sedrickkeh achal-tri commited on
Commit
735df2d
·
verified ·
0 Parent(s):

Duplicate from TRI-ML/DCLM-1B

Browse files

Co-authored-by: Achal Dave <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+
6
+
7
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63118add64939fabc0108b28/BB42g4V8HTxb5dR4tcy8A.png" alt="DCLM Logo" width="300" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
8
+
9
+
10
+ # Model Card for DCLM-1B
11
+
12
+ DCLM-1B is a 1.4 billion parameter language model trained on the DCLM-Baseline dataset, which was curated as part of the DataComp for Language Models (DCLM) benchmark. This model is designed to showcase the effectiveness of systematic data curation techniques for improving language model performance.
13
+
14
+ The instruction tuned version of this model is available here: https://huggingface.co/TRI-ML/DCLM-1B-IT
15
+
16
+ ## Quickstart
17
+ First install open_lm
18
+ ```
19
+ pip install git+https://github.com/mlfoundations/open_lm.git
20
+ ```
21
+
22
+ Then you can load the model using HF's Auto classes as follows:
23
+ ```python
24
+ from open_lm.hf import *
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM
26
+ tokenizer = AutoTokenizer.from_pretrained("TRI-ML/DCLM-1B")
27
+ model = AutoModelForCausalLM.from_pretrained("TRI-ML/DCLM-1B")
28
+
29
+ inputs = tokenizer(["Machine learning is"], return_tensors="pt")
30
+ gen_kwargs = {"max_new_tokens": 50, "top_p": 0.8, "temperature": 0.8, "do_sample": True, "repetition_penalty": 1.1}
31
+ output = model.generate(inputs['input_ids'], **gen_kwargs)
32
+ output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True)
33
+ print(output)
34
+ ```
35
+
36
+
37
+ ## Evaluation
38
+
39
+ We evaluate DCLM-1B using the [llm-foundry](https://github.com/mosaicml/llm-foundry) eval suite, and compare to recently released small models on key benchmarks.
40
+ As described in the paper, Core accuracy is the average of centered accuracy on
41
+ 22 tasks (including HellaSwag and ARC-E), Extended is centered accuracy averaged
42
+ over 53 tasks.
43
+
44
+
45
+ | Model | Params | Tokens | Open dataset? | Core | MMLU 5-shot | Extended |
46
+ |-----------------------------------|:--------:|:--------:|:---------------:|:----------:|:----------:|:-----------:|
47
+ | **Open weights, closed datasets** | | | | | | |
48
+ | Qwen2-1.5B | 1.5B | 7T | ❌ | 42.1 | **56.4** | **32.4** |
49
+ | Gemma-2B | 2.5B | 3T | ❌ | **43.3** | 40.8 | 26.6 |
50
+ | **Open weights, open datasets** | | | | | | |
51
+ | OLMo-1B | 1.2B | 3T | ✅ | 29.7 | 26.0 | 16.1 |
52
+ | SmolLM | 1.7B | 1T | ✅ | 36.3 | 30.0 | 21.2 |
53
+ | DCLM-1B | 1.4B | 4.3T | ✅ | **45.2** | **47.5** | **28.1** |
54
+
55
+ ## Model Details
56
+
57
+ | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
58
+ |:------:|:-----------------:|:--------:|:-------------:|:-----------------:|:----------------:|
59
+ | 1.4B | 4.3T | 24 | 2048 | 16 | 2048 |
60
+
61
+
62
+ ### Model Description
63
+
64
+ - **Developed by:** DataComp for Language Models (DCLM) Team
65
+ - **Model type:** Decoder-only Transformer language model
66
+ - **Language(s):** English (primarily)
67
+ - **License:** Apache 2.0
68
+ - **Contact:** [email protected]
69
+ - **Date:** July 2024
70
+
71
+ ### Model Sources
72
+
73
+ - **Repository:** https://github.com/mlfoundations/dclm
74
+ - **Dataset:** https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
75
+ - **Paper:** [DataComp-LM: In search of the next generation of training sets for language models](https://arxiv.org/abs/2406.11794)
76
+
77
+
78
+ ### Training Details
79
+
80
+ The model was trained using the following setup:
81
+
82
+ - **Architecture:** Decoder-only Transformer
83
+ - **Framework:** PyTorch with OpenLM
84
+ - **Optimizer:** AdamW
85
+ - **Learning Rate:** 1e-2 (peak)
86
+ - **Weight Decay:** 1e-2
87
+ - **Batch Size:** 2048 sequences
88
+ - **Sequence Length:** 2048 tokens
89
+ - **Total Training Tokens:** 4.3T
90
+ - **Hardware:** Trained on H100 GPUs
91
+
92
+
93
+ We train our 1.4B model for 4.3T tokens on DCLM-Baseline, combined with the
94
+ StarCoder and ProofPile2 datasets.
