokens_map.json +31 -0
  26. checkpoint-108/tokenizer.json +3 -0
  27. checkpoint-108/tokenizer_config.json +209 -0
  28. checkpoint-108/trainer_state.json +789 -0
  29. checkpoint-108/training_args.bin +3 -0
  30. checkpoint-108/vocab.json +0 -0
  31. checkpoint-108/zero_to_fp32.py +760 -0
  32. config.json +34 -0
  33. generation_config.json +14 -0
  34. merges.txt +0 -0
  35. model-00001-of-00004.safetensors +3 -0
  36. model-00002-of-00004.safetensors +3 -0
  37. model-00003-of-00004.safetensors +3 -0
  38. model-00004-of-00004.safetensors +3 -0
  39. model.safetensors.index.json +346 -0
  40. special_tokens_map.json +31 -0
  41. tokenizer.json +3 -0
  42. tokenizer_config.json +209 -0
  43. train_results.json +8 -0
  44. trainer_log.jsonl +109 -0
  45. trainer_state.json +798 -0
  46. training_args.bin +3 -0
  47. training_loss.png +0 -0
  48. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-108/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_code_32B_test_swe_reasoning_short_llm
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_code_32B_test_swe_reasoning_short_llm
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the SWE-BENCH-400-reasoning-short-llm dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 1
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - gradient_accumulation_steps: 12
45
+ - total_train_batch_size: 36
46
+ - total_eval_batch_size: 24
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 3.0
51
+
52
+ ### Training results
53
+
54
+
55
+
56
+ ### Framework versions
57
+
58
+ - Transformers 4.48.3
59
+ - Pytorch 2.5.1+cu124
60
+ - Datasets 2.21.0
61
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.975169300225734,
3
+ "total_flos": 3.237704266625843e+16,
4
+ "train_loss": 0.7293182517643328,
5
+ "train_runtime": 6995.9355,
6
+ "train_samples_per_second": 0.569,
7
+ "train_steps_per_second": 0.015
8
+ }
checkpoint-108/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-108/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-108/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
checkpoint-108/global_step109/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0645158aaf419729ff155fa114fe3f9bccab3b03384d60431c0052041f296ce5
3
+ size 30462476122
checkpoint-108/global_step109/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3ed669db2d9cc351719f36675182cdfd2514091683538b074a1cd8f009e6f80
3
+ size 30462476122
checkpoint-108/global_step109/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5ec86eb4468140fa7d521550278c6033ec604898820f01be12dbb24fcbd14e
3
+ size 30462476122
checkpoint-108/global_step109/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56f77a2e75172c1a70b32f78a1dcb7753bc8344099a8e703373d451045bb922
3
+ size 165205
checkpoint-108/global_step109/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:663dc888b54d4263db741d8153b86fe5d6638598f5f067e194f8933cf492d83a
3
+ size 165205
checkpoint-108/global_step109/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf2b394ec4903b4c7fcd7f2beb8736009415e0f0e6faf15d1cc3cd1ac7e2c3ac
3
+ size 165205
checkpoint-108/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step109
checkpoint-108/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-108/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665ed4081835b9e11c2b96cf2a69488f7e0fa694d00fae8271a920ba2f2c36fe
3
+ size 4877660776
checkpoint-108/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbd6f925c107764703ac15070e75ffe4b41337d39a4bd5b5168494e883fce02
3
+ size 4932751008
checkpoint-108/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de73ab88909e6f4f7e6d4bfab8ad2e6238b8491a060c75672e50ede2ddcb9d4
3
+ size 4330865200
checkpoint-108/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7045b566d18b7fd7d93652047d73d68e87b1362ed616903847f0919cf3221f7f
3
+ size 1089994880
checkpoint-108/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
checkpoint-108/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da2bf9ae13691c39ee7fbd9eb497b0127d60b8594c24b2891098b3739c25d5b1
3
+ size 14768
checkpoint-108/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:835f7198d4d5539c74a0ce15e3fbba2ee359088c79e0b77984b34308b954bd63
3
+ size 14768
checkpoint-108/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19325cacb8d362ac4f02fb14163603ec88cb2fa312cb10277c2cad28943bdef3
3
+ size 14768
checkpoint-108/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aebd1e8280e985d9f798bcb47ecb586a86d5597a5e7d18c4776a0ebd2d41ce80
3
+ size 1064
checkpoint-108/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-108/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
checkpoint-108/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 16384,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-108/trainer_state.json ADDED
@@ -0,0 +1,789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.975169300225734,
5
+ "eval_steps": 500,
6
+ "global_step": 108,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02708803611738149,
13
+ "grad_norm": 0.3197194327711118,
14
+ "learning_rate": 9.090909090909091e-07,
15
+ "loss": 1.2461,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.05417607223476298,
20
+ "grad_norm": 0.31103611995893704,
21
+ "learning_rate": 1.8181818181818183e-06,
22
+ "loss": 1.2148,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.08126410835214447,
27
+ "grad_norm": 0.2337633531452293,
28
+ "learning_rate": 2.7272727272727272e-06,
29
+ "loss": 0.9726,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.10835214446952596,
34
+ "grad_norm": 0.2732448083772183,
35
+ "learning_rate": 3.6363636363636366e-06,
36
+ "loss": 1.1417,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.13544018058690746,
41
+ "grad_norm": 0.18372677123914605,
42
+ "learning_rate": 4.5454545454545455e-06,
43
+ "loss": 0.9526,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.16252821670428894,
48
+ "grad_norm": 0.14598996204381387,
49
+ "learning_rate": 5.4545454545454545e-06,
50
+ "loss": 1.0301,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.18961625282167044,
55
+ "grad_norm": 0.12859546866157384,
56
+ "learning_rate": 6.363636363636364e-06,
57
+ "loss": 1.0107,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.21670428893905191,
62
+ "grad_norm": 0.11328838489926579,
63
+ "learning_rate": 7.272727272727273e-06,
64
+ "loss": 1.0306,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.24379232505643342,
69
+ "grad_norm": 0.1022283734283964,
70
+ "learning_rate": 8.181818181818183e-06,
71
+ "loss": 0.8963,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.2708803611738149,
76
+ "grad_norm": 0.11790288806381347,
77
+ "learning_rate": 9.090909090909091e-06,
78
+ "loss": 1.0366,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.2979683972911964,
83
+ "grad_norm": 0.12155066660752349,
84
+ "learning_rate": 1e-05,
85
+ "loss": 0.9005,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.32505643340857787,
90
+ "grad_norm": 0.10987900474389686,
91
+ "learning_rate": 9.997377845227577e-06,
92
+ "loss": 0.8125,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.35214446952595935,
97
+ "grad_norm": 0.1338371645473795,
98
+ "learning_rate": 9.98951413118856e-06,
99
+ "loss": 0.9944,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.3792325056433409,
104
+ "grad_norm": 0.10584646720619653,
105
+ "learning_rate": 9.97641710583307e-06,
106
+ "loss": 0.8586,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.40632054176072235,
111
+ "grad_norm": 0.07551668645041647,
112
+ "learning_rate": 9.958100506132127e-06,
113
+ "loss": 0.6047,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.43340857787810383,
118
+ "grad_norm": 0.10339673320083177,
119
+ "learning_rate": 9.934583543669454e-06,
120
+ "loss": 0.8924,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.4604966139954853,
125
+ "grad_norm": 0.08900126200269193,
126
+ "learning_rate": 9.905890884491196e-06,
127
+ "loss": 0.8502,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.48758465011286684,
132
+ "grad_norm": 0.0755389181238505,
133
+ "learning_rate": 9.872052623234632e-06,
134
+ "loss": 0.8565,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.5146726862302483,
139
+ "grad_norm": 0.08559033880567499,
140
+ "learning_rate": 9.833104251563058e-06,
141
+ "loss": 1.022,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.5417607223476298,
146
+ "grad_norm": 0.06946932719559365,
147
+ "learning_rate": 9.789086620939936e-06,
148
+ "loss": 0.8234,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.5688487584650113,
153
