Allen Poston
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -17,26 +17,481 @@ inference:
|
|
17 |
do_sample: true
|
18 |
---
|
19 |
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
)
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
17 |
do_sample: true
|
18 |
---
|
19 |
|
20 |
+
> Talk to model requires gpu
|
21 |
|
22 |
+
```python
|
23 |
+
import os, torch, gc, threading, time, traceback
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
|
25 |
+
from queue import Queue, Empty
|
26 |
+
import logging
|
27 |
|
28 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
29 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
30 |
+
torch.backends.cudnn.benchmark = True
|
31 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
+
torch.set_float32_matmul_precision("high")
|
33 |
+
logging.getLogger("transformers").setLevel(logging.ERROR)
|
34 |
|
35 |
+
BOT_NAME = "Senko"
|
36 |
+
PROMPT_FILE = "instructions_prompt.txt"
|
37 |
+
MODEL_ID = "EnterNameBros/mistral-anime-ai"
|
38 |
+
RESPONSE_TIMEOUT = 300 # Increased timeout for longer responses
|
39 |
+
MAX_CONTEXT_LENGTH = 10240
|
40 |
+
MAX_NEW_TOKENS = 8192 # Increased max tokens for longer responses
|
41 |
+
MEMORY_SIZE = 20
|
42 |
|
43 |
+
def check_bitsandbytes_version():
|
44 |
+
try:
|
45 |
+
import bitsandbytes as bnb
|
46 |
+
version = bnb.__version__
|
47 |
+
print(f"Bitsandbytes version: {version}")
|
48 |
|
49 |
+
version_parts = version.split('.')
|
50 |
+
major, minor = int(version_parts[0]), int(version_parts[1])
|
51 |
+
|
52 |
+
if major > 0 or (major == 0 and minor >= 41):
|
53 |
+
return True
|
54 |
+
else:
|
55 |
+
print(f"Warning: Bitsandbytes {version} may not support 4-bit quantization")
|
56 |
+
return False
|
57 |
+
except ImportError:
|
58 |
+
print("Bitsandbytes not installed")
|
59 |
+
return False
|
60 |
+
except Exception as e:
|
61 |
+
print(f"Error checking bitsandbytes version: {e}")
|
62 |
+
return False
|
63 |
+
|
64 |
+
class OptimizedChatBot:
|
65 |
+
def __init__(self):
|
66 |
+
self.model = None
|
67 |
+
self.tokenizer = None
|
68 |
+
self.system_prompt = ""
|
69 |
+
self.memory = []
|
70 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
71 |
+
self.generation_lock = threading.Lock()
|
72 |
+
self.is_generating = False
|
73 |
+
self.use_quantization = False
|
74 |
+
|
75 |
+
def load_system_prompt(self, bot_name, filename=PROMPT_FILE):
|
76 |
+
try:
|
77 |
+
with open(filename, "r", encoding="utf-8") as f:
|
78 |
+
self.system_prompt = f.read().replace("{BOT_NAME}", bot_name)
|
79 |
+
print(f"Loaded system prompt from {filename}")
|
80 |
+
except FileNotFoundError:
|
81 |
+
print(f"Warning: {filename} not found. Using default prompt.")
|
82 |
+
self.system_prompt =
|
83 |
+
def load_model(self):
|
84 |
+
print("Loading model...")
|
85 |
+
start_time = time.time()
|
86 |
+
|
87 |
+
try:
|
88 |
+
print("Loading tokenizer...")
|
89 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
90 |
+
MODEL_ID,
|
91 |
+
use_fast=True,
|
92 |
+
trust_remote_code=True
|
93 |
+
)
|
94 |
+
self.tokenizer.pad_token = self.tokenizer.pad_token or self.tokenizer.eos_token
|
95 |
+
self.tokenizer.padding_side = "left"
|
96 |
+
print("Tokenizer loaded successfully")
|
97 |
+
|
98 |
+
print("Loading model weights...")
