Update README.md
Browse files
README.md
CHANGED
@@ -30,8 +30,8 @@ Transformer model with linear sequence classification head, trained with cross-e
|
|
30 |
- **Developed by:** James Kelly
|
31 |
- **Model type:** SequenceClassification
|
32 |
- **Language(s) (NLP):** English
|
33 |
-
- **License:**
|
34 |
-
- **Finetuned from model:**
|
35 |
|
36 |
### Model Sources
|
37 |
|
@@ -69,14 +69,15 @@ though this is still an important clinical task.
|
|
69 |
|
70 |
Use the code below to get started with the model.
|
71 |
|
72 |
-
'
|
|
|
73 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
74 |
|
75 |
tokenizer = AutoTokenizer.from_pretrained("semaj83/scibert_finetuned_ctmatch")
|
76 |
|
77 |
model = AutoModelForSequenceClassification.from_pretrained("semaj83/scibert_finetuned_ctmatch")
|
78 |
|
79 |
-
'
|
80 |
|
81 |
## Training Details
|
82 |
|
@@ -120,6 +121,7 @@ early_stopping=True
|
|
120 |
sklearn classifier table on random test split:
|
121 |
|
122 |
`
|
|
|
123 |
precision recall f1-score support
|
124 |
|
125 |
0 0.88 0.93 0.90 5430
|
@@ -130,6 +132,7 @@ sklearn classifier table on random test split:
|
|
130 |
macro avg 0.70 0.66 0.67 7939
|
131 |
weighted avg 0.79 0.80 0.79 7939
|
132 |
|
|
|
133 |
`
|
134 |
|
135 |
|
|
|
30 |
- **Developed by:** James Kelly
|
31 |
- **Model type:** SequenceClassification
|
32 |
- **Language(s) (NLP):** English
|
33 |
+
- **License:** MIT
|
34 |
+
- **Finetuned from model:** `allenai/scibert_scivocab_uncased`
|
35 |
|
36 |
### Model Sources
|
37 |
|
|
|
69 |
|
70 |
Use the code below to get started with the model.
|
71 |
|
72 |
+
'
|
73 |
+
|
74 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
75 |
|
76 |
tokenizer = AutoTokenizer.from_pretrained("semaj83/scibert_finetuned_ctmatch")
|
77 |
|
78 |
model = AutoModelForSequenceClassification.from_pretrained("semaj83/scibert_finetuned_ctmatch")
|
79 |
|
80 |
+
'
|
81 |
|
82 |
## Training Details
|
83 |
|
|
|
121 |
sklearn classifier table on random test split:
|
122 |
|
123 |
`
|
124 |
+
|
125 |
precision recall f1-score support
|
126 |
|
127 |
0 0.88 0.93 0.90 5430
|
|
|
132 |
macro avg 0.70 0.66 0.67 7939
|
133 |
weighted avg 0.79 0.80 0.79 7939
|
134 |
|
135 |
+
|
136 |
`
|
137 |
|
138 |
|