+ "grad_norm": 0.07510589474735027,
154
+ "learning_rate": 9.740045899781353e-06,
155
+ "loss": 0.8359,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.5959367945823928,
160
+ "grad_norm": 0.06552207629817948,
161
+ "learning_rate": 9.68603352503172e-06,
162
+ "loss": 0.7305,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.6230248306997742,
167
+ "grad_norm": 0.06750242477377788,
168
+ "learning_rate": 9.627106148213521e-06,
169
+ "loss": 0.7568,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.6501128668171557,
174
+ "grad_norm": 0.07579791889142827,
175
+ "learning_rate": 9.563325576007702e-06,
176
+ "loss": 0.8188,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.6772009029345373,
181
+ "grad_norm": 0.05385726475558828,
182
+ "learning_rate": 9.494758705426978e-06,
183
+ "loss": 0.6476,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.7042889390519187,
188
+ "grad_norm": 0.0659922617401428,
189
+ "learning_rate": 9.421477453650118e-06,
190
+ "loss": 0.8316,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.7313769751693002,
195
+ "grad_norm": 0.06724043516128614,
196
+ "learning_rate": 9.343558682590757e-06,
197
+ "loss": 0.8827,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.7584650112866818,
202
+ "grad_norm": 0.057407448162910005,
203
+ "learning_rate": 9.261084118279846e-06,
204
+ "loss": 0.7524,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.7855530474040632,
209
+ "grad_norm": 0.06600552654685582,
210
+ "learning_rate": 9.174140265146356e-06,
211
+ "loss": 0.8426,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.8126410835214447,
216
+ "grad_norm": 0.05731937218952811,
217
+ "learning_rate": 9.082818315286054e-06,
218
+ "loss": 0.7681,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.8397291196388262,
223
+ "grad_norm": 0.05814787595507311,
224
+ "learning_rate": 8.987214052813605e-06,
225
+ "loss": 0.7463,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.8668171557562077,
230
+ "grad_norm": 0.06918050909180208,
231
+ "learning_rate": 8.887427753398249e-06,
232
+ "loss": 0.908,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.8939051918735892,
237
+ "grad_norm": 0.0651707634722971,
238
+ "learning_rate": 8.783564079088478e-06,
239
+ "loss": 0.7965,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.9209932279909706,
244
+ "grad_norm": 0.047559578658812544,
245
+ "learning_rate": 8.675731968536004e-06,
246
+ "loss": 0.6443,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.9480812641083521,
251
+ "grad_norm": 0.05660630221337761,
252
+ "learning_rate": 8.564044522734147e-06,
253
+ "loss": 0.7452,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.9751693002257337,
258
+ "grad_norm": 0.053852038093973535,
259
+ "learning_rate": 8.448618886390523e-06,
260
+ "loss": 0.736,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.0270880361173815,
265
+ "grad_norm": 0.07449181460800067,
266
+ "learning_rate": 8.329576125058406e-06,
267
+ "loss": 1.4609,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.054176072234763,
272
+ "grad_norm": 0.05525435344631101,
273
+ "learning_rate": 8.207041098155701e-06,
274
+ "loss": 0.6621,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.0812641083521444,
279
+ "grad_norm": 0.05203784294919359,
280
+ "learning_rate": 8.081142328004638e-06,
281
+ "loss": 0.7746,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.108352144469526,
286
+ "grad_norm": 0.05697857349793105,
287
+ "learning_rate": 7.952011865029614e-06,
288
+ "loss": 0.6824,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.1354401805869074,
293
+ "grad_norm": 0.05062686469158285,
294
+ "learning_rate": 7.819785149254534e-06,
295
+ "loss": 0.6903,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.162528216704289,
300
+ "grad_norm": 0.05481418216875255,
301
+ "learning_rate": 7.68460086824492e-06,
302
+ "loss": 0.7619,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.1896162528216705,
307
+ "grad_norm": 0.05846015164093139,
308
+ "learning_rate": 7.546600811643816e-06,
309
+ "loss": 0.7389,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.2167042889390518,
314
+ "grad_norm": 0.05413723610310761,
315
+ "learning_rate": 7.405929722454026e-06,
316
+ "loss": 0.6184,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.2437923250564333,
321
+ "grad_norm": 0.05134366705233288,
322
+ "learning_rate": 7.262735145222696e-06,
323
+ "loss": 0.6454,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.2708803611738149,
328
+ "grad_norm": 0.05310633803377862,
329
+ "learning_rate": 7.117167271287453e-06,
330
+ "loss": 0.6757,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.2979683972911964,
335
+ "grad_norm": 0.053925607393482275,
336
+ "learning_rate": 6.969378781246436e-06,
337
+ "loss": 0.6576,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.325056433408578,
342
+ "grad_norm": 0.057106251483552625,
343
+ "learning_rate": 6.819524684817439e-06,
344
+ "loss": 0.7626,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.3521444695259595,
349
+ "grad_norm": 0.063954914765478,
350
+ "learning_rate": 6.667762158254104e-06,
351
+ "loss": 0.7258,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.379232505643341,
356
+ "grad_norm": 0.06058570686117535,
357
+ "learning_rate": 6.514250379489754e-06,
358
+ "loss": 0.7189,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.4063205417607223,
363
+ "grad_norm": 0.05938143369785303,
364
+ "learning_rate": 6.3591503611817155e-06,
365
+ "loss": 0.6971,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.4334085778781038,
370
+ "grad_norm": 0.054558813521977216,
371
+ "learning_rate": 6.202624781831269e-06,
372
+ "loss": 0.6993,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.4604966139954854,
377
+ "grad_norm": 0.05680279560956532,
378
+ "learning_rate": 6.044837815156377e-06,
379
+ "loss": 0.6718,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.487584650112867,
384
+ "grad_norm": 0.057626144484000004,
385
+ "learning_rate": 5.885954957896115e-06,
386
+ "loss": 0.6387,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.5146726862302482,
391
+ "grad_norm": 0.05199111492426588,
392
+ "learning_rate": 5.726142856227453e-06,
393
+ "loss": 0.5622,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.5417607223476297,
398
+ "grad_norm": 0.05327168882426124,
399
+ "learning_rate": 5.5655691309764225e-06,
400
+ "loss": 0.7091,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.5688487584650113,
405
+ "grad_norm": 0.057426996754366404,
406
+ "learning_rate": 5.404402201807022e-06,
407
+ "loss": 0.6517,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.5959367945823928,
412
+ "grad_norm": 0.05495817026055581,
413
+ "learning_rate": 5.242811110572243e-06,
414
+ "loss": 0.6802,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.6230248306997743,
419
+ "grad_norm": 0.05641482899916262,
420
+ "learning_rate": 5.080965344012509e-06,
421
+ "loss": 0.6902,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.6501128668171559,
426
+ "grad_norm": 0.055534338239146296,
427
+ "learning_rate": 4.919034655987493e-06,
428
+ "loss": 0.6458,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.6772009029345374,
433
+ "grad_norm": 0.0515923365198089,
434
+ "learning_rate": 4.757188889427761e-06,
435
+ "loss": 0.5779,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.7042889390519187,
440
+ "grad_norm": 0.05349680772002036,
441
+ "learning_rate": 4.59559779819298e-06,
442
+ "loss": 0.6662,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.7313769751693002,
447
+ "grad_norm": 0.05597651265383424,
448
+ "learning_rate": 4.434430869023579e-06,
449
+ "loss": 0.6427,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.7584650112866818,
454
+ "grad_norm": 0.05367995560098686,
455
+ "learning_rate": 4.27385714377255e-06,
456
+ "loss": 0.5866,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.785553047404063,
461
+ "grad_norm": 0.050110706315052135,
462
+ "learning_rate": 4.1140450421038865e-06,
463
+ "loss": 0.6308,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.8126410835214446,
468
+ "grad_norm": 0.05304711612194916,
469
+ "learning_rate": 3.955162184843625e-06,
470
+ "loss": 0.6354,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.8397291196388261,
475
+ "grad_norm": 0.05096383612475282,
476
+ "learning_rate": 3.7973752181687336e-06,
477
+ "loss": 0.5353,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.8668171557562077,
482
+ "grad_norm": 0.0485852384541565,
483
+ "learning_rate": 3.6408496388182857e-06,
484