|
99 |
+
if torch.cuda.is_available():
|
100 |
+
print(f"Using GPU: {torch.cuda.get_device_name()}")
|
101 |
+
print(f"Available VRAM: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
|
102 |
+
|
103 |
+
can_use_4bit = check_bitsandbytes_version()
|
104 |
+
|
105 |
+
if can_use_4bit:
|
106 |
+
print("Using 4-bit quantization")
|
107 |
+
config = BitsAndBytesConfig(
|
108 |
+
load_in_4bit=True,
|
109 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
110 |
+
bnb_4bit_use_double_quant=True,
|
111 |
+
bnb_4bit_quant_type="nf4",
|
112 |
+
bnb_4bit_quant_storage=torch.bfloat16
|
113 |
+
)
|
114 |
+
self.use_quantization = True
|
115 |
+
else:
|
116 |
+
print("Using 8-bit quantization fallback")
|
117 |
+
config = BitsAndBytesConfig(
|
118 |
+
load_in_8bit=True,
|
119 |
+
llm_int8_threshold=6.0,
|
120 |
+
llm_int8_skip_modules=None,
|
121 |
+
)
|
122 |
+
self.use_quantization = True
|
123 |
+
|
124 |
+
try:
|
125 |
+
attn_impl = "flash_attention_2" if torch.cuda.get_device_capability()[0] >= 8 else "sdpa"
|
126 |
+
print(f"Using attention implementation: {attn_impl}")
|
127 |
+
except:
|
128 |
+
attn_impl = "sdpa"
|
129 |
+
|
130 |
+
try:
|
131 |
+
if self.use_quantization:
|
132 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
133 |
+
MODEL_ID,
|
134 |
+
device_map="auto",
|
135 |
+
torch_dtype=torch.bfloat16,
|
136 |
+
quantization_config=config,
|
137 |
+
trust_remote_code=True,
|
138 |
+
low_cpu_mem_usage=True,
|
139 |
+
use_cache=True,
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
raise Exception("Quantization not available")
|
143 |
+
|
144 |
+
except Exception as quant_error:
|
145 |
+
print(f"Quantization failed: {quant_error}")
|
146 |
+
print("Falling back to regular fp16 loading...")
|
147 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
148 |
+
MODEL_ID,
|
149 |
+
device_map="auto",
|
150 |
+
torch_dtype=torch.bfloat16,
|
151 |
+
trust_remote_code=True,
|
152 |
+
low_cpu_mem_usage=True,
|
153 |
+
use_cache=True,
|
154 |
+
)
|
155 |
+
self.use_quantization = False
|
156 |
+
|
157 |
+
else:
|
158 |
+
print("Using CPU (this will be slow)")
|
159 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
160 |
+
MODEL_ID,
|
161 |
+
device_map="cpu",
|
162 |
+
torch_dtype=torch.float32,
|
163 |
+
trust_remote_code=True,
|
164 |
+
use_cache=True
|
165 |
+
)
|
166 |
+
|
167 |
+
self.model.eval()
|
168 |
+
|
169 |
+
if False and hasattr(torch, 'compile') and torch.cuda.is_available():
|
170 |
+
try:
|
171 |
+
print("Compiling model for optimization...")
|
172 |
+
self.model = torch.compile(
|
173 |
+
self.model,
|
174 |
+
mode="reduce-overhead",
|
175 |
+
fullgraph=False,
|
176 |
+
dynamic=True
|
177 |
+
)
|
178 |
+
print("Model compilation successful")
|
179 |
+
except Exception as e:
|
180 |
+
print(f"Model compilation failed (continuing without): {e}")
|
181 |
+
|
182 |
+
load_time = time.time() - start_time
|
183 |
+
print(f"Model loaded successfully in {load_time:.2f}s")
|
184 |
+
print(f"Quantization used: {self.use_quantization}")
|
185 |
+
|
186 |
+
if torch.cuda.is_available():
|
187 |
+
memory_used = torch.cuda.memory_allocated() / 1024**3
|
188 |
+
print(f"GPU memory used: {memory_used:.2f}GB")
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Failed to load model: {e}")
|
192 |
+
traceback.print_exc()
|
193 |
+
raise
|
194 |
+
|
195 |
+
def prepare_prompt(self, user_input):
|
196 |
+
self.memory.append({"user": user_input, "bot": None})
|
197 |
+
|
198 |
+
if len(self.memory) > MEMORY_SIZE:
|
199 |
+
self.memory = self.memory[-MEMORY_SIZE:]
|
200 |
+
|
201 |
+
conversation_history = ""
|
202 |
+
for turn in self.memory[:-1]:
|
203 |
+
if turn["bot"] is not None:
|
204 |
+
conversation_history += f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n"
|
205 |
+
|
206 |
+
conversation_history += f"User: {user_input}\n{BOT_NAME}:"
|
207 |
+
|
208 |
+
full_prompt = f"{self.system_prompt}\n\n{conversation_history}"
|
209 |
+
|
210 |
+
tokens = self.tokenizer.encode(full_prompt)
|
211 |
+
if len(tokens) > MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS:
|
212 |
+
print(f"[Truncating context: {len(tokens)} -> ~{MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS} tokens]")
|
213 |
+
recent_history = ""
|
214 |
+
for turn in self.memory[-3:]:
|
215 |
+
if turn["bot"] is not None:
|
216 |
+
recent_history += f"User: {turn['user']}\n{BOT_NAME}: {turn['bot']}\n\n"
|
217 |
+
recent_history += f"User: {user_input}\n{BOT_NAME}:"
|
218 |
+
return f"{self.system_prompt}\n\n{recent_history}"
|
219 |
+
|
220 |
+
return full_prompt
|
221 |
+
|
222 |
+
def is_natural_stopping_point(self, text):
|
223 |
+
"""
|
224 |
+
Only stop at very clear natural ending points to allow for longer responses.
