Use 300m
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
- generated_from_trainer
|
11 |
- dataset_size:100000
|
12 |
- loss:CachedMultipleNegativesRankingLoss
|
13 |
-
base_model: google/embeddinggemma-
|
14 |
widget:
|
15 |
- source_sentence: 'What are the potential effects of stopping inhaled corticosteroid
|
16 |
(ICS) therapy in patients with chronic obstructive pulmonary disease (COPD)?
|
@@ -987,7 +987,7 @@ metrics:
|
|
987 |
- cosine_mrr@10
|
988 |
- cosine_map@100
|
989 |
model-index:
|
990 |
-
- name: EmbeddingGemma-
|
991 |
(MIRIAD)
|
992 |
results:
|
993 |
- task:
|
@@ -1096,9 +1096,9 @@ model-index:
|
|
1096 |
name: Cosine Map@100
|
1097 |
---
|
1098 |
|
1099 |
-
# EmbeddingGemma-
|
1100 |
|
1101 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-
|
1102 |
|
1103 |
This model has been trained using code from our [EmbeddingGemma blogpost](https://huggingface.co/blog/embeddinggemma) to showcase how the EmbeddingGemma model can be finetuned on specific domains/tasks for even stronger performance. It is not affiliated with Google.
|
1104 |
|
@@ -1106,7 +1106,7 @@ This model has been trained using code from our [EmbeddingGemma blogpost](https:
|
|
1106 |
|
1107 |
### Model Description
|
1108 |
- **Model Type:** Sentence Transformer
|
1109 |
-
- **Base model:** [google/embeddinggemma-
|
1110 |
- **Maximum Sequence Length:** 1024 tokens
|
1111 |
- **Output Dimensionality:** 768 dimensions
|
1112 |
- **Similarity Function:** Cosine Similarity
|
@@ -1148,7 +1148,7 @@ Then you can load this model and run inference.
|
|
1148 |
from sentence_transformers import SentenceTransformer
|
1149 |
|
1150 |
# Download from the 🤗 Hub
|
1151 |
-
model = SentenceTransformer("sentence-transformers/embeddinggemma-
|
1152 |
# Run inference
|
1153 |
queries = [
|
1154 |
"What are some potential limitations in projecting the future demand for joint replacement surgeries?\n",
|
|
|
10 |
- generated_from_trainer
|
11 |
- dataset_size:100000
|
12 |
- loss:CachedMultipleNegativesRankingLoss
|
13 |
+
base_model: google/embeddinggemma-300m
|
14 |
widget:
|
15 |
- source_sentence: 'What are the potential effects of stopping inhaled corticosteroid
|
16 |
(ICS) therapy in patients with chronic obstructive pulmonary disease (COPD)?
|
|
|
987 |
- cosine_mrr@10
|
988 |
- cosine_map@100
|
989 |
model-index:
|
990 |
+
- name: EmbeddingGemma-300m trained on the Medical Instruction and RetrIeval Dataset
|
991 |
(MIRIAD)
|
992 |
results:
|
993 |
- task:
|
|
|
1096 |
name: Cosine Map@100
|
1097 |
---
|
1098 |
|
1099 |
+
# EmbeddingGemma-300m finetuned on the Medical Instruction and RetrIeval Dataset (MIRIAD)
|
1100 |
|
1101 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) on the [miriad/miriad-4.4M](https://huggingface.co/datasets/miriad/miriad-4.4M) dataset (specifically the first 100.000 question-passage pairs from [tomaarsen/miriad-4.4M-split](https://huggingface.co/datasets/tomaarsen/miriad-4.4M-split)). It maps sentences & documents to a 768-dimensional dense vector space and can be used for medical information retrieval, specifically designed for searching for passages (up to 1k tokens) of scientific medical papers using detailed medical questions.
|
1102 |
|
1103 |
This model has been trained using code from our [EmbeddingGemma blogpost](https://huggingface.co/blog/embeddinggemma) to showcase how the EmbeddingGemma model can be finetuned on specific domains/tasks for even stronger performance. It is not affiliated with Google.
|
1104 |
|
|
|
1106 |
|
1107 |
### Model Description
|
1108 |
- **Model Type:** Sentence Transformer
|
1109 |
+
- **Base model:** [google/embeddinggemma-300m](https://huggingface.co/google/embeddinggemma-300m) <!-- at revision a3cd7d576fa223c646b6b3fb05d801d031ddd393 -->
|
1110 |
- **Maximum Sequence Length:** 1024 tokens
|
1111 |
- **Output Dimensionality:** 768 dimensions
|
1112 |
- **Similarity Function:** Cosine Similarity
|
|
|
1148 |
from sentence_transformers import SentenceTransformer
|
1149 |
|
1150 |
# Download from the 🤗 Hub
|
1151 |
+
model = SentenceTransformer("sentence-transformers/embeddinggemma-300m-medical")
|
1152 |
# Run inference
|
1153 |
queries = [
|
1154 |
"What are some potential limitations in projecting the future demand for joint replacement surgeries?\n",
|