+ "loss": 0.6101,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.8939051918735892,
489
+ "grad_norm": 0.05340977288546307,
490
+ "learning_rate": 3.4857496205102475e-06,
491
+ "loss": 0.6748,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.9209932279909707,
496
+ "grad_norm": 0.05929668403153539,
497
+ "learning_rate": 3.3322378417458985e-06,
498
+ "loss": 0.7395,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.9480812641083523,
503
+ "grad_norm": 0.05974704306446326,
504
+ "learning_rate": 3.180475315182563e-06,
505
+ "loss": 0.6742,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.9751693002257338,
510
+ "grad_norm": 0.05601946443734337,
511
+ "learning_rate": 3.0306212187535653e-06,
512
+ "loss": 0.658,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.0270880361173815,
517
+ "grad_norm": 0.0724237322260953,
518
+ "learning_rate": 2.882832728712551e-06,
519
+ "loss": 1.4064,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.054176072234763,
524
+ "grad_norm": 0.06053838794404104,
525
+ "learning_rate": 2.7372648547773063e-06,
526
+ "loss": 0.656,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.0812641083521446,
531
+ "grad_norm": 0.05100316572963111,
532
+ "learning_rate": 2.594070277545975e-06,
533
+ "loss": 0.5612,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.108352144469526,
538
+ "grad_norm": 0.0622038616480431,
539
+ "learning_rate": 2.4533991883561868e-06,
540
+ "loss": 0.6891,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.1354401805869077,
545
+ "grad_norm": 0.057916636244831204,
546
+ "learning_rate": 2.315399131755081e-06,
547
+ "loss": 0.638,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.1625282167042887,
552
+ "grad_norm": 0.05395672544503171,
553
+ "learning_rate": 2.1802148507454675e-06,
554
+ "loss": 0.5861,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.1896162528216703,
559
+ "grad_norm": 0.053864006071485976,
560
+ "learning_rate": 2.0479881349703885e-06,
561
+ "loss": 0.594,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.216704288939052,
566
+ "grad_norm": 0.05830769530523658,
567
+ "learning_rate": 1.9188576719953635e-06,
568
+ "loss": 0.5802,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.2437923250564333,
573
+ "grad_norm": 0.051099460392983014,
574
+ "learning_rate": 1.7929589018443016e-06,
575
+ "loss": 0.5442,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.270880361173815,
580
+ "grad_norm": 0.05719841616517216,
581
+ "learning_rate": 1.6704238749415958e-06,
582
+ "loss": 0.7072,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.2979683972911964,
587
+ "grad_norm": 0.06123931714369972,
588
+ "learning_rate": 1.5513811136094786e-06,
589
+ "loss": 0.6568,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.325056433408578,
594
+ "grad_norm": 0.055793904401965494,
595
+ "learning_rate": 1.4359554772658551e-06,
596
+ "loss": 0.5966,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.3521444695259595,
601
+ "grad_norm": 0.05953398956212439,
602
+ "learning_rate": 1.3242680314639995e-06,
603
+ "loss": 0.6587,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.379232505643341,
608
+ "grad_norm": 0.05626639429332997,
609
+ "learning_rate": 1.2164359209115235e-06,
610
+ "loss": 0.5789,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.4063205417607225,
615
+ "grad_norm": 0.059804679789879765,
616
+ "learning_rate": 1.1125722466017547e-06,
617
+ "loss": 0.654,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.4334085778781036,
622
+ "grad_norm": 0.06250704904021064,
623
+ "learning_rate": 1.012785947186397e-06,
624
+ "loss": 0.6334,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.460496613995485,
629
+ "grad_norm": 0.05303042611737511,
630
+ "learning_rate": 9.171816847139447e-07,
631
+ "loss": 0.5383,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.4875846501128667,
636
+ "grad_norm": 0.04694109638497442,
637
+ "learning_rate": 8.258597348536452e-07,
638
+ "loss": 0.47,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.514672686230248,
643
+ "grad_norm": 0.05089219899472816,
644
+ "learning_rate": 7.389158817201541e-07,
645
+ "loss": 0.5689,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.5417607223476297,
650
+ "grad_norm": 0.05462955495836319,
651
+ "learning_rate": 6.564413174092443e-07,
652
+ "loss": 0.5717,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.5688487584650113,
657
+ "grad_norm": 0.05361089763797038,
658
+ "learning_rate": 5.785225463498828e-07,
659
+ "loss": 0.5882,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 2.595936794582393,
664
+ "grad_norm": 0.0545372370608364,
665
+ "learning_rate": 5.05241294573024e-07,
666
+ "loss": 0.5988,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 2.6230248306997743,
671
+ "grad_norm": 0.05203946271783804,
672
+ "learning_rate": 4.3667442399229985e-07,
673
+ "loss": 0.5401,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 2.650112866817156,
678
+ "grad_norm": 0.059286878607973235,
679
+ "learning_rate": 3.728938517864794e-07,
680
+ "loss": 0.6421,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 2.6772009029345374,
685
+ "grad_norm": 0.05057841068074063,
686
+ "learning_rate": 3.1396647496828245e-07,
687
+ "loss": 0.4977,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 2.704288939051919,
692
+ "grad_norm": 0.056645818127275836,
693
+ "learning_rate": 2.599541002186479e-07,
694
+ "loss": 0.6279,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 2.7313769751693,
699
+ "grad_norm": 0.057378590315900785,
700
+ "learning_rate": 2.109133790600648e-07,
701
+ "loss": 0.5334,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 2.758465011286682,
706
+ "grad_norm": 0.05201027382239277,
707
+ "learning_rate": 1.6689574843694433e-07,
708
+ "loss": 0.5393,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 2.785553047404063,
713
+ "grad_norm": 0.046096574095139876,
714
+ "learning_rate": 1.2794737676536993e-07,
715
+ "loss": 0.4896,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 2.8126410835214446,
720
+ "grad_norm": 0.05452191462883333,
721
+ "learning_rate": 9.410911550880474e-08,
722
+ "loss": 0.654,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 2.839729119638826,
727
+ "grad_norm": 0.06330637115234866,
728
+ "learning_rate": 6.54164563305465e-08,
729
+ "loss": 0.6922,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 2.8668171557562077,
734
+ "grad_norm": 0.06047053924162395,
735
+ "learning_rate": 4.189949386787462e-08,
736
+ "loss": 0.6493,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 2.893905191873589,
741
+ "grad_norm": 0.05558730657663917,
742
+ "learning_rate": 2.358289416693027e-08,
743
+ "loss": 0.5759,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 2.9209932279909707,
748
+ "grad_norm": 0.05598626490189069,
749
+ "learning_rate": 1.0485868811441757e-08,
750
+ "loss": 0.5835,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 2.9480812641083523,
755
+ "grad_norm": 0.058320029820894966,
756
+ "learning_rate": 2.6221547724253337e-09,
757
+ "loss": 0.613,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 2.975169300225734,
762
+ "grad_norm": 0.05592965040584475,
763
+ "learning_rate": 0.0,
764
+ "loss": 0.6081,
765
+ "step": 108
766
+ }
767
+ ],
768
+ "logging_steps": 1,
769
+ "max_steps": 108,
770
+ "num_input_tokens_seen": 0,
771
+ "num_train_epochs": 3,
772
+ "save_steps": 200,
773
+ "stateful_callbacks": {
774
+ "TrainerControl": {
775
+ "args": {
776
+ "should_epoch_stop": false,
777
+ "should_evaluate": false,
778
+ "should_log": false,
779
+ "should_save": true,
780
+ "should_training_stop": true
781
+ },
782
+ "attributes": {}
783
+ }
784
+ },
785
+ "total_flos": 3.237704266625843e+16,
786
+ "train_batch_size": 1,
787
+ "trial_name": null,
788
+ "trial_params": null
789
+ }
checkpoint-108/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbd97f6b1ab3ee6d17a8cd9f26888387e4c1ad330038a684626001f7e502b7a
3
+ size 7736
checkpoint-108/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-108/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064,
29
+ "rope_scaling": {
30
+ "factor": 4.0,
31
+ "original_max_position_embeddings": 32768,
32
+ "type": "yarn"
33
+ }
34
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665ed4081835b9e11c2b96cf2a69488f7e0fa694d00fae8271a920ba2f2c36fe
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbd6f925c107764703ac15070e75ffe4b41337d39a4bd5b5168494e883fce02
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de73ab88909e6f4f7e6d4bfab8ad2e6238b8491a060c75672e50ede2ddcb9d4