|
225 |
+
This is much more permissive than the original function.
|
226 |
+
"""
|
227 |
+
if not text or len(text.strip()) < 20:
|
228 |
+
return False
|
229 |
+
|
230 |
+
stripped = text.strip()
|
231 |
+
|
232 |
+
# Stop if we detect role confusion (user/assistant switching)
|
233 |
+
if any(indicator in stripped.lower() for indicator in ["user:", "user ", "\nuser", "human:", "assistant:"]):
|
234 |
+
return True
|
235 |
+
|
236 |
+
# Allow very long responses - only stop if we have clear dialogue markers
|
237 |
+
# that suggest the response is complete
|
238 |
+
if len(stripped) > 2000: # Only consider stopping after 2000+ characters
|
239 |
+
# Look for clear ending patterns
|
240 |
+
ending_patterns = [
|
241 |
+
"That is all.",
|
242 |
+
"The end.",
|
243 |
+
"Goodbye.",
|
244 |
+
"Farewell.",
|
245 |
+
"Until next time.",
|
246 |
+
"That concludes",
|
247 |
+
"In conclusion",
|
248 |
+
]
|
249 |
+
|
250 |
+
if any(pattern.lower() in stripped.lower()[-100:] for pattern in ending_patterns):
|
251 |
+
return True
|
252 |
+
|
253 |
+
return False
|
254 |
+
|
255 |
+
def generate_reply_with_timeout(self, prompt, timeout=RESPONSE_TIMEOUT):
|
256 |
+
with self.generation_lock:
|
257 |
+
if self.is_generating:
|
258 |
+
print("[Already generating, please wait...]")
|
259 |
+
return None
|
260 |
+
|
261 |
+
self.is_generating = True
|
262 |
+
|
263 |
+
try:
|
264 |
+
return self._generate_reply(prompt, timeout)
|
265 |
+
finally:
|
266 |
+
self.is_generating = False
|
267 |
+
|
268 |
+
def _generate_reply(self, prompt, timeout):
|
269 |
+
try:
|
270 |
+
print(f"[Generating response...]")
|
271 |
+
inputs = self.tokenizer(
|
272 |
+
prompt,
|
273 |
+
return_tensors="pt",
|
274 |
+
truncation=True,
|
275 |
+
max_length=MAX_CONTEXT_LENGTH - MAX_NEW_TOKENS,
|
276 |
+
padding=False
|
277 |
+
).to(self.device)
|
278 |
+
|
279 |
+
streamer = TextIteratorStreamer(
|
280 |
+
self.tokenizer,
|
281 |
+
skip_special_tokens=True,
|
282 |
+
skip_prompt=True,
|
283 |
+
timeout=120.0 # Increased timeout for streaming
|
284 |
+
)
|
285 |
+
|
286 |
+
generation_kwargs = {
|
287 |
+
**inputs,
|
288 |
+
"max_new_tokens": MAX_NEW_TOKENS,
|
289 |
+
"do_sample": True,
|
290 |
+
"temperature": 0.7,
|
291 |
+
"top_p": 0.9,
|
292 |
+
"top_k": 50,
|
293 |
+
"repetition_penalty": 1.1,
|
294 |
+
"pad_token_id": self.tokenizer.eos_token_id,
|
295 |
+
"eos_token_id": self.tokenizer.eos_token_id,
|
296 |
+
"use_cache": True,
|
297 |
+
"streamer": streamer,
|
298 |
+
"num_beams": 1,
|
299 |
+
"no_repeat_ngram_size": 3,
|
300 |
+
"min_length": 0,
|
301 |
+
"early_stopping": False,
|
302 |
+
"length_penalty": 1.0,
|
303 |
+
"num_return_sequences": 1,
|
304 |
+
"diversity_penalty": 0.0,
|
305 |
+
"stop_sequences": [],
|
306 |
+
"forced_eos_token_id": None,
|
307 |
+
"num_beam_groups": 1,
|
308 |
+
}
|
309 |
+
|
310 |
+
generation_thread = threading.Thread(
|
311 |
+
target=self._run_generation,
|
312 |
+
args=(generation_kwargs,)
|
313 |
+
)
|
314 |
+
generation_thread.daemon = True
|
315 |
+
generation_thread.start()
|
316 |
+
|
317 |
+
print(f"{BOT_NAME}: ", end="", flush=True)
|
318 |
+
full_response = ""
|
319 |
+
start_time = time.time()
|
320 |
+
last_token_time = start_time
|
321 |
+
|
322 |
+
while True:
|
323 |
+
current_time = time.time()
|
324 |
+
|
325 |
+
# Extended timeout for long responses
|
326 |
+
if current_time - start_time > timeout:
|
327 |
+
print(f"\n[Generation timeout after {timeout}s]")
|
328 |
+
break
|
329 |
+
|
330 |
+
# Increased patience for token generation
|
331 |
+
if current_time - last_token_time > 60.0: # Wait up to 60s for next token
|
332 |
+
print(f"\n[No new tokens for 60s, stopping]")
|
333 |
+
break
|
334 |
+
|
335 |
+
try:
|
336 |
+
token = next(streamer)
|
337 |
+
print(token, end="", flush=True)
|
338 |
+
full_response += token
|
339 |
+
last_token_time = current_time
|
340 |
+
|
341 |
+
# Only check for stopping at natural points, not arbitrary length limits
|
342 |
+
if len(full_response.strip()) > 100: # Minimum response length
|
343 |
+
if self.is_natural_stopping_point(full_response.strip()):
|
344 |
+
break
|
345 |
+
|
346 |
+
except StopIteration:
|
347 |
+
print(f"\n[Generation completed naturally]")
|
348 |
+
break
|
349 |
+
except Empty:
|
350 |
+
time.sleep(0.1)
|
351 |
+
continue
|
352 |
+
except Exception as e:
|
353 |
+
print(f"\n[Streaming error: {e}]")
|
354 |
+
break
|
355 |
+
|
356 |
+
generation_thread.join(timeout=15.0)
|
357 |
+
|
358 |
+
response = full_response.strip()
|
359 |
+
|
360 |
+
# Clean up any role confusion but preserve the response content
|
361 |
+
lines = response.split('\n')
|
362 |
+
clean_lines = []
|
363 |
+
for line in lines:
|
364 |
+
line = line.strip()
|
365 |
+
# Remove lines that start with role indicators
|
366 |
+
if any(line.lower().startswith(indicator) for indicator in ["user:", "user ", "human:", "assistant:", f"{BOT_NAME.lower()}:"]):
|
367 |
+
continue
|
368 |
+
if line:
|
369 |
+
clean_lines.append(line)
|
370 |
+
|
371 |
+
response = '\n'.join(clean_lines).strip()
|
372 |
+
|
373 |
+
if response:
|
374 |
+
if self.memory and self.memory[-1]["bot"] is None:
|
375 |
+
self.memory[-1]["bot"] = response
|
376 |
+
print(f"\n[Response length: {len(response)} characters]")
|
377 |
+
return response
|
378 |
+
else:
|
379 |
+
print(f"\n[Empty response generated]")
|
380 |
+
return None
|
381 |
+
|
382 |
+
except Exception as e:
|
383 |
+
print(f"\n[Generation error: {e}]")
|
384 |
+
traceback.print_exc()
|
385 |
+
return None
|
386 |
+
finally:
|
387 |
+
if torch.cuda.is_available():
|
388 |
+
torch.cuda.empty_cache()
|
389 |
+
|
390 |
+
def _run_generation(self, kwargs):
|
391 |
+
try:
|
392 |
+
torch.set_grad_enabled(False)
|
393 |
+
if torch.cuda.is_available():
|
394 |
+
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
395 |
+
self.model.generate(**kwargs)
|
396 |
+
else:
|
397 |
+
self.model.generate(**kwargs)
|
398 |
+
except Exception as e:
|
399 |
+
print(f"\n[Generation thread error: {e}]")
|
400 |
+
|
401 |
+
def cleanup_memory(self):
|
402 |
+
if torch.cuda.is_available():
|
403 |
+
torch.cuda.empty_cache()
|
404 |
+
torch.cuda.synchronize()
|
405 |
+
gc.collect()
|
406 |
+
|
407 |
+
def get_memory_info(self):
|
408 |
+
if torch.cuda.is_available():
|
409 |
+
allocated = torch.cuda.memory_allocated() / 1024**3
|
410 |
+
cached = torch.cuda.memory_reserved() / 1024**3
|
411 |
+
return f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB"
|
412 |
+
else:
|
413 |
+
import psutil
|
414 |
+
memory = psutil.virtual_memory()
|
415 |
+
return f"RAM Usage: {memory.percent}% ({memory.used / 1024**3:.2f}GB used)"
|
416 |
+
|
417 |
+
def main():
|
418 |
+
bot = OptimizedChatBot()
|
419 |
+
|
420 |
+
try:
|
421 |
+
print("Initializing chatbot...")