95
+ We will update our paper soon with more training details.
96
+
97
+
98
+ ### Detailed evaluation
99
+
100
+ | Task | Score |
101
+ |------------------------------------------|---------|
102
+ | AGI Eval LSAT AR | 0.2652 |
103
+ | AGI Eval LSAT LR | 0.3314 |
104
+ | AGI Eval LSAT RC | 0.4179 |
105
+ | AGI Eval SAT English | 0.4709 |
106
+ | AGI Eval SAT Math (CoT) | 0.0318 |
107
+ | AQuA (CoT) | 0.0245 |
108
+ | ARC (challenge) | 0.4744 |
109
+ | ARC (easy) | 0.7462 |
110
+ | BBQ | 0.5151 |
111
+ | BigBench Conceptual Combinations | 0.5437 |
112
+ | BigBench Conlang Translation | 0.0793 |
113
+ | BigBench CS Algorithms | 0.4720 |
114
+ | BigBench Dyck Languages | 0.2210 |
115
+ | BigBench Elementary Math QA | 0.2598 |
116
+ | BigBench Language Identification | 0.3284 |
117
+ | BigBench Logical Deduction | 0.2473 |
118
+ | BigBench Misconceptions | 0.5662 |
119
+ | BigBench Novel Concepts | 0.5000 |
120
+ | BigBench Operators | 0.3476 |
121
+ | BigBench QA Wikidata | 0.6852 |
122
+ | BigBench Repeat Copy Logic | 0.1250 |
123
+ | BigBench Strange Stories | 0.6724 |
124
+ | BigBench Strategy QA | 0.5671 |
125
+ | BigBench Understanding Fables | 0.4603 |
126
+ | BoolQ | 0.7382 |
127
+ | CommonSenseQA | 0.6708 |
128
+ | COPA | 0.8200 |
129
+ | CoQA | 0.4314 |
130
+ | Enterprise PII Classification | 0.5246 |
131
+ | GPQA Diamond | 0.2424 |
132
+ | GPQA | 0.2500 |
133
+ | GSM8K (CoT) | 0.0629 |
134
+ | HellaSwag | 0.7285 |
135
+ | HellaSwag (zero-shot) | 0.7162 |
136
+ | Jeopardy | 0.4514 |
137
+ | LAMBADA (OpenAI) | 0.6992 |
138
+ | LogiQA | 0.3103 |
139
+ | MathQA | 0.2682 |
140
+ | MMLU (few-shot) | 0.4752 |
141
+ | MMLU (zero-shot) | 0.4175 |
142
+ | OpenBookQA | 0.4280 |
143
+ | PIQA | 0.7829 |
144
+ | PubMedQA (labeled) | 0.3790 |
145
+ | Simple Arithmetic (no spaces) | 0.0650 |
146
+ | Simple Arithmetic (with spaces) | 0.0700 |
147
+ | SIQA | 0.6868 |
148
+ | SQuAD | 0.5494 |
149
+ | SVAMP (CoT) | 0.2733 |
150
+ | TriviaQA (small subset) | 0.4133 |
151
+ | Winogender (MC female) | 0.4667 |
152
+ | Winogender (MC male) | 0.4000 |
153
+ | Winograd | 0.8608 |
154
+ | Winogrande | 0.6630 |
155
+
156
+
157
+ ## Limitations and Biases
158
+
159
+ While DCLM-1B demonstrates strong performance across a range of tasks, it's important to note:
160
+
161
+ 1. The model may exhibit biases present in its training data, which is derived from web crawl data.