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7045b566d18b7fd7d93652047d73d68e87b1362ed616903847f0919cf3221f7f
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 16384,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 2.975169300225734,
3
+ "total_flos": 3.237704266625843e+16,
4
+ "train_loss": 0.7293182517643328,
5
+ "train_runtime": 6995.9355,
6
+ "train_samples_per_second": 0.569,
7
+ "train_steps_per_second": 0.015
8
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 108, "loss": 1.2461, "lr": 9.090909090909091e-07, "epoch": 0.02708803611738149, "percentage": 0.93, "elapsed_time": "0:01:04", "remaining_time": "1:54:37"}
2
+ {"current_steps": 2, "total_steps": 108, "loss": 1.2148, "lr": 1.8181818181818183e-06, "epoch": 0.05417607223476298, "percentage": 1.85, "elapsed_time": "0:01:59", "remaining_time": "1:45:22"}
3
+ {"current_steps": 3, "total_steps": 108, "loss": 0.9726, "lr": 2.7272727272727272e-06, "epoch": 0.08126410835214447, "percentage": 2.78, "elapsed_time": "0:03:09", "remaining_time": "1:50:47"}
4
+ {"current_steps": 4, "total_steps": 108, "loss": 1.1417, "lr": 3.6363636363636366e-06, "epoch": 0.10835214446952596, "percentage": 3.7, "elapsed_time": "0:04:06", "remaining_time": "1:46:43"}
5
+ {"current_steps": 5, "total_steps": 108, "loss": 0.9526, "lr": 4.5454545454545455e-06, "epoch": 0.13544018058690746, "percentage": 4.63, "elapsed_time": "0:05:19", "remaining_time": "1:49:32"}
6
+ {"current_steps": 6, "total_steps": 108, "loss": 1.0301, "lr": 5.4545454545454545e-06, "epoch": 0.16252821670428894, "percentage": 5.56, "elapsed_time": "0:06:24", "remaining_time": "1:48:54"}
7
+ {"current_steps": 7, "total_steps": 108, "loss": 1.0107, "lr": 6.363636363636364e-06, "epoch": 0.18961625282167044, "percentage": 6.48, "elapsed_time": "0:07:17", "remaining_time": "1:45:18"}
8
+ {"current_steps": 8, "total_steps": 108, "loss": 1.0306, "lr": 7.272727272727273e-06, "epoch": 0.21670428893905191, "percentage": 7.41, "elapsed_time": "0:08:21", "remaining_time": "1:44:26"}
9
+ {"current_steps": 9, "total_steps": 108, "loss": 0.8963, "lr": 8.181818181818183e-06, "epoch": 0.24379232505643342, "percentage": 8.33, "elapsed_time": "0:09:23", "remaining_time": "1:43:19"}
10
+ {"current_steps": 10, "total_steps": 108, "loss": 1.0366, "lr": 9.090909090909091e-06, "epoch": 0.2708803611738149, "percentage": 9.26, "elapsed_time": "0:10:25", "remaining_time": "1:42:09"}
11
+ {"current_steps": 11, "total_steps": 108, "loss": 0.9005, "lr": 1e-05, "epoch": 0.2979683972911964, "percentage": 10.19, "elapsed_time": "0:11:21", "remaining_time": "1:40:10"}
12
+ {"current_steps": 12, "total_steps": 108, "loss": 0.8125, "lr": 9.997377845227577e-06, "epoch": 0.32505643340857787, "percentage": 11.11, "elapsed_time": "0:12:32", "remaining_time": "1:40:18"}
13
+ {"current_steps": 13, "total_steps": 108, "loss": 0.9944, "lr": 9.98951413118856e-06, "epoch": 0.35214446952595935, "percentage": 12.04, "elapsed_time": "0:13:30", "remaining_time": "1:38:41"}
14
+ {"current_steps": 14, "total_steps": 108, "loss": 0.8586, "lr": 9.97641710583307e-06, "epoch": 0.3792325056433409, "percentage": 12.96, "elapsed_time": "0:14:30", "remaining_time": "1:37:24"}
15
+ {"current_steps": 15, "total_steps": 108, "loss": 0.6047, "lr": 9.958100506132127e-06, "epoch": 0.40632054176072235, "percentage": 13.89, "elapsed_time": "0:15:41", "remaining_time": "1:37:15"}
16
+ {"current_steps": 16, "total_steps": 108, "loss": 0.8924, "lr": 9.934583543669454e-06, "epoch": 0.43340857787810383, "percentage": 14.81, "elapsed_time": "0:16:34", "remaining_time": "1:35:16"}
17
+ {"current_steps": 17, "total_steps": 108, "loss": 0.8502, "lr": 9.905890884491196e-06, "epoch": 0.4604966139954853, "percentage": 15.74, "elapsed_time": "0:17:45", "remaining_time": "1:35:03"}
18
+ {"current_steps": 18, "total_steps": 108, "loss": 0.8565, "lr": 9.872052623234632e-06, "epoch": 0.48758465011286684, "percentage": 16.67, "elapsed_time": "0:18:48", "remaining_time": "1:34:04"}
19
+ {"current_steps": 19, "total_steps": 108, "loss": 1.022, "lr": 9.833104251563058e-06, "epoch": 0.5146726862302483, "percentage": 17.59, "elapsed_time": "0:19:45", "remaining_time": "1:32:33"}
20
+ {"current_steps": 20, "total_steps": 108, "loss": 0.8234, "lr": 9.789086620939936e-06, "epoch": 0.5417607223476298, "percentage": 18.52, "elapsed_time": "0:20:47", "remaining_time": "1:31:28"}
21
+ {"current_steps": 21, "total_steps": 108, "loss": 0.8359, "lr": 9.740045899781353e-06, "epoch": 0.5688487584650113, "percentage": 19.44, "elapsed_time": "0:21:44", "remaining_time": "1:30:05"}
22
+ {"current_steps": 22, "total_steps": 108, "loss": 0.7305, "lr": 9.68603352503172e-06, "epoch": 0.5959367945823928, "percentage": 20.37, "elapsed_time": "0:23:11", "remaining_time": "1:30:39"}
23
+ {"current_steps": 23, "total_steps": 108, "loss": 0.7568, "lr": 9.627106148213521e-06, "epoch": 0.6230248306997742, "percentage": 21.3, "elapsed_time": "0:24:20", "remaining_time": "1:29:57"}
24
+ {"current_steps": 24, "total_steps": 108, "loss": 0.8188, "lr": 9.563325576007702e-06, "epoch": 0.6501128668171557, "percentage": 22.22, "elapsed_time": "0:25:14", "remaining_time": "1:28:21"}
25
+ {"current_steps": 25, "total_steps": 108, "loss": 0.6476, "lr": 9.494758705426978e-06, "epoch": 0.6772009029345373, "percentage": 23.15, "elapsed_time": "0:26:29", "remaining_time": "1:27:57"}
26
+ {"current_steps": 26, "total_steps": 108, "loss": 0.8316, "lr": 9.421477453650118e-06, "epoch": 0.7042889390519187, "percentage": 24.07, "elapsed_time": "0:27:25", "remaining_time": "1:26:28"}
27
+ {"current_steps": 27, "total_steps": 108, "loss": 0.8827, "lr": 9.343558682590757e-06, "epoch": 0.7313769751693002, "percentage": 25.0, "elapsed_time": "0:28:35", "remaining_time": "1:25:47"}
28
+ {"current_steps": 28, "total_steps": 108, "loss": 0.7524, "lr": 9.261084118279846e-06, "epoch": 0.7584650112866818, "percentage": 25.93, "elapsed_time": "0:29:39", "remaining_time": "1:24:44"}
29
+ {"current_steps": 29, "total_steps": 108, "loss": 0.8426, "lr": 9.174140265146356e-06, "epoch": 0.7855530474040632, "percentage": 26.85, "elapsed_time": "0:30:34", "remaining_time": "1:23:18"}
30
+ {"current_steps": 30, "total_steps": 108, "loss": 0.7681, "lr": 9.082818315286054e-06, "epoch": 0.8126410835214447, "percentage": 27.78, "elapsed_time": "0:31:37", "remaining_time": "1:22:12"}
31
+ {"current_steps": 31, "total_steps": 108, "loss": 0.7463, "lr": 8.987214052813605e-06, "epoch": 0.8397291196388262, "percentage": 28.7, "elapsed_time": "0:32:44", "remaining_time": "1:21:20"}
32
+ {"current_steps": 32, "total_steps": 108, "loss": 0.908, "lr": 8.887427753398249e-06, "epoch": 0.8668171557562077, "percentage": 29.63, "elapsed_time": "0:33:45", "remaining_time": "1:20:09"}
33
+ {"current_steps": 33, "total_steps": 108, "loss": 0.7965, "lr": 8.783564079088478e-06, "epoch": 0.8939051918735892, "percentage": 30.56, "elapsed_time": "0:34:46", "remaining_time": "1:19:01"}
34
+ {"current_steps": 34, "total_steps": 108, "loss": 0.6443, "lr": 8.675731968536004e-06, "epoch": 0.9209932279909706, "percentage": 31.48, "elapsed_time": "0:36:09", "remaining_time": "1:18:42"}
35
+ {"current_steps": 35, "total_steps": 108, "loss": 0.7452, "lr": 8.564044522734147e-06, "epoch": 0.9480812641083521, "percentage": 32.41, "elapsed_time": "0:37:19", "remaining_time": "1:17:49"}
36
+ {"current_steps": 36, "total_steps": 108, "loss": 0.736, "lr": 8.448618886390523e-06, "epoch": 0.9751693002257337, "percentage": 33.33, "elapsed_time": "0:38:19", "remaining_time": "1:16:39"}
37
+ {"current_steps": 37, "total_steps": 108, "loss": 1.4609, "lr": 8.329576125058406e-06, "epoch": 1.0270880361173815, "percentage": 34.26, "elapsed_time": "0:40:13", "remaining_time": "1:17:10"}
38
+ {"current_steps": 38, "total_steps": 108, "loss": 0.6621, "lr": 8.207041098155701e-06, "epoch": 1.054176072234763, "percentage": 35.19, "elapsed_time": "0:41:10", "remaining_time": "1:15:51"}
39
+ {"current_steps": 39, "total_steps": 108, "loss": 0.7746, "lr": 8.081142328004638e-06, "epoch": 1.0812641083521444, "percentage": 36.11, "elapsed_time": "0:42:06", "remaining_time": "1:14:29"}
40
+ {"current_steps": 40, "total_steps": 108, "loss": 0.6824, "lr": 7.952011865029614e-06, "epoch": 1.108352144469526, "percentage": 37.04, "elapsed_time": "0:43:08", "remaining_time": "1:13:19"}
41
+ {"current_steps": 41, "total_steps": 108, "loss": 0.6903, "lr": 7.819785149254534e-06, "epoch": 1.1354401805869074, "percentage": 37.96, "elapsed_time": "0:44:05", "remaining_time": "1:12:02"}
42
+ {"current_steps": 42, "total_steps": 108, "loss": 0.7619, "lr": 7.68460086824492e-06, "epoch": 1.162528216704289, "percentage": 38.89, "elapsed_time": "0:45:09", "remaining_time": "1:10:57"}
43
+ {"current_steps": 43, "total_steps": 108, "loss": 0.7389, "lr": 7.546600811643816e-06, "epoch": 1.1896162528216705, "percentage": 39.81, "elapsed_time": "0:46:11", "remaining_time": "1:09:49"}
44
+ {"current_steps": 44, "total_steps": 108, "loss": 0.6184, "lr": 7.405929722454026e-06, "epoch": 1.2167042889390518, "percentage": 40.74, "elapsed_time": "0:47:14", "remaining_time": "1:08:43"}
45
+ {"current_steps": 45, "total_steps": 108, "loss": 0.6454, "lr": 7.262735145222696e-06, "epoch": 1.2437923250564333, "percentage": 41.67, "elapsed_time": "0:48:15", "remaining_time": "1:07:33"}
46
+ {"current_steps": 46, "total_steps": 108, "loss": 0.6757, "lr": 7.117167271287453e-06, "epoch": 1.2708803611738149, "percentage": 42.59, "elapsed_time": "0:49:12", "remaining_time": "1:06:19"}
47
+ {"current_steps": 47, "total_steps": 108, "loss": 0.6576, "lr": 6.969378781246436e-06, "epoch": 1.2979683972911964, "percentage": 43.52, "elapsed_time": "0:50:09", "remaining_time": "1:05:05"}
48
+ {"current_steps": 48, "total_steps": 108, "loss": 0.7626, "lr": 6.819524684817439e-06, "epoch": 1.325056433408578, "percentage": 44.44, "elapsed_time": "0:51:03", "remaining_time": "1:03:49"}
49
+ {"current_steps": 49, "total_steps": 108, "loss": 0.7258, "lr": 6.667762158254104e-06, "epoch": 1.3521444695259595, "percentage": 45.37, "elapsed_time": "0:51:57", "remaining_time": "1:02:33"}
50
+ {"current_steps": 50, "total_steps": 108, "loss": 0.7189, "lr": 6.514250379489754e-06, "epoch": 1.379232505643341, "percentage": 46.3, "elapsed_time": "0:52:50", "remaining_time": "1:01:17"}
51
+ {"current_steps": 51, "total_steps": 108, "loss": 0.6971, "lr": 6.3591503611817155e-06, "epoch": 1.4063205417607223, "percentage": 47.22, "elapsed_time": "0:53:59", "remaining_time": "1:00:20"}
52
+ {"current_steps": 52, "total_steps": 108, "loss": 0.6993, "lr": 6.202624781831269e-06, "epoch": 1.4334085778781038, "percentage": 48.15, "elapsed_time": "0:54:53", "remaining_time": "0:59:06"}
53
+ {"current_steps": 53, "total_steps": 108, "loss": 0.6718, "lr": 6.044837815156377e-06, "epoch": 1.4604966139954854, "percentage": 49.07, "elapsed_time": "0:56:00", "remaining_time": "0:58:07"}
54
+ {"current_steps": 54, "total_steps": 108, "loss": 0.6387, "lr": 5.885954957896115e-06, "epoch": 1.487584650112867, "percentage": 50.0, "elapsed_time": "0:57:12", "remaining_time": "0:57:12"}
55
+ {"current_steps": 55, "total_steps": 108, "loss": 0.5622, "lr": 5.726142856227453e-06, "epoch": 1.5146726862302482, "percentage": 50.93, "elapsed_time": "0:58:22", "remaining_time": "0:56:15"}
56
+ {"current_steps": 56, "total_steps": 108, "loss": 0.7091, "lr": 5.5655691309764225e-06, "epoch": 1.5417607223476297, "percentage": 51.85, "elapsed_time": "0:59:21", "remaining_time": "0:55:06"}
57
+ {"current_steps": 57, "total_steps": 108, "loss": 0.6517, "lr": 5.404402201807022e-06, "epoch": 1.5688487584650113, "percentage": 52.78, "elapsed_time": "1:00:25", "remaining_time": "0:54:04"}
58
+ {"current_steps": 58, "total_steps": 108, "loss": 0.6802, "lr": 5.242811110572243e-06, "epoch": 1.5959367945823928, "percentage": 53.7, "elapsed_time": "1:01:25", "remaining_time": "0:52:57"}
59
+ {"current_steps": 59, "total_steps": 108, "loss": 0.6902, "lr": 5.080965344012509e-06, "epoch": 1.6230248306997743, "percentage": 54.63, "elapsed_time": "1:02:44", "remaining_time": "0:52:06"}
60
+ {"current_steps": 60, "total_steps": 108, "loss": 0.6458, "lr": 4.919034655987493e-06, "epoch": 1.6501128668171559, "percentage": 55.56, "elapsed_time": "1:03:46", "remaining_time": "0:51:01"}
61
+ {"current_steps": 61, "total_steps": 108, "loss": 0.5779, "lr": 4.757188889427761e-06, "epoch": 1.6772009029345374, "percentage": 56.48, "elapsed_time": "1:05:12", "remaining_time": "0:50:14"}
62
+ {"current_steps": 62, "total_steps": 108, "loss": 0.6662, "lr": 4.59559779819298e-06, "epoch": 1.7042889390519187, "percentage": 57.41, "elapsed_time": "1:06:08", "remaining_time": "0:49:04"}
63
+ {"current_steps": 63, "total_steps": 108, "loss": 0.6427, "lr": 4.434430869023579e-06, "epoch": 1.7313769751693002, "percentage": 58.33, "elapsed_time": "1:07:28", "remaining_time": "0:48:11"}
64
+ {"current_steps": 64, "total_steps": 108, "loss": 0.5866, "lr": 4.27385714377255e-06, "epoch": 1.7584650112866818, "percentage": 59.26, "elapsed_time": "1:08:40", "remaining_time": "0:47:12"}
65
+ {"current_steps": 65, "total_steps": 108, "loss": 0.6308, "lr": 4.1140450421038865e-06, "epoch": 1.785553047404063, "percentage": 60.19, "elapsed_time": "1:09:37", "remaining_time": "0:46:03"}
66
+ {"current_steps": 66, "total_steps": 108, "loss": 0.6354, "lr": 3.955162184843625e-06, "epoch": 1.8126410835214446, "percentage": 61.11, "elapsed_time": "1:10:33", "remaining_time": "0:44:54"}
67
+ {"current_steps": 67, "total_steps": 108, "loss": 0.5353, "lr": 3.7973752181687336e-06, "epoch": 1.8397291196388261, "percentage": 62.04, "elapsed_time": "1:11:56", "remaining_time": "0:44:01"}
68
+ {"current_steps": 68, "total_steps": 108, "loss": 0.6101, "lr": 3.6408496388182857e-06, "epoch": 1.8668171557562077, "percentage": 62.96, "elapsed_time": "1:13:12", "remaining_time": "0:43:03"}
69
+ {"current_steps": 69, "total_steps": 108, "loss": 0.6748, "lr": 3.4857496205102475e-06, "epoch": 1.8939051918735892, "percentage": 63.89, "elapsed_time": "1:14:16", "remaining_time": "0:41:58"}
70
+ {"current_steps": 70, "total_steps": 108, "loss": 0.7395, "lr": 3.3322378417458985e-06, "epoch": 1.9209932279909707, "percentage": 64.81, "elapsed_time": "1:15:10", "remaining_time": "0:40:48"}
71
+ {"current_steps": 71, "total_steps": 108, "loss": 0.6742, "lr": 3.180475315182563e-06, "epoch": 1.9480812641083523, "percentage": 65.74, "elapsed_time": "1:16:11", "remaining_time": "0:39:42"}
72
+ {"current_steps": 72, "total_steps": 108, "loss": 0.658, "lr": 3.0306212187535653e-06, "epoch": 1.9751693002257338, "percentage": 66.67, "elapsed_time": "1:17:08", "remaining_time": "0:38:34"}
73
+ {"current_steps": 73, "total_steps": 108, "loss": 1.4064, "lr": 2.882832728712551e-06, "epoch": 2.0270880361173815, "percentage": 67.59, "elapsed_time": "1:18:46", "remaining_time": "0:37:46"}
74
+ {"current_steps": 74, "total_steps": 108, "loss": 0.656, "lr": 2.7372648547773063e-06, "epoch": 2.054176072234763, "percentage": 68.52, "elapsed_time": "1:19:58", "remaining_time": "0:36:44"}
75
+ {"current_steps": 75, "total_steps": 108, "loss": 0.5612, "lr": 2.594070277545975e-06, "epoch": 2.0812641083521446, "percentage": 69.44, "elapsed_time": "1:21:10", "remaining_time": "0:35:42"}
76
+ {"current_steps": 76, "total_steps": 108, "loss": 0.6891, "lr": 2.4533991883561868e-06, "epoch": 2.108352144469526, "percentage": 70.37, "elapsed_time": "1:22:13", "remaining_time": "0:34:37"}
77
+ {"current_steps": 77, "total_steps": 108, "loss": 0.638, "lr": 2.315399131755081e-06, "epoch": 2.1354401805869077, "percentage": 71.3, "elapsed_time": "1:23:13", "remaining_time": "0:33:30"}
78
+ {"current_steps": 78, "total_steps": 108, "loss": 0.5861, "lr": 2.1802148507454675e-06, "epoch": 2.1625282167042887, "percentage": 72.22, "elapsed_time": "1:24:20", "remaining_time": "0:32:26"}
79
+ {"current_steps": 79, "total_steps": 108, "loss": 0.594, "lr": 2.0479881349703885e-06, "epoch": 2.1896162528216703, "percentage": 73.15, "elapsed_time": "1:25:25", "remaining_time": "0:31:21"}
80
+ {"current_steps": 80, "total_steps": 108, "loss": 0.5802, "lr": 1.9188576719953635e-06, "epoch": 2.216704288939052, "percentage": 74.07, "elapsed_time": "1:26:40", "remaining_time": "0:30:20"}
81
+ {"current_steps": 81, "total_steps": 108, "loss": 0.5442, "lr": 1.7929589018443016e-06, "epoch": 2.2437923250564333, "percentage": 75.0, "elapsed_time": "1:27:58", "remaining_time": "0:29:19"}
82
+ {"current_steps": 82, "total_steps": 108, "loss": 0.7072, "lr": 1.6704238749415958e-06, "epoch": 2.270880361173815, "percentage": 75.93, "elapsed_time": "1:28:50", "remaining_time": "0:28:10"}
83
+ {"current_steps": 83, "total_steps": 108, "loss": 0.6568, "lr": 1.5513811136094786e-06, "epoch": 2.2979683972911964, "percentage": 76.85, "elapsed_time": "1:29:51", "remaining_time": "0:27:03"}
84
+ {"current_steps": 84, "total_steps": 108, "loss": 0.5966, "lr": 1.4359554772658551e-06, "epoch": 2.325056433408578, "percentage": 77.78, "elapsed_time": "1:30:49", "remaining_time": "0:25:56"}
85
+ {"current_steps": 85, "total_steps": 108, "loss": 0.6587, "lr": 1.3242680314639995e-06, "epoch": 2.3521444695259595, "percentage": 78.7, "elapsed_time": "1:31:52", "remaining_time": "0:24:51"}
86
+ {"current_steps": 86, "total_steps": 108, "loss": 0.5789, "lr": 1.2164359209115235e-06, "epoch": 2.379232505643341, "percentage": 79.63, "elapsed_time": "1:32:58", "remaining_time": "0:23:47"}
87
+ {"current_steps": 87, "total_steps": 108, "loss": 0.654, "lr": 1.1125722466017547e-06, "epoch": 2.4063205417607225, "percentage": 80.56, "elapsed_time": "1:33:51", "remaining_time": "0:22:39"}
88
+ {"current_steps": 88, "total_steps": 108, "loss": 0.6334, "lr": 1.012785947186397e-06, "epoch": 2.4334085778781036, "percentage": 81.48, "elapsed_time": "1:34:48", "remaining_time": "0:21:32"}
89
+ {"current_steps": 89, "total_steps": 108, "loss": 0.5383, "lr": 9.171816847139447e-07, "epoch": 2.460496613995485, "percentage": 82.41, "elapsed_time": "1:35:42", "remaining_time": "0:20:26"}
90
+ {"current_steps": 90, "total_steps": 108, "loss": 0.47, "lr": 8.258597348536452e-07, "epoch": 2.4875846501128667, "percentage": 83.33, "elapsed_time": "1:36:50", "remaining_time": "0:19:22"}
91
+ {"current_steps": 91, "total_steps": 108, "loss": 0.5689, "lr": 7.389158817201541e-07, "epoch": 2.514672686230248, "percentage": 84.26, "elapsed_time": "1:37:52", "remaining_time": "0:18:16"}
92
+ {"current_steps": 92, "total_steps": 108, "loss": 0.5717, "lr": 6.564413174092443e-07, "epoch": 2.5417607223476297, "percentage": 85.19, "elapsed_time": "1:39:13", "remaining_time": "0:17:15"}
93
+ {"current_steps": 93, "total_steps": 108, "loss": 0.5882, "lr": 5.785225463498828e-07, "epoch": 2.5688487584650113, "percentage": 86.11, "elapsed_time": "1:40:28", "remaining_time": "0:16:12"}
94
+ {"current_steps": 94, "total_steps": 108, "loss": 0.5988, "lr": 5.05241294573024e-07, "epoch": 2.595936794582393, "percentage": 87.04, "elapsed_time": "1:41:23", "remaining_time": "0:15:06"}
95
+ {"current_steps": 95, "total_steps": 108, "loss": 0.5401, "lr": 4.3667442399229985e-07, "epoch": 2.6230248306997743, "percentage": 87.96, "elapsed_time": "1:42:28", "remaining_time": "0:14:01"}
96
+ {"current_steps": 96, "total_steps": 108, "loss": 0.6421, "lr": 3.728938517864794e-07, "epoch": 2.650112866817156, "percentage": 88.89, "elapsed_time": "1:43:24", "remaining_time": "0:12:55"}
97
+ {"current_steps": 97, "total_steps": 108, "loss": 0.4977, "lr": 3.1396647496828245e-07, "epoch": 2.6772009029345374, "percentage": 89.81, "elapsed_time": "1:44:26", "remaining_time": "0:11:50"}
98
+ {"current_steps": 98, "total_steps": 108, "loss": 0.6279, "lr": 2.599541002186479e-07, "epoch": 2.704288939051919, "percentage": 90.74, "elapsed_time": "1:45:18", "remaining_time": "0:10:44"}
99
+ {"current_steps": 99, "total_steps": 108, "loss": 0.5334, "lr": 2.109133790600648e-07, "epoch": 2.7313769751693, "percentage": 91.67, "elapsed_time": "1:46:24", "remaining_time": "0:09:40"}
100
+ {"current_steps": 100, "total_steps": 108, "loss": 0.5393, "lr": 1.6689574843694433e-07, "epoch": 2.758465011286682, "percentage": 92.59, "elapsed_time": "1:47:18", "remaining_time": "0:08:35"}
101
+ {"current_steps": 101, "total_steps": 108, "loss": 0.4896, "lr": 1.2794737676536993e-07, "epoch": 2.785553047404063, "percentage": 93.52, "elapsed_time": "1:48:29", "remaining_time": "0:07:31"}
102
+ {"current_steps": 102, "total_steps": 108, "loss": 0.654, "lr": 9.410911550880474e-08, "epoch": 2.8126410835214446, "percentage": 94.44, "elapsed_time": "1:49:21", "remaining_time": "0:06:25"}
103
+ {"current_steps": 103, "total_steps": 108, "loss": 0.6922, "lr": 6.54164563305465e-08, "epoch": 2.839729119638826, "percentage": 95.37, "elapsed_time": "1:50:13", "remaining_time": "0:05:21"}
104
+ {"current_steps": 104, "total_steps": 108, "loss": 0.6493, "lr": 4.189949386787462e-08, "epoch": 2.8668171557562077, "percentage": 96.3, "elapsed_time": "1:51:16", "remaining_time": "0:04:16"}
105
+ {"current_steps": 105, "total_steps": 108, "loss": 0.5759, "lr": 2.358289416693027e-08, "epoch": 2.893905191873589, "percentage": 97.22, "elapsed_time": "1:52:18", "remaining_time": "0:03:12"}
106
+ {"current_steps": 106, "total_steps": 108, "loss": 0.5835, "lr": 1.0485868811441757e-08, "epoch": 2.9209932279909707, "percentage": 98.15, "elapsed_time": "1:53:18", "remaining_time": "0:02:08"}
107
+ {"current_steps": 107, "total_steps": 108, "loss": 0.613, "lr": 2.6221547724253337e-09, "epoch": 2.9480812641083523, "percentage": 99.07, "elapsed_time": "1:54:18", "remaining_time": "0:01:04"}
108
+ {"current_steps": 108, "total_steps": 108, "loss": 0.6081, "lr": 0.0, "epoch": 2.975169300225734, "percentage": 100.0, "elapsed_time": "1:55:30", "remaining_time": "0:00:00"}
109
+ {"current_steps": 108, "total_steps": 108, "epoch": 2.975169300225734, "percentage": 100.0, "elapsed_time": "1:56:34", "remaining_time": "0:00:00"}
trainer_state.json ADDED
@@ -0,0 +1,798 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.975169300225734,
5
+ "eval_steps": 500,
6
+ "global_step": 108,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02708803611738149,
13
+ "grad_norm": 0.3197194327711118,
14
+ "learning_rate": 9.090909090909091e-07,
15
+ "loss": 1.2461,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.05417607223476298,
20
+ "grad_norm": 0.31103611995893704,
21
+ "learning_rate": 1.8181818181818183e-06,
22
+ "loss": 1.2148,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.08126410835214447,
27
+ "grad_norm": 0.2337633531452293,
28
+ "learning_rate": 2.7272727272727272e-06,
29
+ "loss": 0.9726,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.10835214446952596,
34
+ "grad_norm": 0.2732448083772183,
35
+ "learning_rate": 3.6363636363636366e-06,
36
+ "loss": 1.1417,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.13544018058690746,
41
+ "grad_norm": 0.18372677123914605,
42
+ "learning_rate": 4.5454545454545455e-06,
43
+ "loss": 0.9526,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.16252821670428894,
48
+ "grad_norm": 0.14598996204381387,
49
+ "learning_rate": 5.4545454545454545e-06,
50
+ "loss": 1.0301,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.18961625282167044,
55
+ "grad_norm": 0.12859546866157384,
56
+ "learning_rate": 6.363636363636364e-06,
57
+ "loss": 1.0107,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.21670428893905191,
62
+ "grad_norm": 0.11328838489926579,
63
+ "learning_rate": 7.272727272727273e-06,
64
+ "loss": 1.0306,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.24379232505643342,
69
+ "grad_norm": 0.1022283734283964,
70
+ "learning_rate": 8.181818181818183e-06,
71
+ "loss": 0.8963,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.2708803611738149,
76
+ "grad_norm": 0.11790288806381347,
77
+ "learning_rate": 9.090909090909091e-06,
78
+ "loss": 1.0366,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.2979683972911964,
83
+ "grad_norm": 0.12155066660752349,
84
+ "learning_rate": 1e-05,
85
+ "loss": 0.9005,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.32505643340857787,
90
+ "grad_norm": 0.10987900474389686,
91
+ "learning_rate": 9.997377845227577e-06,
92
+ "loss": 0.8125,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.35214446952595935,
97
+ "grad_norm": 0.1338371645473795,
98
+ "learning_rate": 9.98951413118856e-06,
99
+ "loss": 0.9944,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.3792325056433409,
104
+ "grad_norm": 0.10584646720619653,
105
+ "learning_rate": 9.97641710583307e-06,
106
+ "loss": 0.8586,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.40632054176072235,
111
+ "grad_norm": 0.07551668645041647,
112
+ "learning_rate": 9.958100506132127e-06,
113
+ "loss": 0.6047,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.43340857787810383,
118
+ "grad_norm": 0.10339673320083177,
119
+ "learning_rate": 9.934583543669454e-06,
120
+ "loss": 0.8924,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.4604966139954853,
125
+ "grad_norm": 0.08900126200269193,
126
+ "learning_rate": 9.905890884491196e-06,
127
+ "loss": 0.8502,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.48758465011286684,
132
+ "grad_norm": 0.0755389181238505,
133
+ "learning_rate": 9.872052623234632e-06,
134
+ "loss": 0.8565,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.5146726862302483,
139
+ "grad_norm": 0.08559033880567499,
140
+ "learning_rate": 9.833104251563058e-06,
141
+ "loss": 1.022,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.5417607223476298,
146
+ "grad_norm": 0.06946932719559365,
147
+ "learning_rate": 9.789086620939936e-06,
148
+ "loss": 0.8234,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.5688487584650113,
153
+ "grad_norm": 0.07510589474735027,
154
+ "learning_rate": 9.740045899781353e-06,
155
+ "loss": 0.8359,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.5959367945823928,
160
+ "grad_norm": 0.06552207629817948,
161
+ "learning_rate": 9.68603352503172e-06,
162
+ "loss": 0.7305,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.6230248306997742,
167
+ "grad_norm": 0.06750242477377788,
168
+ "learning_rate": 9.627106148213521e-06,
169
+ "loss": 0.7568,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.6501128668171557,
174
+ "grad_norm": 0.07579791889142827,
175
+ "learning_rate": 9.563325576007702e-06,
176
+ "loss": 0.8188,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.6772009029345373,
181
+ "grad_norm": 0.05385726475558828,
182
+ "learning_rate": 9.494758705426978e-06,
183
+ "loss": 0.6476,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.7042889390519187,
188
+ "grad_norm": 0.0659922617401428,
189
+ "learning_rate": 9.421477453650118e-06,
190
+ "loss": 0.8316,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.7313769751693002,
195
+ "grad_norm": 0.06724043516128614,
196
+ "learning_rate": 9.343558682590757e-06,
197
+ "loss": 0.8827,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.7584650112866818,
202
+ "grad_norm": 0.057407448162910005,
203
+ "learning_rate": 9.261084118279846e-06,
204
+ "loss": 0.7524,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.7855530474040632,
209
+ "grad_norm": 0.06600552654685582,
210
+ "learning_rate": 9.174140265146356e-06,
211
+ "loss": 0.8426,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.8126410835214447,
216
+ "grad_norm": 0.05731937218952811,
217
+ "learning_rate": 9.082818315286054e-06,
218
+ "loss": 0.7681,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.8397291196388262,
223
+ "grad_norm": 0.05814787595507311,
224
+ "learning_rate": 8.987214052813605e-06,
225
+ "loss": 0.7463,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.8668171557562077,
230
+ "grad_norm": 0.06918050909180208,
231
+ "learning_rate": 8.887427753398249e-06,
232
+ "loss": 0.908,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.8939051918735892,
237
+ "grad_norm": 0.0651707634722971,
238
+ "learning_rate": 8.783564079088478e-06,
239
+ "loss": 0.7965,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.9209932279909706,
244
+ "grad_norm": 0.047559578658812544,
245
+ "learning_rate": 8.675731968536004e-06,
246
+ "loss": 0.6443,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.9480812641083521,
251
+ "grad_norm": 0.05660630221337761,
252
+ "learning_rate": 8.564044522734147e-06,
253
+ "loss": 0.7452,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.9751693002257337,
258
+ "grad_norm": 0.053852038093973535,
259
+ "learning_rate": 8.448618886390523e-06,
260
+ "loss": 0.736,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 1.0270880361173815,
265
+ "grad_norm": 0.07449181460800067,
266
+ "learning_rate": 8.329576125058406e-06,
267
+ "loss": 1.4609,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 1.054176072234763,
272
+ "grad_norm": 0.05525435344631101,
273
+ "learning_rate": 8.207041098155701e-06,
274
+ "loss": 0.6621,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 1.0812641083521444,
279
+ "grad_norm": 0.05203784294919359,
280
+ "learning_rate": 8.081142328004638e-06,
281
+ "loss": 0.7746,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 1.108352144469526,
286
+ "grad_norm": 0.05697857349793105,
287
+ "learning_rate": 7.952011865029614e-06,
288
+ "loss": 0.6824,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 1.1354401805869074,
293
+ "grad_norm": 0.05062686469158285,
294
+ "learning_rate": 7.819785149254534e-06,
295
+ "loss": 0.6903,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 1.162528216704289,
300
+ "grad_norm": 0.05481418216875255,
301
+ "learning_rate": 7.68460086824492e-06,
302
+ "loss": 0.7619,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 1.1896162528216705,
307
+ "grad_norm": 0.05846015164093139,
308
+ "learning_rate": 7.546600811643816e-06,
309
+ "loss": 0.7389,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 1.2167042889390518,
314
+ "grad_norm": 0.05413723610310761,
315
+ "learning_rate": 7.405929722454026e-06,
316
+ "loss": 0.6184,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 1.2437923250564333,
321
+ "grad_norm": 0.05134366705233288,
322
+ "learning_rate": 7.262735145222696e-06,
323
+ "loss": 0.6454,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 1.2708803611738149,
328
+ "grad_norm": 0.05310633803377862,
329
+ "learning_rate": 7.117167271287453e-06,
330
+ "loss": 0.6757,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 1.2979683972911964,
335
+ "grad_norm": 0.053925607393482275,
336
+ "learning_rate": 6.969378781246436e-06,
337
+ "loss": 0.6576,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 1.325056433408578,
342
+ "grad_norm": 0.057106251483552625,
343
+ "learning_rate": 6.819524684817439e-06,
344
+ "loss": 0.7626,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 1.3521444695259595,
349
+ "grad_norm": 0.063954914765478,
350
+ "learning_rate": 6.667762158254104e-06,
351
+ "loss": 0.7258,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 1.379232505643341,
356
+ "grad_norm": 0.06058570686117535,
357
+ "learning_rate": 6.514250379489754e-06,
358
+ "loss": 0.7189,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 1.4063205417607223,
363
+ "grad_norm": 0.05938143369785303,
364
+ "learning_rate": 6.3591503611817155e-06,
365
+ "loss": 0.6971,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 1.4334085778781038,
370
+ "grad_norm": 0.054558813521977216,
371
+ "learning_rate": 6.202624781831269e-06,
372
+ "loss": 0.6993,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 1.4604966139954854,
377
+ "grad_norm": 0.05680279560956532,
378
+ "learning_rate": 6.044837815156377e-06,
379
+ "loss": 0.6718,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.487584650112867,
384
+ "grad_norm": 0.057626144484000004,
385
+ "learning_rate": 5.885954957896115e-06,
386
+ "loss": 0.6387,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.5146726862302482,
391
+ "grad_norm": 0.05199111492426588,
392
+ "learning_rate": 5.726142856227453e-06,
393
+ "loss": 0.5622,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.5417607223476297,
398
+ "grad_norm": 0.05327168882426124,
399
+ "learning_rate": 5.5655691309764225e-06,
400
+ "loss": 0.7091,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.5688487584650113,
405
+ "grad_norm": 0.057426996754366404,
406
+ "learning_rate": 5.404402201807022e-06,
407
+ "loss": 0.6517,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.5959367945823928,
412
+ "grad_norm": 0.05495817026055581,
413
+ "learning_rate": 5.242811110572243e-06,
414
+ "loss": 0.6802,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.6230248306997743,
419
+ "grad_norm": 0.05641482899916262,
420
+ "learning_rate": 5.080965344012509e-06,
421
+ "loss": 0.6902,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.6501128668171559,
426
+ "grad_norm": 0.055534338239146296,
427
+ "learning_rate": 4.919034655987493e-06,
428
+ "loss": 0.6458,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.6772009029345374,
433
+ "grad_norm": 0.0515923365198089,
434
+ "learning_rate": 4.757188889427761e-06,
435
+ "loss": 0.5779,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.7042889390519187,
440
+ "grad_norm": 0.05349680772002036,
441
+ "learning_rate": 4.59559779819298e-06,
442
+ "loss": 0.6662,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.7313769751693002,
447
+ "grad_norm": 0.05597651265383424,
448
+ "learning_rate": 4.434430869023579e-06,
449
+ "loss": 0.6427,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.7584650112866818,
454
+ "grad_norm": 0.05367995560098686,
455
+ "learning_rate": 4.27385714377255e-06,
456
+ "loss": 0.5866,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.785553047404063,
461
+ "grad_norm": 0.050110706315052135,
462
+ "learning_rate": 4.1140450421038865e-06,
463
+ "loss": 0.6308,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.8126410835214446,
468
+ "grad_norm": 0.05304711612194916,
469
+ "learning_rate": 3.955162184843625e-06,
470
+ "loss": 0.6354,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.8397291196388261,
475
+ "grad_norm": 0.05096383612475282,
476
+ "learning_rate": 3.7973752181687336e-06,
477
+ "loss": 0.5353,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.8668171557562077,
482
+ "grad_norm": 0.0485852384541565,
483
+ "learning_rate": 3.6408496388182857e-06,
484
+ "loss": 0.6101,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.8939051918735892,
489
+ "grad_norm": 0.05340977288546307,
490
+ "learning_rate": 3.4857496205102475e-06,
491
+ "loss": 0.6748,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.9209932279909707,
496
+ "grad_norm": 0.05929668403153539,
497
+ "learning_rate": 3.3322378417458985e-06,
498
+ "loss": 0.7395,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.9480812641083523,
503
+ "grad_norm": 0.05974704306446326,
504
+ "learning_rate": 3.180475315182563e-06,
505
+ "loss": 0.6742,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.9751693002257338,
510
+ "grad_norm": 0.05601946443734337,
511
+ "learning_rate": 3.0306212187535653e-06,
512
+ "loss": 0.658,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 2.0270880361173815,
517
+ "grad_norm": 0.0724237322260953,
518
+ "learning_rate": 2.882832728712551e-06,
519
+ "loss": 1.4064,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 2.054176072234763,
524
+ "grad_norm": 0.06053838794404104,
525
+ "learning_rate": 2.7372648547773063e-06,
526
+ "loss": 0.656,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 2.0812641083521446,
531
+ "grad_norm": 0.05100316572963111,
532
+ "learning_rate": 2.594070277545975e-06,
533
+ "loss": 0.5612,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 2.108352144469526,
538
+ "grad_norm": 0.0622038616480431,
539
+ "learning_rate": 2.4533991883561868e-06,
540
+ "loss": 0.6891,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 2.1354401805869077,
545
+ "grad_norm": 0.057916636244831204,
546
+ "learning_rate": 2.315399131755081e-06,
547
+ "loss": 0.638,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 2.1625282167042887,
552
+ "grad_norm": 0.05395672544503171,
553
+ "learning_rate": 2.1802148507454675e-06,
554
+ "loss": 0.5861,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 2.1896162528216703,
559
+ "grad_norm": 0.053864006071485976,
560
+ "learning_rate": 2.0479881349703885e-06,
561
+ "loss": 0.594,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 2.216704288939052,
566
+ "grad_norm": 0.05830769530523658,
567
+ "learning_rate": 1.9188576719953635e-06,
568
+ "loss": 0.5802,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 2.2437923250564333,
573
+ "grad_norm": 0.051099460392983014,
574
+ "learning_rate": 1.7929589018443016e-06,
575
+ "loss": 0.5442,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 2.270880361173815,
580
+ "grad_norm": 0.05719841616517216,
581
+ "learning_rate": 1.6704238749415958e-06,
582
+ "loss": 0.7072,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 2.2979683972911964,
587
+ "grad_norm": 0.06123931714369972,
588
+ "learning_rate": 1.5513811136094786e-06,
589
+ "loss": 0.6568,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 2.325056433408578,
594
+ "grad_norm": 0.055793904401965494,
595
+ "learning_rate": 1.4359554772658551e-06,
596
+ "loss": 0.5966,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 2.3521444695259595,
601
+ "grad_norm": 0.05953398956212439,
602
+ "learning_rate": 1.3242680314639995e-06,
603
+ "loss": 0.6587,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 2.379232505643341,
608
+ "grad_norm": 0.05626639429332997,
609
+ "learning_rate": 1.2164359209115235e-06,
610
+ "loss": 0.5789,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 2.4063205417607225,
615
+ "grad_norm": 0.059804679789879765,
616
+ "learning_rate": 1.1125722466017547e-06,
617
+ "loss": 0.654,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 2.4334085778781036,
622
+ "grad_norm": 0.06250704904021064,
623
+ "learning_rate": 1.012785947186397e-06,
624
+ "loss": 0.6334,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 2.460496613995485,
629
+ "grad_norm": 0.05303042611737511,
630
+ "learning_rate": 9.171816847139447e-07,
631
+ "loss": 0.5383,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 2.4875846501128667,
636
+ "grad_norm": 0.04694109638497442,
637
+ "learning_rate": 8.258597348536452e-07,
638
+ "loss": 0.47,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 2.514672686230248,
643
+ "grad_norm": 0.05089219899472816,
644
+ "learning_rate": 7.389158817201541e-07,
645
+ "loss": 0.5689,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 2.5417607223476297,
650
+ "grad_norm": 0.05462955495836319,
651
+ "learning_rate": 6.564413174092443e-07,
652
+ "loss": 0.5717,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 2.5688487584650113,
657
+ "grad_norm": 0.05361089763797038,
658
+ "learning_rate": 5.785225463498828e-07,
659
+ "loss": 0.5882,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 2.595936794582393,
664
+ "grad_norm": 0.0545372370608364,
665
+ "learning_rate": 5.05241294573024e-07,
666
+ "loss": 0.5988,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 2.6230248306997743,
671
+ "grad_norm": 0.05203946271783804,
672
+ "learning_rate": 4.3667442399229985e-07,
673
+ "loss": 0.5401,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 2.650112866817156,
678
+ "grad_norm": 0.059286878607973235,
679
+ "learning_rate": 3.728938517864794e-07,
680
+ "loss": 0.6421,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 2.6772009029345374,
685
+ "grad_norm": 0.05057841068074063,
686
+ "learning_rate": 3.1396647496828245e-07,
687
+ "loss": 0.4977,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 2.704288939051919,
692
+ "grad_norm": 0.056645818127275836,
693
+ "learning_rate": 2.599541002186479e-07,
694
+ "loss": 0.6279,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 2.7313769751693,
699
+ "grad_norm": 0.057378590315900785,
700
+ "learning_rate": 2.109133790600648e-07,
701
+ "loss": 0.5334,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 2.758465011286682,
706
+ "grad_norm": 0.05201027382239277,
707
+ "learning_rate": 1.6689574843694433e-07,
708
+ "loss": 0.5393,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 2.785553047404063,
713
+ "grad_norm": 0.046096574095139876,
714
+ "learning_rate": 1.2794737676536993e-07,
715
+ "loss": 0.4896,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 2.8126410835214446,
720
+ "grad_norm": 0.05452191462883333,
721
+ "learning_rate": 9.410911550880474e-08,
722
+ "loss": 0.654,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 2.839729119638826,
727
+ "grad_norm": 0.06330637115234866,
728
+ "learning_rate": 6.54164563305465e-08,
729
+ "loss": 0.6922,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 2.8668171557562077,
734
+ "grad_norm": 0.06047053924162395,
735
+ "learning_rate": 4.189949386787462e-08,
736
+ "loss": 0.6493,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 2.893905191873589,
741
+ "grad_norm": 0.05558730657663917,
742
+ "learning_rate": 2.358289416693027e-08,
743
+ "loss": 0.5759,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 2.9209932279909707,
748
+ "grad_norm": 0.05598626490189069,
749
+ "learning_rate": 1.0485868811441757e-08,
750
+ "loss": 0.5835,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 2.9480812641083523,
755
+ "grad_norm": 0.058320029820894966,
756
+ "learning_rate": 2.6221547724253337e-09,
757
+ "loss": 0.613,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 2.975169300225734,
762
+ "grad_norm": 0.05592965040584475,
763
+ "learning_rate": 0.0,
764
+ "loss": 0.6081,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 2.975169300225734,
769
+ "step": 108,
770
+ "total_flos": 3.237704266625843e+16,
771
+ "train_loss": 0.7293182517643328,
772
+ "train_runtime": 6995.9355,
773
+ "train_samples_per_second": 0.569,
774
+ "train_steps_per_second": 0.015
775
+ }
776
+ ],
777
+ "logging_steps": 1,
778
+ "max_steps": 108,
779
+ "num_input_tokens_seen": 0,
780
+ "num_train_epochs": 3,
781
+ "save_steps": 200,
782
+ "stateful_callbacks": {
783
+ "TrainerControl": {
784
+ "args": {
785
+ "should_epoch_stop": false,
786
+ "should_evaluate": false,
787
+ "should_log": false,
788
+ "should_save": true,
789
+ "should_training_stop": true
790
+ },
791
+ "attributes": {}
792
+ }
793
+ },
794
+ "total_flos": 3.237704266625843e+16,
795
+ "train_batch_size": 1,
796
+ "trial_name": null,
797
+ "trial_params": null
798
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dbd97f6b1ab3ee6d17a8cd9f26888387e4c1ad330038a684626001f7e502b7a
3
+ size 7736
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff