semaj83 commited on
Commit
f6c893b
·
1 Parent(s): d9fa76b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -4
README.md CHANGED
@@ -30,8 +30,8 @@ Transformer model with linear sequence classification head, trained with cross-e
30
  - **Developed by:** James Kelly
31
  - **Model type:** SequenceClassification
32
  - **Language(s) (NLP):** English
33
- - **License:** [MIT]
34
- - **Finetuned from model:** [allenai/scibert_scivocab_uncased]
35
 
36
  ### Model Sources
37
 
@@ -69,14 +69,15 @@ though this is still an important clinical task.
69
 
70
  Use the code below to get started with the model.
71
 
72
- '''
 
73
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
74
 
75
  tokenizer = AutoTokenizer.from_pretrained("semaj83/scibert_finetuned_ctmatch")
76
 
77
  model = AutoModelForSequenceClassification.from_pretrained("semaj83/scibert_finetuned_ctmatch")
78
 
79
- '''
80
 
81
  ## Training Details
82
 
@@ -120,6 +121,7 @@ early_stopping=True
120
  sklearn classifier table on random test split:
121
 
122
  `
 
123
  precision recall f1-score support
124
 
125
  0 0.88 0.93 0.90 5430
@@ -130,6 +132,7 @@ sklearn classifier table on random test split:
130
  macro avg 0.70 0.66 0.67 7939
131
  weighted avg 0.79 0.80 0.79 7939
132
 
 
133
  `
134
 
135
 
 
30
  - **Developed by:** James Kelly
31
  - **Model type:** SequenceClassification
32
  - **Language(s) (NLP):** English
33
+ - **License:** MIT
34
+ - **Finetuned from model:** `allenai/scibert_scivocab_uncased`
35
 
36
  ### Model Sources
37
 
 
69
 
70
  Use the code below to get started with the model.
71
 
72
+ '
73
+
74
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
75
 
76
  tokenizer = AutoTokenizer.from_pretrained("semaj83/scibert_finetuned_ctmatch")
77
 
78
  model = AutoModelForSequenceClassification.from_pretrained("semaj83/scibert_finetuned_ctmatch")
79
 
80
+ '
81
 
82
  ## Training Details
83
 
 
121
  sklearn classifier table on random test split:
122
 
123
  `
124
+
125
  precision recall f1-score support
126
 
127
  0 0.88 0.93 0.90 5430
 
132
  macro avg 0.70 0.66 0.67 7939
133
  weighted avg 0.79 0.80 0.79 7939
134
 
135
+
136
  `
137
 
138