|
422 |
+
bot.load_system_prompt(BOT_NAME)
|
423 |
+
bot.load_model()
|
424 |
+
|
425 |
+
print(f"\n{'='*50}")
|
426 |
+
print(f"{BOT_NAME} is ready! (Unlimited response length)")
|
427 |
+
print("Commands:")
|
428 |
+
print(" 'exit' - Quit the program")
|
429 |
+
print(" 'clear' - Reset conversation memory")
|
430 |
+
print(" 'memory' - Show memory usage")
|
431 |
+
print(" 'status' - Show bot status")
|
432 |
+
print(f"{'='*50}\n")
|
433 |
+
|
434 |
+
conversation_count = 0
|
435 |
+
|
436 |
+
while True:
|
437 |
+
try:
|
438 |
+
user_input = input("You: ").strip()
|
439 |
+
|
440 |
+
if user_input.lower() == "exit":
|
441 |
+
print("Goodbye! 👋")
|
442 |
+
break
|
443 |
+
elif user_input.lower() == "clear":
|
444 |
+
bot.memory = []
|
445 |
+
print("✅ Conversation memory cleared.")
|
446 |
+
continue
|
447 |
+
elif user_input.lower() == "memory":
|
448 |
+
print(f"📊 {bot.get_memory_info()}")
|
449 |
+
continue
|
450 |
+
elif user_input.lower() == "status":
|
451 |
+
status = "🟢 Ready" if not bot.is_generating else "🟡 Generating"
|
452 |
+
print(f"Status: {status}")
|
453 |
+
print(f"Conversation turns: {len([t for t in bot.memory if t['bot'] is not None])}")
|
454 |
+
continue
|
455 |
+
elif not user_input:
|
456 |
+
continue
|
457 |
+
|
458 |
+
start_time = time.time()
|
459 |
+
prompt = bot.prepare_prompt(user_input)
|
460 |
+
response = bot.generate_reply_with_timeout(prompt)
|
461 |
+
|
462 |
+
if response:
|
463 |
+
response_time = time.time() - start_time
|
464 |
+
print(f"[⏱️ {response_time:.2f}s]")
|
465 |
+
else:
|
466 |
+
print("❌ Failed to generate response. Try again or type 'clear' to reset.")
|
467 |
+
|
468 |
+
conversation_count += 1
|
469 |
+
|
470 |
+
if conversation_count % 10 == 0:
|
471 |
+
print("[🧹 Cleaning up memory...]")
|
472 |
+
bot.cleanup_memory()
|
473 |
|
474 |
+
except KeyboardInterrupt:
|
475 |
+
print("\n\n⚠️ Interrupted by user. Exiting gracefully...")
|
476 |
+
break
|
477 |
+
except Exception as e:
|
478 |
+
print(f"\n❌ Conversation error: {e}")
|
479 |
+
traceback.print_exc()
|
480 |
+
print("Continuing... (type 'exit' to quit)")
|
481 |
|
482 |
+
except Exception as e:
|
483 |
+
print(f"💥 Startup error: {e}")
|
484 |
+
traceback.print_exc()
|
485 |
+
finally:
|
486 |
+
print("\n🧹 Performing final cleanup...")
|
487 |
+
if torch.cuda.is_available():
|
488 |
+
torch.cuda.empty_cache()
|
489 |
+
torch.cuda.synchronize()
|
490 |
+
gc.collect()
|
491 |
+
print("✅ Cleanup completed. Goodbye!")
|
492 |
|
493 |
+
if __name__ == "__main__":
|
494 |
+
torch.cuda.empty_cache()
|
495 |
+
import gc
|
496 |
+
gc.collect()
|
497 |
+
main()```
|