162
+ 2. It has not undergone specific alignment or safety fine-tuning, so outputs should be used with caution.
163
+ 3. Performance on tasks not included in the evaluation suite may vary.
164
+ 4. The model's knowledge is limited to its training data cutoff date.
165
+
166
+ ## Ethical Considerations
167
+
168
+ Users should be aware that this model, like all large language models, can potentially generate harmful or biased content. It should not be used for making decisions about individuals or in sensitive applications without appropriate safeguards and human oversight.
169
+
170
+ ## Citation
171
+
172
+ If you use this model in your research, please cite:
173
+
174
+ ```
175
+ @article{Li2024DataCompLM,
176
+ title={DataComp-LM: In search of the next generation of training sets for language models},
177
+ author={Jeffrey Li and Alex Fang and Georgios Smyrnis and Maor Ivgi and Matt Jordan and Samir Gadre and Hritik Bansal and Etash Guha and Sedrick Keh and Kushal Arora and [... full author list]},
178
+ journal={arXiv preprint arXiv:2406.11794},
179
+ year={2024}
180
+ }
181
+ ```
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "OpenLMModel"
4
+ ],
5
+ "model_type": "openlm",
6
+ "params": null,
7
+ "apply_qk_norm": true,
8
+ "attn_activation": null,
9
+ "attn_name": "torch_attn",
10
+ "attn_seq_scalar": null,
11
+ "attn_seq_scalar_alpha": null,
12
+ "dim": 2048,
13
+ "ffn_type": "swiglu_torch",
14
+ "model": "open_lm_1b_swiglutorch",
15
+ "norm_type": "gain_only_lp_layer_norm",
16
+ "moe_capacity_factor": 1.25,
17
+ "moe_expert_model_parallelism": false,
18
+ "moe_freq": 0,
19
+ "moe_loss_weight": 0.1,
20
+ "moe_num_experts": null,
21
+ "moe_top_k": 2,
22
+ "moe_weight_parallelism": false,
23
+ "n_heads": 16,
24
+ "n_layers": 24,
25
+ "norm_eps": 1e-05,
26
+ "positional_embedding_type": "rotary",
27
+ "post_embed_norm": false,
28
+ "qk_norm": true,
29
+ "seq_len": 2048,
30
+ "vocab_size": 50432,
31
+ "weight_tying": false,
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.40.2"
34
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97eadb24e4c75851e56e30b34f6b8fc6b2eaf32e69d01c83f189c6625569c4aa
3
+ size 4985679432
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ca61873460f22081cc0f71c2a97a12bc9b314a943d528d6f6ac3184a185865
3
+ size 773925424
model.safetensors.index.json ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5759580160
4
+ },
5
+ "weight_map": {
6
+ "model.layers.0.attention.in_proj.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.attention.k_norm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.attention.out_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.attention.q_norm.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.attention_norm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.ffn_norm.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.1.attention.in_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.1.attention.k_norm.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.attention.out_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.attention.q_norm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.attention_norm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.ffn_norm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.10.attention.in_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.10.attention.k_norm.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.attention.out_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.attention.q_norm.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.attention_norm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.ffn_norm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.11.attention.in_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.11.attention.k_norm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.attention.out_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.attention.q_norm.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.attention_norm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.ffn_norm.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.12.attention.in_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.12.attention.k_norm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.attention.out_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.attention.q_norm.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.attention_norm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.ffn_norm.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.13.attention.in_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.13.attention.k_norm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.attention.out_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.attention.q_norm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.attention_norm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.ffn_norm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.14.attention.in_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.14.attention.k_norm.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.attention.out_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.attention.q_norm.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.attention_norm.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.ffn_norm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.15.attention.in_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.15.attention.k_norm.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.attention.out_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.attention.q_norm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.attention_norm.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.ffn_norm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.16.attention.in_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.16.attention.k_norm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.attention.out_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.attention.q_norm.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.attention_norm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.ffn_norm.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.17.attention.in_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.17.attention.k_norm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.attention.out_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.attention.q_norm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.attention_norm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.ffn_norm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.18.attention.in_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.18.attention.k_norm.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.attention.out_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.attention.q_norm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.attention_norm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.ffn_norm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.19.attention.in_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.19.attention.k_norm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.attention.out_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.attention.q_norm.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.attention_norm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.ffn_norm.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.2.attention.in_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.2.attention.k_norm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.attention.out_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.attention.q_norm.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.attention_norm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.ffn_norm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.20.attention.in_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.20.attention.k_norm.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.attention.out_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.20.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
127
+ "model.layers.20.attention.q_norm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.attention_norm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.20.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.20.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.ffn_norm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.21.attention.in_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.21.attention.k_norm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.21.attention.out_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.21.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
136
+ "model.layers.21.attention.q_norm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.21.attention_norm.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.21.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.21.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.21.ffn_norm.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.22.attention.in_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.22.attention.k_norm.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.attention.out_proj.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.attention.pos_embed.inv_freq": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.attention.q_norm.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.attention_norm.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.feed_forward.w12.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.ffn_norm.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.23.attention.in_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.23.attention.k_norm.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.attention.out_proj.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.attention.pos_embed.inv_freq": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.attention.q_norm.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.attention_norm.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.feed_forward.w12.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.feed_forward.w3.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.ffn_norm.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.3.attention.in_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.3.attention.k_norm.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.3.attention.out_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.3.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
163
+ "model.layers.3.attention.q_norm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.3.attention_norm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.3.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.3.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.3.ffn_norm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.4.attention.in_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.4.attention.k_norm.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.4.attention.out_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.4.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
172
+ "model.layers.4.attention.q_norm.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.4.attention_norm.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.4.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.4.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.4.ffn_norm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.5.attention.in_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.5.attention.k_norm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.5.attention.out_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.5.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
181
+ "model.layers.5.attention.q_norm.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.5.attention_norm.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.5.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.5.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.5.ffn_norm.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.6.attention.in_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.6.attention.k_norm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.6.attention.out_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.6.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
190
+ "model.layers.6.attention.q_norm.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.6.attention_norm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.6.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.6.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.6.ffn_norm.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.7.attention.in_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.7.attention.k_norm.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.7.attention.out_proj.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.7.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
199
+ "model.layers.7.attention.q_norm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.7.attention_norm.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.7.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.7.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.7.ffn_norm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.8.attention.in_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.8.attention.k_norm.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.8.attention.out_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.8.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
208
+ "model.layers.8.attention.q_norm.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.8.attention_norm.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.8.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.8.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.8.ffn_norm.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.9.attention.in_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.9.attention.k_norm.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.9.attention.out_proj.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.9.attention.pos_embed.inv_freq": "model-00001-of-00002.safetensors",
217
+ "model.layers.9.attention.q_norm.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.9.attention_norm.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.9.feed_forward.w12.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.9.feed_forward.w3.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.9.ffn_norm.weight": "model-00001-of-00002.safetensors",
222
+ "model.norm.weight": "model-00002-of-00002.safetensors",
223
+ "model.output.weight": "model-00002-of-00002.safetensors",
224
+ "model.tok_embeddings.weight": "model-00001-of-00002.safetensors"
225
+ }
226
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "tokenizer_class": "GPTNeoXTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff